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Abstract—Feature selection has two main objectives which
are to maximise the classification accuracy and to minimise the
number of selected features. Unfortunately, the two objectives are
usually in conflict, which makes feature selection a multi-objective
problem. MOEA/D (multi-objective optimisation evolutionary
algorithm based on decomposition) has shown to be effective
in solving multi-objective feature selection, which evolves more
diverse fronts than other multi-objective algorithms such as
SPEA2 or NSGAII. However, sometimes the feature subsets
around the middle of the evolved fronts do not have high
classification performance. The goal of this work is to propose
a local search for MOEA/D with an expectation of maintaining
the front diversity while improving the classification performance
of the feature subsets in the evolved fronts. The local search
is based on three operators: insert, remove, and swap. The
insert/remove operators either add/remove a single feature from
the current feature subset, while the swap operator exchanges
a selected feature with an unselected feature. The selection of
added/removed/swapped features is based on Relief, a well-known
measure which considers feature interactions. The experimental
results show that the proposed local search can maintain or
improve the fronts evolved by MOEA/D-DYN, a state-of-the-art
MOEA/D algorithm for feature selection.

Index Terms—Feature Interaction, Feature Selection, Classifi-
cation, Multi-objective Optimization, Local Search

I. INTRODUCTION

With regard to classification problems, it is common for in-
stances of data to possess irrelevant and/or redundant features
which reduce the classification performance. To address the
problem, feature selection is proposed with two main goals: to
reduce the number of features and to improve the classification
performance. However, feature selection is a challenging task
due to two issues. The first issue is its large search space. A
feature selection problem with n original features can have 2n

possible feature subsets. Thus, the search space size increases
exponentially with respect to the number of original features.
Traditional feature selection algorithms such as Sequential
Forward Selection (SFS) [1], and Sequential Backward Se-
lection (SBS) [2] are capable of finding reduced feature sets
by sequentially adding or removing a single feature from the
current feature subset, but are limited by their tendency to
converge at local optima. The second issue is the conflict

between the two main goals of feature selection, which makes
feature selection a multi-objective problem [3]. For example,
removing too many features may result in worse classification
performance since important information for classification is
lost. Evolutionary multi-objective optimization (EMO) [4] is
capable to deal with the two issues of feature selection. Firstly,
EMO is a population-based optimisation family, which results
in its potential global search ability on the large search space
of feature selection. Secondly, EMO is designed for a multi-
objective problem, which aims to evolve a front consisting a
number of trade-off solutions. EMO can be divided into three
main categories: dominance-based, decomposition-based, and
indicator-based, among which the first two categories have
been widely applied to feature selection. NSGAII and SPEA2
are two well-known representatives of the dominance-based
category, while MOEA/D is the recently proposed algorithm in
the decomposition-based category. The main idea of MOEA/D
is to decompose a multi-objective problem into many single-
objective sub-problems, which makes it easier to control the
front’s diversity. It has been shown that MOEA/D usually
evolves more diverse fronts than NSGAII and SPEA2 [5].
Thus, this work focuses on developing a MOEA/D-based
feature selection algorithm.

Despite evolving diverse fronts, MOEA/D-based feature se-
lection algorithms usually generate low-quality feature subsets
around the middle of the fronts (which we called the knee-
point region) [6], [7]. Particularly, given the same number of
selected features, the feature subsets evolved by MOEA/D
have lower classification accuracy than those evolved by
NSGAII or SPEA2. This work aims to address the problem by
proposing a local search to improve the feature subsets around
the knee-point region.

ISRPSOFS [8] and CMDPSOFS [9] are representatives of
EMO that utilize local search. Local search has been investi-
gated to further improve the quality of individuals/solutions.
These algorithms with local search rely on traditional mech-
anisms such as SFS, SBS. These mechanisms do not account
for feature interaction. Feature interaction methods detect
important information of a feature’s relative importance when

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



in cooperation with other features in a feature subset. This
information cannot be detected with traditional mechanisms
that only detect the importance of a feature by isolating
and assessing features individually. Relief is a simple and
computationally inexpensive method of performing feature
ranking while still considering feature interactions [10]. Thus,
we utilize Relief to develop a local search for MOEA/D-
based feature selection. In addition, since MOEA/D segments
the population into sub-regions, mutation often causes solu-
tions to violate constraints. Such infeasible solutions need
to be repaired. Repair mechanisms for recent MOEA/D-
based algorithms [7] simply add/remove features based on
the classification accuracy of individual features. This method
of repairing does not account for feature interaction, and has
been acknowledged to be a potential downside in discarding
features useful only in combination with other features [7].
This work also proposes a novel repair mechanism based on
Relief, which accounts for feature interaction.

A. Goals

The goal is to propose a novel decomposition-based multi-
objective algorithm for feature selection, which can gener-
ate diverse fronts consisting of feature subsets with various
numbers of features and better classification performance than
using all features. The goal is achieved by developing a local
search technique and solution repair mechanisms based on the
Relief score to improve the quality of the evolved features.
Particularly, we will investigate:

1) whether the proposed algorithm can generate feature
subsets which achieve better classification performance
than using all features,

2) whether the proposed algorithm can generate more di-
verse fronts than NSGAII and SPEA2 which are two
representatives of non-dominance based EMO,

3) whether the proposed algorithm can evolve the feature
subsets around the knee-point region which have better
classification performance than the subsets evolved by
MOEA/D-DYN, a state-of-the-art MOEA/D-based fea-
ture selection algorithm.

II. BACKGROUND

A. Multi-objective optimisation

In a multi-objective problem, there are at least two objec-
tives that are being optimised simultaneously. Measuring the
quality of a solution in a multi-objective problem is not as
simple as in a single-objective problem due to the conflict
between the objectives. A way of comparing two solutions
is by strictly comparing each one of their corresponding
objectives together. For a minimisation task, a solution y
dominates a solution z if:

∀i : fi(y) ≤ fi(z) ∧ ∃j : fj(y) < fj(z) (1)

where fi is the ith objective. If a solution is not dominated
by any other solutions, it is called a Pareto optimal solution.
A set of Pareto optimal solutions form a Pareto front. The
task of a multi-objective optimisation algorithm is to closely

approximate the Pareto front by a diverse set of non-dominated
solutions. Feature selection is a multi-objective problem since
its two main objectives are usually in conflict. Thus, the task of
a multi-objective feature selection algorithm is to evolve a set
of feature subsets with various trade-offs between the number
of selected features and the classification performance.

B. Relief

Relief is a well-known feature selection measure quanti-
fying feature interaction, which is presented in the works
of Urbanowicz et al. [10]. Relief scores for features are
calculated on the basis of a weight vector, with each weight
corresponding to a feature. Relief is similar to the KNN
algorithm in its use of a distance measure (Manhattan, or
Euclidean) to calculate neighbouring instances. Weights are
decreased by the average difference of a sampled instance R
and k other instances of the same class, and increased by
the average difference of k instances not belonging to the
same class. Intuitively this allows measuring how useful a
feature is in predicting an instance class by simultaneously
decreasing its score by how much intra-class feature variation
exists and increasing the score by how much inter-class
feature variation exists. Ideally, a relevant feature should have
low intra-class variation and vice-versa. Feature interaction is
accounted for by finding neighbours based on an aggregate
distance measure such as Euclidean distance which considers
all features together. We utilize a slightly different version of
Relief (ReliefF) [11], which has a different update equation
capable of handling multi-class misses.

C. Related work on multi-objective feature selection (MOFS)

Xue et al. [9] proposed a PSO based MOFS algorithm utiliz-
ing ideas such as crowding, mutation, and dominance (CMD)
[12]. CMDPSOFS randomly and equally divides the whole
swarm into three groups; no mutation, uniform mutation, and
non-uniform mutation. Uniform mutation allows particles to
maintain global search ability. Non-uniform mutation variabil-
ity decreases over time to retain exploitative ability - that is
in other words its local search ability.

Nguyen et al. [8] proposed a new PSO based MOFS
algorithm. ISRPSOFS introduced a novel way of performing
local search on an archive set, by inserting, swapping and
removing up to one feature from an imminent archive set
solution. By utilizing all three operations in conjunction with
high quality solutions in the archive set, local search adds
pressure toward higher quality feature subsets present in the
archive during the evolutionary process. However, ISRPSOFS
is computationally expensive due to the repeated evaluation
of feature subsets that have been altered by the local search
operators.

Developed by Zhang and Li [6], MOEA/D decomposes a
multi-objective problem into N single-objective scalar opti-
mization problems with a corresponding weight vector. Pareto
optimal solutions are found by continual reproduction of
best solutions by applying genetic operators to neighbouring
sub-problems. A significant strength of MOEA/D includes a



natural preservation of diversity, as each sub-problem relies
on neighbouring sub-problems for reproduction.

Nguyen et al. [7] proposed an alternative decomposition
method to standard MOEA/D, with Static (STAT) and Dy-
namic (DYN) reference points. MOEA/D-STAT (and DYN) do
not rely on weight vectors the same way as MOEA/D does. For
feature selection tasks, MOEA/D-(STAT/DYN) decomposes a
problem along the feature ratio axis fRatio = selectedfeatures

totalfeatures .
Whether or not a feature is selected is a discrete binary
variable, therefore the fRatio axis is on discrete space. The
algorithm allocates a predefined number of reference points as
boundaries for sub-regions. Allocated reference points repre-
sent ideal solutions with 0% error rate, using exactly fRatio
of the total features. Reference points can either be static or
dynamic. A predefined number of static reference points are
allocated at even intervals across an axis. Dynamic points
are initially allocated evenly, and are continually adjusted
at boundary iterations. MOEA/D-STAT only utilizes static
reference points, whilst MOEA/D-DYN utilizes both static
and dynamic reference points. The dynamic approach focuses
on delivering computation resources to areas of the search
space that are conflicting. Conflicting regions contain solutions
that possess tradeoffs between objectives, this is typical of
solutions that are pareto-optimal. It has also been shown that
not all sub-problems require the same computation resources
[13]. MOEA/D-DYN has been shown to achieve better results
than MOEA/D-STAT [7], hence its use as the backbone of
this work. One limitation of MOEA/D-DYN is its low-quality
feature subsets around the knee-point region. Such limitation
can be addressed by using local search to further improve the
classification performance of the feature subsets.

Previous work with local search in MOFS such as CMDP-
SOFS [9] performs local search via mutation. Mutation based
local search makes greedy choices on random changes caused
by flipping a random subset of bits in the bit vector repre-
sentation of a solutions features. This method of local search
is uninformed, and not intelligent enough to identify strong
feature interactions. ISRPSOFS [8] introduced an intelligent
way to perform local search by ranking features on individual
accuracy. The three local search operators insert, swap, and
remove in ISRPSOFS utilized this ranking to determine which
of the features get added/swapped or removed. Ranking on
single feature classification accuracy is not sensitive to fea-
ture interaction. In addition, the single feature classification
accuracy method of ranking is implemented as a baseline
ranking mechanism for repairing in MOEA/D-DYN, and is
acknowledged to potentially disregard feature interaction [7].
MOEA/D-DYN has been demonstrated to possess stronger
diversity preservation in comparison to traditional algorithms
like NSGAII, MOEA/D, and SPEA2. However, the algorithm
struggles to produce better knee-points than SPEA2 on a
number of datasets. MOEA/D-DYN provides a strong baseline
to test local search, and has significant potential to be improved
by both the addition of feature interaction based local search
and an enhanced feature interaction based repair mechanism.
Due to the page limit, more related work on multi-objective

feature selection and evolutionary computation for feature
selection can be found in works such as [9], [14], [15].

III. PROPOSED ALGORITHM

In this section, we begin by providing a brief overview of
representation and the objective functions. We then discuss
how we introduce local search into our baseline MOEA/D-
DYN algorithm with motivations and key differences between
each of the different local search operators. Next we illustrate
the role of ReliefF to calculate feature scores, and how we use
those scores to perform local search using a roulette wheel
selection method. The final step is to evaluate and repair
solutions if necessary. We then demonstrate our improved
repair mechanism. Finally, an overall view of the MOEA/D-
DRLS (Dynamic ReliefF Local Search) algorithm is presented.

A. Representation and objective function

Solutions for the MOEA/D-DRLS algorithm are represented
as continuous vectors with values ranging between 0 and 1.
Each element of the vector corresponds to a feature of the
dataset. If an element is greater than a threshold then its cor-
responding feature is selected. Otherwise, the corresponding
feature is discarded. A threshold value of 0.6 is used as per
literature [7].

In a multi-objective feature selection problem, we have two
main objectives that we aim to minimise simultaneously, the
classification error rate (eRate), and the ratio of selected fea-
tures (fRatio). In order to evaluate the quality of a candidate
solution S in each sub-problem, we develop a fitness function
that evaluates both objectives

fitnessS = eRateS+100∗max(|S|−nref , 0)+α∗fRatioS
(2)

where |S| is the number of selected features, and nref is our
upper boundary for the sub-region search space. Our upper
boundary nref = refRatio∗n, is the number of features that
the reference point at refRatio along the fRatio axis has
selected out of n total features.

The main objective to minimise is eRateS , which corre-
sponds to the first term in the fitness function. The second
term is the penalty for feature subsets larger than the allocated
sub-regions nref . A max function is used to choose between
0 and |S| − nref . In the event that |S| − nref is above 0,
the solution is in violation of the sub-region’s size, and has a
penalty value of 100 times each feature above nref . The last
term is the fRatioS with variable parameter α. When α is set
to 1, both eRate and fRatio become equally important in the
fitness function. Lower values of α correspond to an increase
in importance of minimising the eRate over minimising the
fRatio.

B. Local search

We propose three local search operators which are insert,
remove, and swap operators. The aim of the three operators
is to search for neighboring feature subsets that have better
classification performance than the current feature subset.
Given a feature subset, the three operators work as follows.



Algorithm 1 : Insert operator
1: procedure INSERT(Subset S)
2: picks a feature that is not selected in S;
3: set the corresponding element of the picked feature to

threshold × 1.1;

Algorithm 2 : Remove operator
1: procedure REMOVE(Subset S)
2: picks a feature that is selected in S;
3: set the corresponding element of the picked feature to

threshold (i.e. remove the picked feature from S);

• Insert operator (Algorithm 1) picks a feature among all
unselected features to add to the feature subset. The fea-
ture is added by setting the corresponding representation
element to (1.1 × threshold).

• Remove operator (Algorithm 2) picks a feature among all
selected features to be removed from the feature subset.
The feature is removed by setting the corresponding
representation element to threshold.

• Swap operator (Algorithm 3) picks an unselected feature
which then replaces a selected feature from the feature
subset.

For all three operators, the newly generated feature subset
replaces the current feature subset if it achieves better classifi-
cation performance. It can be seen that the three operators fo-
cus on improving the classification performance while making
little or no change in terms of the subset size. It is expected that
the three local searches can further improve the classification
performance of the feature subsets in the evolved front, while
maintaining the front’s diversity. However, since MOEA/D-
DYN is a decomposition based algorithm, each local search
operator has unique implications.

1) Solutions in regions with lower nref may not benefit
from the insert operator. Even if the insert operator
introduces a high quality feature with interaction effects,
the solution can be rejected due to the penalty term in
the fitness function and will need repair if the resulting
subset size is greater than nref . Solutions in regions
with higher nref should benefit the most from the
insert operator. In the event that a solution in region
nrefi

(that is identical to a solution in region nrefi−1
)

receives a new feature that would place its fRatio
above nrefi−1

; an improvement of the fitness value and
therefore acceptance of the new solution will improve
the diversity of solutions in that sub-region.

2) Regions with lower nref on the other hand may benefit
more from the remove operator. If the removal of a
feature improves the fitness value, we can introduce
solutions with lower fRatio and higher classification
accuracy into the smaller sub-regions of the popula-
tion. However, solutions in the higher sub-regions can
continually have their features removed, which might
drastically reduce diversity among higher fRatio sub-

Algorithm 3 : Swap operator
1: procedure SWAP(Subset S)
2: picks a feature fadd that is not selected in S;
3: picks a feature fremove that is selected in S;
4: set the corresponding element of fadd to threshold ×

1.1;
5: set the corresponding element of fremove to threshold;

regions as duplicate solutions begin to emerge.
3) Finally, swap is the most balanced operator. Solutions

subsets have the same number of features before and
after the operation. The swap operator does not provide
any unique benefit to diversity in larger fRatio sub-
regions, and does not add pressure toward lower fRatio
subsets. The fitness function in this case will only benefit
from a reduction in the eRate, as the last two terms
regarding fRatio are unchanged.

The local search is performed after the mutation and crossover
operations in MOEA/D-DYN. With the three local search
operators, we introduce three corresponding algorithms.

The question is how to select the feature to insert, remove,
or swap. In this work, we propose to use the Relief score since
it is efficient and considers feature interaction. The usage of
ReliefF is the main difference between our local search and
the one proposed in ISRPSO which utilises the accuracy of
each individual feature, i.e., feature interaction is ignored. The
following subsection shows how to use Relief to select features
for the three operators.

C. Selection based on ReliefF scores

ReliefF is utilized as an indicator of a features interaction
quality. These scores are precalculated before the main algo-
rithm once, and remain the same during the entire evolutionary
process. We have developed a stochastic selection mechanism
that behaves similarly to roulette wheel selection. This helps
in preventing stagnation at local optima due to repeated
identical selection of the same feature indices over many
iterations. Selection in each local search operator utilizes the
normalized weight vector. Selection favouring features with
worse scores utilizes an inverted normalized weight vector.
Large ReliefF scores with smaller inverse values will have
lower probabilities of selection and vice versa. A range array
is constructed of the cumulative sum of the normalized weight

scores, where
n∑

i=1

wi = 1. Each element of this range array

denotes boundaries for our roulette wheel. A random real
number between 0 and 1 is chosen, denoting the area on the
roulette wheel that the selection mechanism chooses. Since
the range array is the normalized cumulative sum, all values
in that array range from 0 to 1 in ascending order. The roulette
wheel is illustrated in Fig. 1, and its corresponding range array
is shown in Fig. 2. The index position of the last value in the
range array that the random number is equal to or less than
is the position of the feature that will be selected for use in
either insert, swap, or remove operators.
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D. ReliefF score based repair mechanism

In addition to local search, we propose an enhanced repair
mechanism based on the ReliefF ranking. As the population
is distributed among all sub-regions, areas with lower fRatio
will contain simpler solutions with fewer features, and vice
versa. nref denotes the upper boundary fRatio of that sub-
region. Solutions in that sub-region must have an fRatio
below the corresponding nref . However, regions do not have
a lower boundary. This means that a sub-region nrefi

can
include solutions also in nrefi−1

. This prevents the unlikely
event that higher nref regions do not contribute any solutions
to the final pareto front. If a solution has a larger fRatio than
the nref of its sub-region, repairing will need to be done.
Algorithm 4 illustrates the use of interaction score ranking to
conduct repair.

Algorithm 4 Repair based on ReliefF
1: procedure REDUCESIZE(Subset S, nref )
2: while |S| > nref :
3: pick a feature in S based on ReliefF scores;
4: set the corresponding element of the picked feature to

threshold;

E. Overall algorithm

Fig. 3 illustrates the baseline MOEA/D-DYN algorithm
with the MOEA/D-DRLS extensions in orange. As this is
an extension of MOEA/D-DYN, the local search operation is
performed just after the standard GA operators for each sub-
problem. ReliefF ranking is performed before the evolutionary
process. The repair function has been changed to utilize the
ReliefF ranking. In addition, insert, swap, remove, and repair
utilizes the probability based roulette wheel selection when
adding and removing features.

IV. EXPERIMENT DESIGN

A. Benchmark techniques

We examine our proposed algorithm on 12 UCI datasets,
and 5 gene-expression datasets [7] with various numbers of
features, classes, and instances. The datasets are selected
with an expectation to be good representatives for real-world
problems. Details of the 17 datasets are shown in Table I.

TABLE I
DATASETS

Dataset #Features #Classes #Instances
Wine 13 3 178
Australian 14 2 6650
Vehicle 18 4 946
German 24 2 1000
WBCD 30 2 569
Sonar 60 2 208
Hillvalley 100 2 606
Musk1 166 2 476
Arrhythmia 279 16 452
Madelon 500 11 4400
Isolet5 617 5 7797
MultipleFeatures 649 15 2000
SRBCT 2308 4 83
Leukemia1 5327 3 72
DLBCL 5469 2 77
Brain1 5920 5 90
Leukemia 7129 2 72

In total, the 17 benchmark datasets provide a good indi-
cation of overall performance for small, medium and large-
scale feature selection tasks. There are multiple classes for
many of these algorithms, hence the requirement to utilize the
multiclass version of Relief (ReliefF). The proposed algorithm
MOEA/D-DRLS will be compared with three benchmark
algorithms: SPEA2, NSGAII, and MOEA/D-DYN. Each of
the three benchmark algorithms MOEA/D-DYN, SPEA2 and
NSGAII will have a total of 30 independent runs. MOEA/D-
DRLS will also have a total of 30 independant runs for each
of the three local search operators. All datasets are divided
into a training and testing set, with a 70-30 split. Features
are selected based only on the training set to avoid feature
selection bias [16].

During training we utilize KNN with 10-fold cross vali-
dation on the training set to evaluate feature subsets. These
settings largely remain the same with previous studies [7], and
are common among similar feature selection tasks [17], [5].
To conduct comparison, and calculate the two indicators, we
require an approximate true Pareto front. We obtain this front
by taking the union of all non-dominated solutions across all
runs for all algorithms. We apply a Friedman test and an adhoc
Nemenyi multitest in order to determine significant differences
between benchmark algorithms and the proposed methods at
significance level of 0.05.

B. Parameter settings

The settings of NSGAII and SPEA2 follow their origi-
nal papers. Parameter settings for MOEA/D-DYN as both a
benchmark and base for MOEA/D-DRLS are identical to the
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TABLE II
HYPERVOLUME VALUES FOR TEST FRONTS

Dataset NSGAII SPEA2 Insert Swap Remove
Wine 0.765±0.052 (↓,↓,↓) 0.927±0.031 (↓,↓,↓) 0.952±0.000 0.951±0.002 0.952±0.000
Australian 0.771±0.070 (↓,↓,↓) 0.771±0.069 (↓,↓,↓) 0.828±0.003 0.828±0.006 0.827±0.005
Vehicle 0.815±0.019 (↓,↓,↓) 0.809±0.025 (↓,↓,↓) 0.831±0.002 0.831±0.003 0.830±0.002
German 0.681±0.022 (◦,↓,↓) 0.680±0.021 (↓,↓,↓) 0.694±0.006 0.694±0.007 0.693±0.006
WBCD 0.923±0.019 (↓,↓,↓) 0.924±0.017 (↓,↓,↓) 0.934±0.000 0.934±0.000 0.934±0.000
Sonar 0.771±0.030 (↓,↓,↓) 0.786±0.024 (↓,↓,↓) 0.804±0.023 0.807±0.017 0.808±0.021
Hillvalley 0.596±0.015 (◦,↓,◦) 0.602±0.010 (◦,↓,↓) 0.603±0.009 0.608±0.010 0.605±0.007
Musk1 0.842±0.018 (↓,↓,↓) 0.856±0.014 (↓,↓,↓) 0.874±0.012 0.868±0.016 0.873±0.012
Arrhythmia 0.933±0.007 (↓,↓,↓) 0.944±0.004 (↓,↓,↓) 0.957±0.002 0.956±0.002 0.956±0.002
Madelon 0.861±0.010 (↓,↓,↓) 0.869±0.010 (↓,↓,↓) 0.891±0.005 0.890±0.004 0.891±0.003
Isolet5 0.919±0.007 (↓,↓,↓) 0.939±0.009 (↓,↓,↓) 0.990±0.000 0.989±0.001 0.990±0.001
Multiplefeatures 0.946±0.008 (↓,↓,↓) 0.956±0.006 (↓,↓,↓) 0.991±0.001 0.991±0.001 0.991±0.001
SRBCT 0.927±0.014 (↓,↓,↓) 0.927±0.016 (↓,↓,↓) 0.982±0.013 0.981±0.013 0.981±0.014
Leukemia1 0.847±0.022 (↓,↓,↓) 0.844±0.020 (↓,↓,↓) 0.975±0.020 0.967±0.020 0.965±0.026
DLBCL 0.782±0.048 (↓,↓,↓) 0.844±0.025 (↓,↓,↓) 0.929±0.041 0.939±0.044 0.910±0.064
Brain1 0.789±0.011 (↓,↓,↓) 0.789±0.018 (↓,↓,↓) 0.932±0.010 0.933±0.011 0.929±0.012
Leukemia 0.787±0.041 (↓,↓,↓) 0.822±0.028 (↓,↓,↓) 0.966±0.028 0.965±0.030 0.974±0.023

study performed by [7], and are suggested by experiments
conducted in [18]. The settings for MOEA/D-DYN involve
the number of neighbors T , which is set to R/10. Differntial
evolution’s crossover is used with rate 0.6 and scaling factor
F 0.7. Polynomial mutation 1/n is also used. The probability
of selecting parents from neighboring sub-problems σ is 0.85.
Since we use the dynamic strategy for MOEA/D, the number
of moving reference points M is set to 0.4∗R. The number of
intervals I is set to 9 if the number of features is less than 20,
otherwise 4 as in MOEA/D-DYN [7]. α in Fig. 2 is set to 0.001
to allow preference toward minimising classification error rate.
The population size is equal to the number of features if
there are less than 200 features, otherwise equal to 200. The
maximum iterations is 200. These values have been examined
and suggested in [7]. A threshold value of 0.6 is again used
to determine the cutoff point for feature selection/deselection
[7]. The number of nearest neighbors in KNN is set to 5, this
value for KNN helps avoid noisy instances while maintaining
its efficiency

The two user defined parameters for ReliefF are n and k.

The original Relief analysis [19] suggests that an insufficient
number of training instances (n) can fool the Relief algorithm.
Therefore, we have eliminated this parameter by enabling the
algorithm to cycle through all training instances. Empirical
analysis on ReliefF also suggests setting k to 10 [10].

V. RESULTS AND DISCUSSION

A. Comparison with using all features

Fig. 4 and Fig. 5 show the median fronts obtained by
MOEA/D-DYN and MOEA/D-DRLS with three local search
operators. Median fronts for each dataset are obtained using
the median hypervolume values across all 30 runs. The fronts
are graphed using fRatio on the x-axis, and eRate on the
y-axis. The ”Full feature set” in the figure legend shows the
classification error rate when using all features. Due to the
space limit, 4 fronts on 4 datasets: German, Musk1, Madelon,
and DLBCL are shown as representatives for different numbers
of features. As can be seen from the figure most feature subsets
evolved by MOEA/D-DRLS have lower classification error
rate than using all features. Except for the German dataset



with a small number of features, subsets evolved by MOEA/D-
DRLS select at most 50% number of features. The experi-
mental results show that the proposed local search can help
MOEA/D to evolve feature subsets with better classification
performance than using all features.

B. Comparison with dominance-based algorithms
Table II show the comparison between three MOEA/D-

DRLS algorithms with two dominance-based algorithms (NS-
GAII and SPEA2) on the test set. The following symbols
↑, ↓, ◦ are used to indicate whether the dominance-based
algorithms are significantly better than, worse than or have
no significant difference to each of the proposed local search
operators insert, swap, and remove. As can be seen from the
tables, on most datasets, all the three local search operators
achieve significantly better hypervolume values than NSGAII
and SPEA2. The main reason is that MOEA/D-DRLS can
evolve much more diverse fronts than that of NSGAII and
SPEA2. Thus, the local search operators do not reduce the
population diversity, which is the main advantage of MOEA/D
over dominance-based algorithms.

C. Comparison with MOEA/D-DYN
Fig. 4 and 5 show the effect of the proposed local search

operators by comparing the fronts evolved by MOEA/D-
DYN and the fronts evolved by MOEA/D-DRLS with three
local search operators. As can be seen from the figures,
except for DLBCL, the local search operators can generate
feature subsets with lower classification error rates than that
of MOEA/D-DYN. The most significant improvement is at the
knee-point region. Only on DLBCL, MOEA/D-DYN is able
to achieve better feature subsets than MOEA/D-DRLS. The
possible reason is that DLBCL has a much larger number of
features than the other three datasets, so its search space is
also much larger. Applying the local search on the DLBCL
dataset can significantly reduce the global search ability of
MOEA/D. Thus, the search space is not well explored, which
results in a poor front.

In comparison between the three local search operators, the
remove operator seems to have the most significant effect
while the insert operators seem to have the least significant
effect. The main reason is that the insert operator increases
the feature subset size, which can make the feature subset
infeasible since its size is larger than its corresponding nref .
Thus, it does not matter how good the feature subset is,
the feature subset will be discarded due to its constraint
violation. In contrast, the remove operator reduces the number
of features, so it will generate a feasible feature subset, not
only for its corresponding nref but also for the smaller nref .
Therefore, it is more likely that the subset generated by the
remove operator is accepted.

D. Further analysis of the evolutionary process
Fig. 6 displays the evolutionary process on the Multiple-

features dataset. All non-duplicated solutions at each gener-
ation during the training process have their fRatio and 10-
fold eRate recorded. The evolutionary process graphs these

solutions with fRatio on the x-axis and eRatio on the y-axis.
For this run, the remove operator achieved a lower knee-point
than MOEA/D-DYN, whilst maintaining diversity of the front.
We can observe a decrease in diversity for MOEA/D-DYN at
iteration 60. Remove regains diversity at iteration 100, and
maintains it until the final generation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a new feature interaction based lo-
cal search for MOEA/D-DYN to form a novel multi-objective
feature selection approach called MOEA/D-DRLS. MOEA/D-
DRLS performs local search by calculating a weight vector
of feature scores using the ReliefF algorithm. This weight
vector is then used to assess a features quality for selection in
three local search operators: insert, swap, and remove, as well
as in repair mechanisms. The experimental results show that
the proposed algorithm achieves better hypervolume values
than two dominance-based algorithms, NSGAII and SPEA2.
Furthermore, the local searches can improve the classification
performance of the feature subsets around the knee-point
region, which is the main limitation of MOEA/D-DYN.

A limitation of this study is that the algorithm used to
rank features based on interaction, ReliefF, is known to
struggle with ranking comparatively redundant features on
high dimensional datasets. In addition, local search during
the evolutionary process causes solutions to get stuck at local
optima when the search space is extremely large (as on the
DLBCL dataset). Further work can look at regularization
techniques for local search, such as probability based local
search.
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