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Abstract—This work focuses on the environmental selection
methods incorporated in several evolutionary multi-objective
optimization (EMO) algorithms for sampling representative non-
dominated solutions from a large non-dominated solution set.
Evolutionary multi- and many-objective optimization generally
provides a large set of non-dominated solutions. They are useful
for precisely approximating the Pareto front but harm decision
making when selecting one solution among them. Sampling
and presenting a representative set of solutions is a promising
method for addressing this issue. The selection of a subset of
solutions from a large set of solutions is a type of combinatorial
optimization problem. Its difficulty is increased by increasing the
size of the non-dominated solution set, because the number of
selection combinations of the solutions increases exponentially.
This work focuses on environmental selection as a reasonable
method to sample a solution subset from a large set. We
compare 17 environmental selection methods incorporated in
EMO algorithms and show that the one-by-one selection or
deletion approach is suitable for sampling a representative non-
dominated set.

Index Terms—multi- and many-objective optimization, solution
sampling, multi-criteria decision making

I. INTRODUCTION

The output of an evolutionary multi-objective optimization
(EMO) algorithm is a set of non-dominated solutions, to
approximate the Pareto front [1], [2]. To completely utilize the
optimization result by collecting all necessary information, an
archiving method is generally employed to maintain all the
non-dominated solutions obtained during the search. Gener-
ally, the number of non-dominated solutions to be archived
is significantly high, and its size increases exponentially with
an increase in the number of objectives. A large set of non-
dominated solutions is useful in approximating the Pareto
front. However, a large set of non-dominated solutions neg-
atively affects the decision-making process of selecting one
solution among them. Solution sampling to select a represen-
tative subset of non-dominated solutions has been studied for
decision making involving a large non-dominated set [3].

The sampling of a good solution subset from all non-
dominated solutions is a type of combinatorial optimiza-
tion problem. In previous studies [3], representative solution
sampling was performed as a binary-combinatorial optimiza-
tion problem. For NS non-dominated solutions, the sampling
combination is represented with NS binary bits. Each bit
corresponds to a non-dominated solution. One indicates that

the corresponding solution is selected, and zero indicates
that the corresponding solution is not selected. However,
the total number of sampling combinations increases expo-
nentially on increasing the number of non-dominated solu-
tions; consequently, the difficulty of the sampling optimization
also increases. In particular, in the case of many-objective
optimization, because we need to consider a large set of
non-dominated solutions, a better method for representative
sampling solutions is desirable.

In this work, to sample representative non-dominated solu-
tions from a large set of solutions, we focus on environmental
selection methods, which are built-in mechanisms in EMO
algorithms. For example, in the case of NSGA-II [4], the
environmental selection selects the elite solution set from
all solutions in the population, based on the non-dominated
front ranking and the crowding distance. Most of the recent
EMO algorithms are elitist ones commonly known as (µ+λ)-
EAs, and this type of environmental selection is frequently
incorporated to maintain good solutions for the Pareto front ap-
proximation as the elite set in the population over generations.
Therefore, criteria in environmental selections would be useful
for the solution sampling from the non-dominated set. In this
work, we utilize environmental selection methods to sample
a representative set from a large non-dominated solution
set instead of not treating the sampling as a combinatorial
optimization problem. We compare 17 environmental selection
methods incorporated in EMO algorithms on test problems
with different Pareto front shapes and two to eight objectives.

II. NON-DOMINATED SOLUTION SAMPLING BY USING
ENVIRONMENTAL SELECTION

In this work, we sample a representative non-dominated
solution set S ′ (⊂ S) using an environmental selection in-

Algorithm 1 Non-dominated solution sampling
Input: S : Non-dominated solutions, NS′ : Representative solutions

size, Alg : MOEA
Output: S ′: Representative solutions (S ′ ⊂ S)

1: function SOLUTION SAMPLING(Alg, S , NS′ )
2: S ′ ← Environmental selection(Alg, S , NS′ )
3: return S ′
4: end function
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(a) Plane (SMOP1 [8]) (b) Concave (DTLZ2 [5]) (c) Convex (SMOP4 [8])

(d) Inverted plane (IDTLZ1 [6]) (e) Inverted concave (IDTLZ2 [6]) (f) Disconnected (DTLZ7 [5])

Fig. 1: Large non-dominated point sets S that are supersets of representative sets S ′ for three-objective problems

Algorithm 2 Environmental selection of Alg =NSGA-II [4]
Input: S : Non-dominated solutions, NS′ : Representative solutions

size, Alg : NSGA-II
Output: S ′: Representative solutions (S ′ ⊂ S)

1: function ENVIRONMENTAL SELECTION(NSGA-II, S , NS′ )
2: S ′ = ∅, i = 1
3: F1,F2, . . .←Non-dominated sorting(S)
4: while |S ′|+ |Fi| < NS′ do
5: S ′ ← S ′ ∪ Fi

6: i← i+ 1
7: end while
8: if |S ′| < NS′ then
9: Fi ← Sort by crowding distance(Fi)

10: S ′ ← S ′ ∪ {x1,x2, . . . ,xNS′−|S′|} ⊆ Fi

11: end if
12: return S ′
13: end function

corporated in an EMO algorithm, from a large set of non-
dominated solutions S. Algorithm 1 presents the pseudo-code
of this process. The inputs are the large set S involving
NS non-dominated solutions, the size of representative non-
dominated solution set NS′ (≤ NS ), and a EMO algorithm
Alg. Thus, the size of the representative set NS′ is given, and
the environmental selection method is specified by the name
of the EMO algorithm that incorporates the method.
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Fig. 2: EMO algorithm and legend list

As an example, Algorithm 2 shows the case where the
environmental selection of NSGA-II is specified (Alg =
NSGA-II) in Algorithm 1. In the environmental selection of
NSGA-II, we select the parent population S ′ from the entire
population S. The size of the parent population S ′ is half of the
entire population S, i.e. NS′ = NS/2. However, in this work,
the sample size NS′ is specified in Algorithm 1. Thereafter, we
select a representative set S ′ including the specified number
of NS′ solutions from a large non-dominated set S, based on
the criterion of NSGA-II.

Similar selection mechanisms are incorporated in several
EMO algorithms as the environmental selection. Even if the
input non-dominated solution set S is the same, different
environmental selection algorithms select different representa-
tive subsets S ′. These environmental selections are originally
designed to select promising parent solutions S ′ from all
solutions S in the entire population, and its ratio is generally
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(a) Plane
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(b) Concave
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(c) Convex
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(d) Disconected

Fig. 3: Sampling quality HV of representative set S ′ sampled from a large non-dominated set S when the sample size NS′

varies for two-objective problems (NS′ = {10, 21, 55, 105, 210, 465, 990, 2145, 4656, NS})

one to two between the selected solutions S ′ and the all
solutions S, i.e. NS′ : NS = 1 : 2. However, in this work, we
select a a small number of representative solutions S ′ from a
large non-dominated solution set S, and the selection ratio of
each solution is lower than that for conventional usage.

When the size of the representative set NS′ decreases,
the approximation quality of the Pareto front deteriorates.
Therefore, the desirable environmental selection method as a
non-dominated solution sampler is that which can suppress the
deterioration of the approximation quality as much as possible
when the sampling size NS′ decreases.

III. EXPERIMENTAL DESIGN

A. Test Problems

In this work, we use six problems with different Pareto
front shapes for each of m = {2, 3, 4, 8} objective problems,
respectively. We focus on DTLZ [5], [6], WFG [7], and SMOP
[8] test suites because they have the scalability in the number
of objectives and their Pareto fronts are known. As the plane
shape, we employ SMOP1, which can also categorize DTLZ1
and SMOP2-3. As a concave shape, we employ DTLZ2, which
can also categorize DTLZ3-4, WFG4-9, and SMOP7-8. As a
convex shape, we employ SMOP4. SMOP5-6 also has convex
Pareto fronts. As an inverted plane shape, we use IDTLZ1.
Moreover, as an inverted concave shape, we use IDTLZ2. As
a disconnected shape, we use DLTZ7.

For each problem, we generate a large non-dominated point
set S. In the case of DTLZ7 that has a disconnected Pareto
front, we used NS = {10000, 10000, 10648, 16384} points
generated by separating and transforming the uniform grid
intersections on m− 1 dimensional space for m = {2, 3, 4, 8}
objective problems, respectively. For other problems, we re-
spectively generate NS = {10000, 9870, 9880, 11440} points
using the simplex-lattice method on m = {2, 3, 4, 8} objective
problems, and transform them based on each Pareto front
shape. As examples, Fig. 1 depicts the large non-dominated
point sets in the m = 3 objective space. Although this

paper using the above way, there are other alternative ways
to generate these non-dominated point sets, i.g., the Riesz s-
energy method [9], the Hammersley method [10] and the low-
discrepancy sequences method [11].

In this work, we sample a representative set that is the subset
of the large non-dominated point set S, using environmental
selection.

B. Algorithms

We compare the sampling performance of the representative
points of 17 environmental selection methods incorporated in
EMO algorithms, including GDE3 [12], GrEA [13], HypE
[14], IBEA [15], KnEA [16], MOMBI-II [17], MOPSO [18],
MSOPS-II [19], NSGA-II [4], NSGA-III [20], PESA-II [21],
S3CMAES [22], SPEA2 [23], SPEA2SDE [24], θ-DEA [25],
Two Arch2 [26], and VAEA [27]. The implementations of
PlatEMO [28], which is a program library of EMO algorithms,
were utilized in this experiment. For each algorithm, the
initial parameter of PlatEMO is employed. Fig. 2 illustrates
the algorithm list and the legends used in this paper.

C. Metric

To evaluate the sampling quality of the representative non-
dominated points, we measure Hypervolume (HV ) [29] of
the sampled representative set. The higher the value of HV ,
the higher is the approximation quality of the Pareto front and
the better is the representative set. HV is a volume enclosed
by the sampled points and the reference point r in the objective
space. The spread of the sampled points in the objective space
and the uniformity of sampled points in the objective space
affect the value of HV . For each selected point s′ ∈ S ′, we
normalize its objective values as s′nj = s′j/maxs∈S{sj · 1.1}
(j = 1, 2, . . . ,m), and subsequently calculate HV of S ′ with
the reference point r = {1.0, 1.0, . . . , 1.0}.
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Fig. 4: Sampled representative solution sets with NS′ = 10 on a two-objective concave problem

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Overall Trend

Figs. 3, 5, 8, and 9 show that the results of the sampling
quality HV of the representative non-dominated solutions
when the sample size NS′ varies for m = {2, 3, 4, 8} objective
problems, respectively. Each figure describes several names of
algorithms that achieved the highest HV with the minimum
sample size NS′ or showed a drastic change of HV .

In each figure, the maximum HV can be seen in the
case where NS = NS′ because two sizes of the large non-
dominated set S and the representative set S ′ are the same, and
no sampling is performed in all the algorithms. As a general
tendency, the sampling quality HV decreases by decreasing
the size of the representative set NS′ . However, we see that
the extent of the decrease depends on the algorithm. As a good
non-dominated solution sampler, it is desirable to hold a high
HV as possible when the sampling size of NS′ decreases.

B. Two Objective Problems

From the results of Fig. 3 for m = 2 objective problems, we
see that HV values of KnEA and NSGA-II rapidly decrease
when the sample sizes are set to NS′ ≤ 2145 on the problem
with the plane Pareto front and NS′ ≤ 4656 on the problems
with the concave and convex Pareto fronts. HV values of

IBEA and GrEA also rapidly decrease when NS′ falls below a
specific value in all four problems. Thus, the sampling quality
HV of each of these algorithms is rapidly deteriorated by
decreasing the representative sampling size NS′ .

We see that MOMBI-II, NSGA-III, and θ-DEA achieved
the highest sampling quality HV with all sizes of NS′ for
the plane problem but not the highest for other problems. The
reason is that they use decomposition-based environmental se-
lections with uniformly distributed weight vectors or reference
lines on the plane surface, which matched with the problem
with the plane Pareto front.

GDE3 achieved the highest sampling quality HV at NS′ =
10 for the concave problem and the top five HV at any
sampling size NS′ for other problems. Both GDE3 and NSGA-
II employ crowding distance to rank non-dominated solutions.
However, their HV values, especially with a small sampling
size NS′ , are quite different. NSGA-II calculates the crowding
distances for all non-dominated solutions and selects the top
NS′ solutions among them in descending order of the crowd-
ing distance values at once. Meanwhile, GDE3 calculates
the crowding distances for all non-dominated solutions but
discards only one worst solution from them. The solution
relationships are then changed, and GDE3 re-calculates the
crowding distances for the remaining non-dominated solutions
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(a) Plane
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(b) Concave
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(c) Covex
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(d) Inverted plane
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(e) Inverted concave
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(f) Disconnected

Fig. 5: The sampling quality HV of the representative set S ′ sampled from the large non-dominated set S when the sample
size NS′ varies for three-objective problems (NS′ = {10, 21, 55, 105, 210, 465, 990, 2145, 4656, NS})

and discards the worst solutions again. GDE3 repeats this
process until the size of the non-dominated solutions meets
the target size of NS′ . This result suggests that a one-by-
one deletion approach in GDE3 is better than a one-time
selection approach in NSGA-II, as solution sampling methods,
especially in the case where the sampling size NS′ is smaller
than the original size of NS .

HypE achieved the highest HV at NS′ = 10 for the
convex and disconnected problems. However, in the size
range NS′ ≥ 465, HypE slumps to worst, fourth to sixth
place for all problems. HypE calculates the HV contribution
of each solution and discards the worst solution with the
minimum HV contribution repeatedly. As the initial setting in
the PlatEMO program library, HypE uses the reference point
r = {1.2, 1.2, . . . } in the normalized objective space while the
sampling quality HV is calculated with the reference point
r = {1.1, 1.1, . . . }. The difference in the reference points
affects the results. HypE is a one-by-one deletion algorithm,
such as GDE3. Since the sampling of the representative set is
a combinatorial optimization problem, which selects a small
subset S ′ from a large solution set S. The simple repetition of
one-by-one deletion cannot guarantee obtaining a good subset
even if the HV contribution is used as the sampling criterion
when the deletion size (NS −NS′ ) is too large.

S3CMAES achieved the highest HV in many cases of NS′

in the problems except for the plane case. S3CMAES first
selects the extreme solutions by using the cosine similarity
of each fundamental vector of the objective axes. After that,
it repeats one-by-one selection in the order of the L0.5 norm
from the selected solutions. This result suggests that the one-
by-one selection algorithm, such as S3CMAES, is better than
the one-by-one deletion algorithm, such as HypE and GDE3,
as a representative solution sampler holding the Pareto front
approximation quality when the representative set size is small.

Fig. 4 shows characteristic representative sets sampled with
NS′ = 10 on the concave problem. Each caption describes
the algorithm name and its sampling quality HV . When
the positions of the sampled solutions are overlapped in the
objective space, we cannot see all NS′ = 10 points in each
figure. We see that the sampling quality HV is high when
the sampled solutions are not overlapped and are widely and
uniformly distributed in the objective space.

MOPSO and PESA-II employ the same environmental se-
lection algorithm, and their difference is how they generate
solutions. In this paper, they do not generate any solutions
and are used to sample representative solutions based on their
environmental selections. Consequently, their representative
sets are the same. MOPSO and PESA-II prepare grids in the
objective space and randomly delete one solution from the
most crowded grid repeatedly. Because the two algorithms



(a) S3CMAES (HV = 0.289) (b) KnEA (HV = 0.105) (c) IBEA (HV = 0.041)

Fig. 6: Sampled representative solution sets with NS′ = 465 for three-objective disconnected problems

(a) S3CMAES (HV = 0.291) (b) KnEA (HV = 0.245) (c) IBEA (HV = 0.205)

Fig. 7: Sampled representative solution sets with NS′ = 990 for three-objective disconnected problem

use grids, they can sample non-overlapped solutions. However,
because they randomly choose a solution to be deleted from
the most crowded grid, they cannot guarantee the selection
of extreme solutions to represent the maximum spread of the
Pareto front. Consequently, their sampling quality of HV is
not good.

The environmental selection of NSGA-II is a one-time
selection. NSGA-II calculates the crowding distances of all
solutions and selects NS′ solutions among them in descending
order of crowding distances at once. In this paper, as a large
non-dominated solution set S, we generate several uniformly
distributed points on a plane and transform the plane based
on the shape of the Pareto front. In the case of the concave
Pareto front, the points are distributed densely around the
edge of the Pareto front and sparsely around the center of the
Pareto front due to the transformation of the point distribution
fit to the concave Pareto front. Consequently, points around
the center of the Pareto front have a long crowding distance
and are selected next to the extreme solutions having the
infinite crowding distances. As a result, the biased solutions
are sampled by NSGA-II shown in Fig. 4.

GrEA sets grids in the objective space and calculates three
grid-based fitness values for each solution. Three fitness values

are prioritized to compare the solutions, and the highest one
is the grid rank GR. GR is the Manhattan distance between a
solution and the origin on the grid coordinate, and a solution
with a small GR is selected with high priority. In the case of
the concave problem, solutions around the extreme area tend
to have a smaller GR than others and are selected with high
priority. As a result, solutions sampled by GrEA are distributed
in extreme areas in the objective space.

IBEA calculates the fitness values for all solutions repeat-
edly and deletes the worst solution until the remaining solution
set is shrunk to the target size NS′ . Thus, IBEA is a one-by-
one deletion algorithm such as HypE and GDE3. However, as
shown in Fig. 4, the sampled solutions were distributed in two
specific areas. IBEA needs the setting of the parameter κ, and
κ = 0.05 is used in this work as the common setting. Because
κ affects the fitness value calculation, a more appropriate κ
for this kind of sampling task may exist.

KnEA performs a one-time selection as with NSGA-II.
KnEA first assesses each solution in a large set. KnEA then
selects NS′ solutions based on the assessment at once. As
shown in Fig. 4, many solutions in two extreme areas are
highly ranked and selected. As a result, KnEA can not sample
solutions between them.
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(a) Plane
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(b) Concave
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(c) Convex
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(d) Inverted plane
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(e) Inverted concave
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(f) Disconnected

Fig. 8: The sampling quality HV of the representative set S ′ sampled from a large non-dominated set S when the sample size
NS′ varies for four-objective problems (NS′ = {10, 20, 56, 120, 220, 455, 969, 2024, 4495, NS})

C. Three Objective Problems
Fig. 5 shows results for m = 3 objective problems. From

these results, we see that the sampling quality of HV values of
IBEA, KnEA, NSGA-II, and GrEA are relatively lower than
others, especially when the sampling size NS′ is small. This is
a similar tendency to the results for m = 2 objective problems
shown in Fig. 3.

SPEA2SDE is a variant of SPEA2, and it calculates the
shift-distance between two solutions in the objective space and
discards the worst solution with the shortest distance from
the population repeatedly. SPEA2SDE achieved the second-
best HV at NS′ = 10 for the concave and the disconnected
problems. However, SPEA2SDE shows the third-worst HV at
NS′ = 10 for the convex and inverted concave problems, and
the worst HV at many sampling sizes NS′ for the inverted
concave problem. Thus, the sampling quality of SPEA2SDE
depends on the problem characteristics.

The sampling quality HV of the decomposition-based algo-
rithms, such as MOMBI-II and θ-DEA, is deteriorated for the
inverted problems. These algorithms use a predefined set of
weight vectors, and they are generated based on the simplex-
lattice design, assuming a regular triangle shape. Because the
inverted problems have inverted triangle Pareto fronts, the
weight vector distribution does not match their Pareto fronts,
and the HV values become low in these problems. These

algorithms select many solutions around the edge of the Pareto
front and fewer solutions around the center of the Pareto front.

The algorithm ranks of GDE3 for m = 3 objective problems
are lower than that for m = 2 objective problems. GDE3
employs the crowding distance to rank the non-dominated
solutions. Because the crowding distance works well with a
two-dimensional space but not a three- or higher-dimensional
space, the sampling quality HV is deteriorated for m = 3
objective problems.

HypE achieved the highest HV at NS′ = 10 for five out
of six problems. However, HypE with a large NS′ shows a
lower HV than others. This is a similar tendency shown in
the m = 2 objective problems.

From these results, we see that the decomposition-based
algorithms achieved better sampling quality for the plane
problem, and S3CMAES achieved better quality for other
problems.

Fig. 6 and Fig. 7 respectively show characteristic representa-
tive sets with NS′ = {465, 990} for the disconnected problem.
From the results, we see that NS′ = 465 solutions sampled
by S3CMAES fully covered the four different parts of the
Pareto front. However, KnEA and IBEA with NS′ = 465
solutions cannot fully cover the four parts. When we increase
the sampling size to NS′ = 990, although KnEA and IBEA
select solutions for the four different parts, the entire picture
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(a) Plane
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(b) Concave
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(c) Convex
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(d) Inverted plane
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(e) Inverted concave

10 100 1000 10
4

0

0.05

0.1

0.15

0.2

0.25

�����������	
����
��	����	����S�

�
�

����

����

��	��


	��

�
��

�������
�����

������	�

(f) Disconnected

Fig. 9: The sampling quality HV of the representative set S ′ sampled from a large non-dominated set S when the sample size
NS′ varies for eight-objective problems (NS′ = {8, 36, 120, 330, 792, 1716, 3432, 6435, NS})

of the Pareto front cannot be seen.

D. Four Objective Problems

Fig. 8 shows the sampling performance of HV for the
m = 4 objective problems. The results of GDE3, HypE, IBEA,
KnEA, NSGA-II, and SPEA2SDE show a similar tendency
shown in m = {2, 3} objectives.

For the convex and the inverted plane problem, the sampling
quality HV of θ-DEA with NS′ = 120 is higher than that
with NS′ = 220. θ-DEA uses the predefined set of weight
vectors. The result shows that the weight vector distribution
has an impact on the sampling performance, and even if the
sampling size and the weight size, are small, solutions with a
high approximation quality can be obtained.

The algorithm ranks of GrEA for the inverted and dis-
connected problems are higher than those for the plane and
the convex problems. This result reveals that GrEA achieves
a robust sampling quality for the problems having irregular
shapes of the Pareto fronts.

E. Eight Objective Problems

Fig. 9 shows the result of the sampling quality for m = 8
objective problems. From the result, we see that the relation-
ship between the sampling size NS′ and the sampling quality
HV changes drastically when the Pareto front shape changes.

For the plane and convex problem, HV rapidly decreases from
NS′ = 36 to NS′ = 8. These values show the minimum
sampling size to show a rough picture of the high-dimensional
Pareto front.

V. CONCLUSIONS

In this work, to sample representative solutions from a
large set of non-dominated solutions, we focus on utilizing
environmental selection mechanisms incorporated in several
EMO algorithms as a representative solution sampler. These
environmental selections are originally designed to select
promising parent solutions from all solutions in the population,
and its ratio is typically one to two between the selected
solutions and all solutions. Additionally, in this work, we select
a small number of representative solutions from a large non-
dominated solution set, and the selection ratio of each solution
was lower than that for conventional use. We compared 17
types of environmental selections on problems with different
Pareto front shapes and objectives, and the following findings
were obtained:

1) One-by-one selection or deletion is better than one-time
selection for representative solution sampling.

2) For two to four objective problems, HypE is a promising
method if the representative solution size NS′ is less



than approximately 20; otherwise, S3CMAES is the
promising method.

3) For problems with a plane Pareto front, decomposition-
based methods prove to be promising.

4) As the number of objectives increases, it becomes diffi-
cult to find an appropriate environmental selection.

As future research, we are designing a representative solu-
tion sampler by modifying a one-time selection method into
a one-by-one selection/deletion scheme, by repeating the one-
time selection to delete one solution. Furthermore, we also
plan to address interactive representative solution sampling for
interactive decision making.
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