
Proposal of Adaptive Randomness
in Differential Evolution

Junya Tsubamoto
Graduate School of Engineering

Osaka Prefecture University
Osaka, Japan

tsubamoto@hi.cs.osakafu-u.ac.jp

Akira Notsu
Graduate School of Humanities
and Sustainable System Sciences

Osaka Prefecture University
Osaka, Japan

notsu@cs.osakafu-u.ac.jp

Seiki Ubukata, Katsuhiro Honda
Graduate School of Engineering

Osaka Prefecture University
Osaka, Japan

{subukata, honda}@cs.osakafu-u.ac.jp

Abstract—Differential evolution (DE) is a widely used opti-
mization algorithm, which can achieve high accuracy with a
simple mechanism, but sometimes have only limited performances
due to its simplicity. In order to mitigate the inappropriate effect
of poor initial search points, it is known that adding a random
search to DE contributes to obtain better results than normal DE.
However, it is inefficient to perform many random searches when
the search process is almost converged. In this study, we propose
a novel method of DE with Adaptive Randomness (DEAR),
which is a hybrid of two promising algorithms of DIEtoDE and
SaDE, and can adaptively change the frequency of random search
maintaining efficiency. Numerical experiments demonstrated that
the proposed method can identify better solutions than other
comparative methods.

Index Terms—Optimization problem, differential evolution,
adaptive randomness

I. INTRODUCTION

Parameter optimization is a very important problem for
many machine learning including neural networks [1]. Many
optimization algorithms have been proposed to quickly ob-
tain optimal solutions for these optimization problems. For
example, we have several nature-inspired algorithms such
as Genetic Algorithm (GA) [2], [3], which is an algorithm
expressing human genetics, and Particle Swarm Optimization
(PSO) [4], [5], which is an algorithm imitating the movement
of a flock of birds.

Differential evolution (DE) [6], [7] is a widely used op-
timization algorithm because it achieves high accuracy with
a simple procedure. However, since the performance of DE
varies greatly depending on parameter values and the positions
of initial individuals, many improved algorithms have been
proposed to address these problems [8]. For example, there are
algorithms focusing on DE search methods [9] and automatic
parameter adjustment [10], [11].

We previously proposed Differential Evolution with Inter-
vals (DIE) [12] to mitigate the effects of initial search points
in DE. DIE is a method of adding random search within
confidence intervals in a range according to the number of
searches to DE. In addition, we also proposed DIEtoDE [12],
which is a method which switches from DIE to DE on the way
for the purpose of accelerating the convergence of solution
processes. We have confirmed that DIEtoDE can obtain faster

and better solutions for many objective functions compared to
the conventional DE.

However, DIEtoDE is a one-way algorithm that switches
from DIE to DE. In other words, once switching to DE,
DIEtoDE does not perform random search thereafter. There-
fore, DIEtoDE may not find a good solution because it does
not perform the necessary random searches within confidence
intervals in the latter stage of the search. For some objective
functions, DIEtoDE is unable to properly switch from DIE to
DE, and so, it could not make a clear advantage to the solution
obtained by DE.

In this study, we propose DE with Adaptive Randomness
(DEAR) which incorporates the concept of SaDE [13], [14]
to stochastically perform random search even at the last stage
of the search. SaDE is a method for adaptively selecting
one strategy from multiple individual generation strategies.
By introducing these strategies to DE, DIE (DE with random
search within the confidence interval), and random search from
all areas, DEAR can always offer randomness adaptively.

The structure of this paper is as follows. Section 2 outlines
DE and its improved methods. In Section 3, we propose a
novel algorithm which improves upon DE. Next, in Section
4, numerical experiments are carried out using the proposed
method and the results are examined. Finally, conclusions are
drawn in Section 5 including problems for future research.

II. DIFFERENTIAL EVOLUTION AND IMPROVED METHODS

A. Differential Evolution (DE)

In DE, an efficient search is carried out by saving some good
search points and generating a next search point using them.
Genetic operators such as mutation, crossover, and survivor
selection are used to generate and select subsequent search
points. DE has been shown to exhibit high speed and high
searching performance for various optimization problems [15].
In differential evolution, the focus is on three issues: a) how
to select the basic vector, b) the number of difference vectors,
and c) the type of crossover. We use the notation of the form
(DE/a/b/c) herein to distinguish particular DE algorithms. The
algorithm for (DE/rand/1/bin) is shown below.
Step 1 N individuals {xi, i = 1, 2, . . . , N} are randomly
generated as initial search points.

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Step 2 Repeat the following until some stopping conditions
are met.

2-1 For each individual xi, an individual v is generated from
the following equation where xa, xb, and xc are individuals
that do not overlap with each other including xi in the solution
group. F is the mutation coefficient.

v = xa + F (xb − xc) (1)

2-2 xo is generated by uniformly crossing xi and v as in
the following equation.

xoj =

{
vj (w ≤ CR)

xij (otherwise)
(2)

where w represents a uniform random variable within the
range [0,1] and CR is a crossover rate.

2-3 Evaluate the solution of xo and replace xi with xo if
the search result is better than xi.
Step 3 Let the best solution among the searched points be the
final solution.
N , F and CR are user-defined parameters. Regarding the

generation method of the individual v, a plurality of muta-
tion strategies other than (DE/rand/1/bin) are implemented as
shown in the following formulas. Here, xbest is an individual
exhibiting the best solution in the solution group. xd and
xe are individuals selected so as not to be duplicated in the
solution population similarly to xa, xb and xc. K is a user-
defined parameter.

• DE/rand-to-best/2/bin

v = xi+F (xbest−xi)+F (xa−xb)+F (xc−xd) (3)

• DE/rand/2/bin

v = xa + F (xb − xc) + F (xd − xe) (4)

• DE/current-to-rand/1

v = xi +K(xa − xi) + F (xb − xc) (5)

B. Differential Evolution with Intervals (DIE)

In differential evolution, since the initial search points are
given randomly, search point generation largely depends on
the initial search point set by chance, and the search process
may not be successful depending on the shape of the objective
function. This motivated the development of DIE.

Assume that there are N search points in a space where each
dimension is normalized from 0 to 1 and each search point is,
on average, responsible for searching volume 1/N . Because
the decreasing rate of the space to be searched by each point
is expected to be the same as that of the confidence intervals
in the estimation of the mean and variance, it is proportional
to (1/I)m with the number of searches I and a constant m.

In DIE, the next search point is randomly shifted within the
current search range. Let D be the dimensionality of the search
space, and make the search range a hypercube of 1/N1/DI1/2

per side, and add a term which moves randomly in this range
in the generation of the next search point. In [12], m = 1/2

was set. Equation (1) for the generation of individual v in DE
is modified as follows.

vj = xa,j + F (xb,j − xc,j) +H

(
rand()− 0.5

N1/DI1/2

)
(6)

where rand() is a function outputting a uniform random
number from 0 to 1, and H is a variable that takes the value
of 1 for random search and 0 otherwise.

DIEtoDE is a method which switches from DIE to DE to
accelerate solution convergence. If an objective function is
unimodal and the solution exists inside a set of search points,
the spread of the set of search points becomes exponentially
smaller by the DE algorithm. Since the random search range of
DIE becomes small in the polynomial order, if the search range
of the search point is narrowed to the range of unimodality and
the search is continued for a while, the spread of the search
point group is expected to become smaller than the random
search range of DIE.

Therefore, the DIE random search is applied until the length
of one side of the hypercube including the search point group
becomes smaller than the length of one side of the range of
random movement. The length L of each dimension indicating
the extent of the set of search points is calculated by the
following equation.

L =
1

D

D∑
j=1

(max
i

xi,j −min
i

xi,j) (7)

Therefore, the value of variable H that controls the random
search of DIEtoDE is switched under the following conditions.

H =

{
1 (L ≥ 1

N1/DI1/2)

0 (otherwise)
(8)

C. Self-adaptive Differential Evolution (SaDE)

SaDE is a method that uses memory to store past search
information and performs adaptive adjustment of mutation
strategy and CR. In normal DE, only one type of mutation
strategy is set, and the CR is preset by each user. However,
since the performance of DE depends greatly on these strate-
gies and parameters [16], good results may not be obtained
depending on the shape of the objective function.

SaDE obtains better approximate solutions than normal
DE in many objective functions by implementing a function
for stochastically selecting four strategies: (DE/rand/1/bin),
(DE/rand-to-best/2/bin), (DE/rand/2/bin), and (DE/current-to-
rand/1) for each individual in each generation and leading to
adaptively adjustment of parameters. In the following, the case
where a child individual is better than the parent individual is
called “success”, otherwise it is called “failure”.

After setting LP as the number of generations, the numbers
of successful and failed searches in each strategy during the
LP generations are stored. The probability of selecting each
strategy in the next trial vector generation is calculated from
the number of failures and successes during LP generations.
When preparing K strategies, the initial value of the prob-
ability of selecting each strategy is set 1/K. After saving

the LP generations, if the probability that the kth strategy
is selected in the Gth generation is pk,G, pk,G is represented
by the following equation:

pk,G =
Sk,G∑K
k=1 Sk,G

(9)

where

Sk,G =

∑G−1
g=G−LP nsk,g∑G−1

g=G−LP nsk,g +
∑G−1

g=G−LP nfk,g
+ ε (10)

in which Sk,G represents the success rate of the trial vectors
generated by the kth strategy entering the next generation
within the previous LP generations with respect to generation
G. nsk,g and nfk,g are respectively the numbers of successes
and failures when strategy k is selected in generation g. The
small constant value ε = 0.01 is used to avoid possible null
success rates.

In normal DE, parameters F and CR are defined by
the user, but in SaDE, they change adaptively from their
initial values. F is generated randomly using normal random
numbers, and no adaptive adjustment is performed. On the
other hand, CR records the values that succeeded in the past in
memory for each strategy, and random numbers are generated
based on a normal distribution having the same average value
with CR stored in memory.

III. PROPOSED ALGORITHM

DIEtoDE, which we proposed in an early study, is a one-
way algorithm. Thus, once DIE switches to DE, DE does not
implement random searches and, as such, sometimes cannot
find a good solution. Therefore, we propose a novel algorithm
of DE with adaptive randomness (DEAR). This algorithm can
perform a random search even in the latter stage of the search
supported by the idea of the strategy selection of SaDE.

SaDE adaptively selects a DE strategy to generate the trial
vector v. In DEAR, instead of the DE individual generation
strategy, a new individual is generated by probabilistic selec-
tion from three methods: DE, DIE, and random search, i.e.,
SaDE-like strategy selection is performed with K = 3 using
different candidates. In DEAR, the probability of choosing one
of these three strategies is calculated by the above formula (9)
using the numbers of successes and failures in each strategy,
as in the case of SaDE. When DE is selected based on the
probability calculated in (9), an individual is generated using
(1) and (2). If DIE is selected, an individual is generated using
(6) and (2). When random search is selected, one individual
is generated randomly from the entire range of the domain.

The parameters in DEAR are set so that they can be
adaptively changed. F is generated randomly using normal
random numbers, and no adaptive adjustment is performed.
CR records the values of CRs that succeeded in the past in
memory for each strategy, and random numbers are generated
based on a normal distribution having the same average value
with CR stored in memory.

The main difference between DEAR and SaDE is the
responsibility of random search. The performance of SaDE is

Algorithm 1 DEAR algorithm
[Step 1] Set the generation counter G = 0, initialize the
average value of CR and strategy selection probabilities,
and generate initial search points {xi, i = 1, 2, . . . , N}
randomly.
[Step 2] Evaluate the population.
[Step 3]
while some stopping conditions are not met do

[Step 3.1] Calculate strategy probability pk,G and update
the Success and Failure Memory.
if G > LP then

for k = 1 to K do
Update the pk,G by equation (9).
Remove nsk,G−LP and nfk,G−LP out of the Suc-
cess and Failure Memory, respectively.

end for
end if
[Step 3.2] Select one strategy k from the candidate
strategies such as DE, DIE and random search for each
target vector xi using stochastic universal sampling.
for i = 1 to N do
Fi = Normrnd(0.5, 0.3)

end for
if G >= LP then

for k = 1 to K do
CRmk = average(CRMemoryk)

end for
end if
for k = 1 to K do

for i = 1 to N do
CRk,i = Normrnd(CRmk, 0.1)

end for
end for
[Step 3.3] Generate a new population where each trial
vector v is generated according to associated trial vector
generation strategy k and parameters Fi and CRk,i in
previous step.
[Step 3.4]
for i = 1 to N do

Evaluate the trial vector v.
if f(v) < f(xi) then
xi = v, f(xi) = f(v)
nsk,G = nsk,G + 1
Store CRk,i into CRMemoryk.

else
nfk,G = nfk,G + 1

end if
end for
Store nsk,G and nfk,G into the Success and Failure
Memory, respectively.
[Step 3.5] Increment the generation count G = G+ 1.

end while

strongly affected by the nature of DE because SaDE uses only
DE in individual generation. Therefore, in the case where DE
cannot provide good results for a function, SaDE may also fail
to obtain good results for the function. However, the proposed
method, DEAR, is a method that can control the responsibility
of random search, so it is expected that global search can be
performed without being restricted by the nature of DE.

The procedure of the proposed method, DEAR, is shown
as Algorithm 1 in a pseudo code following [13], where the
number of strategies is generalized as K but can be set as
K = 3 for the three strategies: DE, DIE and random search
in the above proposal.

IV. NUMERICAL EXPERIMENT

A. Test functions and experiment setting

A comparative experiment was carried out between the con-
ventional methods and the proposed method: DE, DIEtoDE,
SaDE, DEAR. We used 8 test functions referring to the
literature [17], [18]. In this experiment, we only considered
minimization problems, in which the goal is to search for the
minimum values of the objective functions. Table I shows the
mathematical expressions of the functions.

Brief descriptions of the functions used in this experiment
are as follows: F1 function is a unimodal function with only
one local solution. F2 function is a multimodal function with
many local solutions in the domain. F3 function is a unimodal
function, but the optimal solution can be obtained only when
the search points are located over an extremely narrow range.
In F4 function, the optimal solution is in a narrow parabolic
valley and it is very difficult to find the optimal solution. F5

function is a multimodal function that has large values at the
edge of the domain but has small deviations near the optimal
solution. F6 function is a multimodal function that has many
local solutions at the edge of the domain. F7 function is a
multimodal function, and the search points need to enter over
an extremely narrow range to obtain the optimal solution. In
F8 function, there are many large peaks around the optimal
solution, and it is difficult to narrow the search range.

Regarding parameter settings, for DIE and DE, the crossover
rate CR and mutation F were both set to 0.5. For SaDE
and DEAR, the parameter F is randomly set with a normal
distribution having an average value of 0.5 and a standard
deviation of 0.3 for each time an individual is generated.
Regarding CR, a value is stored when the individual is updated
for each strategy, and the average is set as CRm. The CR is
randomly set from a normal distribution with a mean CRm
and a standard deviation of 0.3. Finally, for both SaDE and
DEAR, LP = 50.

B. Experimental result

Figs. 1-8 show the experimental results of the above test
functions using the four algorithms. D represents the number
of decision variables of the function, and N represents the
number of individuals per generation in the search. The
horizontal axis indicates the number of searches and the
vertical axis indicates the objective function values, and the

average value of 1000 trials of the best solution in each search
is plotted. Since this experiment deals with minimization
problems, a smaller value is better. In addition, Table II shows
the average of the best solutions obtained by each method
when the 1000th individual was generated.

Fig. 1. F1 function : D2, N10

Fig. 2. F2 function : D2, N10

In F1 function, DEAR performed better than the other
methods. In normal DE, individuals sometimes gathered at
a position other than the optimal solution in some trials out
of 1,000 trials. Therefore, when averaging, the accuracy was
worse than other methods. However, it is considered that
DEAR was able to prevent individuals from gathering in the
first half of the search by random search. In F2 function,
DEAR got worse results than DIEtoDE and SaDE. Since this
function has a very large number of local solutions in the
domain, it is considered that a random search has converged
to a local solution at a position away from the optimal solution.

In F3 and F4 functions, DEAR achieved slightly better
results than DIEtoDE and SaDE. Since DEAR includes more
random searches in the first half of the search than the other

TABLE I
TEST FUNCTIONS USED IN THIS EXPERIMENT

function formula, optimal solution

f(x1, · · · , xD) =
∑D

j=1 x
2
j

F1: Sphere function −1 ≤ xj ≤ 1
fmin(0, · · · , 0) = 0

f(x1, · · · , xD) = 10D +
∑D

j=1(x
2
j − 10 cos(2πxj))

F2: Rastrigin function −5 ≤ xj ≤ 5
fmin(0, · · · , 0) = 0

f(x1, x2) = − cos(x1) cos(x2) exp(−((x1 − π)2 + (x2 − π)2))
F3: Easom function −100 ≤ xj ≤ 100

fmin(π, π) = −1

f(x1, · · · , xD) =
∑D−1

j=1 (100(xj+1 − x2
j)

2 + (xj − 1)2)

F4: Rosenbrock function −5 ≤ xj ≤ 5
fmin(1, · · · , 1) = 0

F5: Beale function
f(x1, x2) = (1.5− x1 + x1x2)2 + (2.25− x1 + x1x2

2)
2 + (2.625− x1 + x1x3

2)
2

−4.5 ≤ xj ≤ 4.5
fmin(3, 0.5) = 0

f(x1, · · · , xD) =
(∑D

j=1 |xj |
)
exp

(
−

∑D
j=1 sin(x

2
j)
)

F6: Xin-She Yang function −2π ≤ xj ≤ 2π
fmin(0, · · · , 0) = 0

F7: Ackley function
f(x1, · · · , xD) = 20− 20 exp

(
−0.2

√
1
D

∑D
j=1 x

2
j

)
+ e− exp

(
1
D

∑D
j=1 cos(2πxj)

)
−32.768 ≤ xj ≤ 32.768
fmin(0, · · · , 0) = 0

f(x1, x2) = 0.5 +
sin2(x2

1−x2
2)−0.5(

1+0.001(x2
1+x2

2)
)2

F8: Schaffer function −100 ≤ xj ≤ 100
fmin(0, 0) = 0

TABLE II
MEAN ± SD OF THE BEST SOLUTIONS IN 1000 SEARCHES (BEST PERFORMANCES ARE DEPICTED IN BOLD.)

DE DIEtoDE SaDE DEAR
F1 0.0001468± 0.002184 0.000006697± 0.0001222 0.000000± 0.000000 0.000000± 0.000000
F2 0.2052± 0.5630 0.1164± 0.4638 0.06666± 0.2716 0.1493± 0.3822
F3 −0.9649± 0.1778 −0.9934± 0.07371 −0.9937± 0.07188 −0.9998± 0.003659
F4 0.2128± 0.6884 0.08517± 0.3205 0.02411± 0.1078 0.01630± 0.05686
F5 0.09236± 0.3909 0.06041± 0.2143 0.02189± 0.1218 0.002884± 0.04521
F6 0.05721± 0.1215 0.04851± 0.1182 0.02704± 0.09046 0.05719± 0.1247
F7 0.1416± 1.0115 0.008857± 0.1416 0.01290± 0.1820 0.002636± 0.08154
F8 0.001673± 0.01624 0.001089± 0.01578 0.0003043± 0.003210 0.0008764± 0.002644

Fig. 3. F3 function : D2, N10 Fig. 4. F4 function : D2, N10

Fig. 5. F5 function : D2, N10

Fig. 6. F6 function : D2, N10

Fig. 7. F7 function : D2, N10

Fig. 8. F8 function : D2, N10

methods, it can obtain better results in these functions, which
are difficult to obtain optimal solutions in DE.

DEAR achieved much better results in F5 and F7 functions
than the other methods. Since the F5 function is a multimodal
function with a small height difference near the optimal so-
lution, DIEtoDE and SaDE fell into local solutions. However,
DEAR has found better solutions than these comparative meth-
ods. Since the F7 function has a shape like a unimodal function
but is a multimodal function with many local solutions in a fine
range, SaDE and DIEtoDE were tricked such that the function
looks like unimodal and chose inappropriate parameters and
selection strategies. However, the proposed method, DEAR,
performed better than these methods by adopting random
search even in the last stage.

Conversely, for the F6 function, DEAR could not provide
a better solution than DIEtoDE and SaDE. The F8 function
has a large number of local solutions far from the optimal
solution. It is probable that good results could not be obtained
because a new individual was generated at a position far from
the optimal solution by the random search at the beginning of
the search.

In F8 function, DEAR performed better than DIEtoDE
and performed worse than SaDE. However, DEAR did not
converged in some trials when 1000 individuals are gener-
ated. Therefore, DEAR may get better results than SaDE by
increasing the number of searches.

The challenge with DEAR is that it adopts random search
more frequently than the other methods, so it takes time to
get plausible solutions for many objective functions. In the
proposed method, the initial probability in each strategy is
1/K as in SaDE. Therefore, it is considered that this issue can
be alleviated by reducing the initial probability in the random
search.

Finally, Fig. 9 to Fig. 16 show changes in the probability
that DE, DIE, and random search are selected in each function
when DEAR is used. Since this probability is updated every
time the generation is updated, the horizontal axis represents
the change of the generation. Since LP = 50 for all functions,

Fig. 9. Selection probability in F1 function

Fig. 10. Selection probability in F2 function

Fig. 11. Selection probability in F3 function

Fig. 12. Selection probability in F4 function

Fig. 13. Selection probability in F5 function

Fig. 14. Selection probability in F6 function

Fig. 15. Selection probability in F7 function

Fig. 16. Selection probability in F8 function

the probability of selecting each method is 1/3 until the
50th generation. Basically, after 50 generations, random search
decreases rapidly, and DIE gradually decreases as the solution
converges. Therefore, the probability of DE greatly increases.

Since the F1 function is a unimodal function, a random
search is not required at the latter of the search, and both DIE
and random search are sharply reduced as compared to other
functions. On the other hand, since the F3 and F4 functions
require a certain amount of random search, the probability of
random search decreases less than other functions, and the
probability of DIE temporarily increases.

The F8 function is different from other functions, and it
can be confirmed that the probability of DIE and DE is close
even after the 50th generation, and a little randomness is still
required. As can be seen from Fig. 8, it is considered that
this function has not converged yet, and thereafter, the DE
increases and the DIE decreases similarly to other functions.
As described above, it was confirmed that DEAR could
adaptively adjust responsibility of random search for each
function.

For the optimization problem of high dimension (Large-
scale optimization), the result was not so different from
the existing techniques. We would like to examine and add
randomness to the technique studied recently [19], [20].

V. CONCLUSIONS

We have proposed a new method, DEAR, which adaptively
uses DE, DIE (DE with random search within the confidence
interval), and random search from all areas in the latter half
of the search. Through numerical experiments, we confirmed
that DEAR finds a better solution than others. In particular, the
proposed algorithm is considered to be sufficiently practical
because it has a simpler mechanism and can obtain relatively
good solutions with fewer parameters.

In terms of future researches, we intend to explore the effect
in the case of wider search ranges with the same functions and
study high-dimensional optimization problems. In addition,
since it was confirmed that it takes time to obtain a good
solution for random search, we would like to propose a method
to quickly find a good solution while maintaining accuracy by
bandit algorithms such as Thompson Sampling.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP18K11473.

REFERENCES

[1] G. I. Diaz, A. Fokoue, G. Nannicini, H. Samulowitz “An effective
algorithm for hyperparameter optimization of neural networks,” IBM
Jounal of Research and Development, vol. 61, issue 4/5, 2017

[2] J. H. Holland, “Adaptation in natural and artificial systems,” Ann Arbor,
The University of Michigan Press, 1975

[3] D. Whitley, “A genetic algorithm tutorial,” Statistic and Computing, pp.
65-85, 1994

[4] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE Int.
Conf. on Neural Networks, vol.4, pp.1942-1948, 1995

[5] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, J. R. Pastor,“Particle
Swarm Optimization for Hyper-parameter Selection in Deep Neural
Networks,” GECCO ’17, pp. 481-488, 2017

[6] R. Storn, K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces,” Journal of
Global Optimization, vol. 11, pp. 341–359, 1997

[7] R. Storn, K. Price “Minimizing the real functions of the ICEC’96 contest
by differential evolution,” Proc. of IEEE International Conference on
Evolutionary Computation, pp. 842-844, 1996

[8] S. Das, P. N. Suganthan, “Differential Evolution: A Survey of the State-
of-the-Art,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 1, pp. 4–31, 2011

[9] M. Shibasaka, A. Hara, T. Ichimura, T. Takahara, “Species-Based
Differential Evolution with Switching Search Strategies for Multimodal
Function Optimization,” Proc. of 2007 IEEE Congress on Evolutionary
Computation, pp. 1183-1190, 2007

[10] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, “Self-Adapting
Control Parameters in Differential Evolution: A Comparative Study on
Numerical Benchmark Problems,” IEEE Transactions on Evolutionary
Computation, vol. 10, No. 6, pp. 646-657, 2006

[11] J. Zhang, A. C. Sanderson, “JADE: Adaptive Differential Evolution
with Optional External Archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, No. 5, pp. 945-958, 2009

[12] A. Notsu, M. Sakakibara, S. Ubukata, K. Honda, “Setting of Candidate
Solutions Considering Confidence Intervals in Differential Evolution,”
2018 International Conference on Fuzzy Theory and Its Applications
iFuzzy, pp. 7-11, 2018

[13] A. K. Qin, P. N. Suganthan, “Differential Evolution Algorithm With
Strategy Adaptation for Global Numerical Optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 2, pp. 398–417, 2009

[14] R. Mallipeddi, P. N. Suganthan, “Differential Evolution Algorithm with
Ensemble of Parameters and Mutation and Crossover Strategies, Swarm,
Evolutionary, and Memetic Computing,” Lecture Notes in Computer
Science, vol. 6466, pp. 71-78, 2010

[15] M. Ali, M. Pant and A. Abraham, “Simplex Differential Evolution,”
Acta Polytechnica Hungarica, vol. 6, no. 5, 2009

[16] R. Gamperle, S. D. Muller, Petros Koumoutsakos, “A Parameter Study
for Differential Evolution,” WSEAS Int. Conf. on Advances in Intelli-
gent Systems, Fuzzy Systems, Evolutionary Computation, 2002

[17] X.-S. Yang, “Test Problems in Optimization,” arxiv, 1008.0549v1, 2010
[18] M. Jamil, X.-S. Yang, “A Literature Survey of Benchmark Functions for

Global Optimization Problems,” arxiv, 1308.4008v1, 2013
[19] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, Z. Zhu, “A survey

on cooperative co-evolutionary algorithms,” IEEE Trans. Evol. Comput.
vol. 23, pp. 421–441, 2019

[20] D. M. Cabrera, “Evolutionary algorithms for large-scale global optimiza-
tion: a snapshot, trends and challenges,” Prog. Artif. Intell. vol. 5, pp.
85–89, 2016

