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Abstract— Multi-criteria path planning is an important 

combinatorial optimization problem with broad real-world 
applications. Finding the Pareto-optimal set of paths ideal for all 
requiring features is time-consuming and unclear to obtain the 
subset of optimal paths efficiently for multiple origin states in the 
planning space. Meanwhile, due to the rise of deep learning, 
hybrid systems of computational intelligence thrive in recent years. 
When facing non-monotonic data or heuristics derived from pre-
trained neural networks, most of the existing methods for the one-
to-all path problem fail to find an ideal solution. We employ 
Gaussian mixture model to propose a target-prioritized searching 
algorithm called Multi-Source Bidirectional Gaussian-Prioritized 
Spanning Tree (BiasSpan) in solving this non-monotonic multi-
criteria route planning problem given constraints including range, 
must-visit vertices, and the number of recommended vertices. 
Experimental results on mass transportation system in Tainan and 
Chicago cities show that BiasSpan outperforms comparative 
methods from 7% to 24% and runs in a reasonable time compared 
to state-of-art route-planning algorithms. 

Keywords— Constrained route planning, Bidirectional spanning 
tree, Gaussian mixture model (GMM), Non-monotonicity, Deep 
Neural Network (DNN) 

I. INTRODUCTION 
Constrained planning is ubiquitous. Many AI-based or 

automatic planning tasks can be formulated as the constraint-
satisfaction problem (CSP) which involves the assignment of 
values to variables subject to a set of constraints [1]. Among 
CSP, though learning-based methods are increasingly popular in 
solving single-criterion optimization problems; however, few 
works are developed for dealing with multiple-criteria 
optimization [2]. 

Multi-criteria constrained path planning is an important 
combinatorial optimization problem with broad applications, 
where algorithms with specific or defined heuristic functions are 
often utilized. A well-known and state-of-art heuristic algorithm 
is A* algorithm [3]. A* could always find the path with the 
cheapest cost if the heuristic function is admissible. More 

specifically, if the heuristic function (cost function) is 
monotonic in the problem space, the algorithm could be proved 
to find the optimal solution. Otherwise, approaches are often 
infeasible once the heuristic function is not admissible. However, 
solving only monotonic problems is not realistic since non-
monotonicity can be observed frequently in our daily life [4]. 

This work focuses on solving a non-monotonic and multi-
criteria constrained route planning problem and is applied to 
realistically existing public transit systems for deploying 
additional transportation routes. Where to deploy additional 
transportation services such as buses or MRT routes in an urban 
space is a time-consuming task for governments or public 
transport authority since several criteria such as total passenger-
flow (PF), road structures, fuel consumption, and some other 
human-specified parameters should be considered. Although 
several traffic planning softwares (e.g. VISUM, EMME) are 
already developed, authorities are still often required to provide 
effectiveness evaluations or near-optimal plans in a timely 
manner when facing the overwhelming number of requests for 
deploying new stations or routes from the public. Most 
importantly, the potential PF is not monotonic during the route 
construction process so that makes it difficult to construct a route 
with high PF. Casually adding a new passing area into a forming 
route could lead to decrease the accumulated PF because of the 
complex geographical environments and the correlation with 
existing routes. For example, adequate intersections to existing 
routes bring more PF since passengers can make transferences 
between routes; however, PF could conversely decrease when 
the new route keeps growing too similar to an existing route 
since passengers would rather take the original route directly 
than to take the new one. To best of our knowledge, most of the 
state-of-art route-planning algorithms are not applicable in 
addressing such the issue. 

With a pre-trained PF inference model based on Deep Neural 
Network (DNN) for regression [5], which can accurately infer 
PF of arbitrary route, we propose Multi-Source Bidirectional 
Gaussian-Prioritized Spanning Tree (BiasSpan) for the non-
monotonic multi-criteria constrained route planning problem, 
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which can be applied to deploy additional transportation route in 
existing public transit systems. The key concept is to smooth the 
non-monotonic function and input features of the inference 
model. Specifically, given a set of must-visit stations and a range 
on the map as constraints from traffic management authorities/ 
users, BiasSpan recommends a route with near-optimally 
maximized PF (based on the aforementioned inference model) 
along with minimized route length. The system flow of the 
proposed framework is illustrated in Fig. 1. 

Experimental results on the mass transportation systems in 
Tainan and Chicago cities show that BiasSpan outperforms 
comparative methods from 7% to 24% and runs in a reasonable 
time compared to several route-planning algorithms. 

To conclude, we propose a DNN-based best-first searching 
algorithm to solve non-monotonic multi-criteria constrained 
route planning problems with optimization criteria: 

• Maximizing PF of a route. (refers to income of fixed fare) 
• Minimizing the length of a route. (fuel consumption) 

Fig. 1. System Flow for the proposed framework. 

II. BACKGROUND 
Research on route planning algorithms in transportation 

networks has developed over years, where the network is usually 
modeled as a directed graph in order to utilize Dijkstra’s 
algorithm to compute a best route between two nodes [6]. 
Several improvements have been made to run Dijkstra’s 
algorithm in almost linear time or using little memory thereafter 
[7][8]. However, it is too slow for practical applications in real-
world transportation networks, which consist of millions of 
nodes (grids), while instant results are requested [9]. Therefore, 
to speed up searching an unimodal transportation network, 
bidirectional search (graph search) [10][11][12][13], goal 
direction [14][15][16][17], transportation hierarchy [18], 
distance table, and separator-based methods [19][20][21] are 
generally used [6][22][23][24][25][26]. 

For multi-criteria path planning, some researches focused on 
finding the pareto-optimal set of paths ideal for all requiring 
features [27][28]; however, it is time-consuming and unclear to 
obtain the subset of optimal paths efficiently for multiple origin 
states in the planning space [29]. Moreover, some of the relevant 
urban features (i.e. the entropy of urban functions, or the 
relationship between new and existing routes) generalized in 
inferring the PF are not superimposable, which makes the 

heuristic algorithms inappropriate for our case. In other words, 
a heuristic shall be monotonic so that its estimate is always less 
than or equal to the estimated cost from any neighboring vertex 
to the goal plus the cost of reaching that neighbor. However, our 
input features and its heuristic are not monotonic. Therefore, 
using these speedup techniques mentioned above, along with the 
concept of Gaussian mixture model, which is mostly utilized in 
solving background modelling for real-time tracking problem 
[30], we propose a target-prioritized searching algorithm. 

III. PRELIMINARIES 
Definition 1: Grid. We divide the city into disjointed grids 

(0.1km×0.1km) [31] and store all features that are correlated 
with PF (e.g. population in this grid, whether existing routes 
passed this grid, etc.) into corresponding grid. 

Definition 2: Grid-like graph. Grid-like graph is composed 
of disjointed grids that records connections as original road 
network based on OpenStreetMap (OSM). Each grid stores the 
connections between adjacent grids in its eight directions if there 
exists a road in OSM that connects each other. 

Definition 3: Station. Station is a facility or area for 
passenger to regularly get-into or get-off the mass transit 
transportation. (Note that the mass transit transportation here 
refers to city bus, light rails, trolley bus, etc.) Passenger need to 
pay by smart card when getting-into or/and get-ting-off the mass 
transit at a station. Station in original mass transit data or as input 
given by users as system is a point with latitude and longitude; 
but is labelled on a grid that the point located at in grid-like graph. 

Definition 4: Trajectory. Trajectory is the path that certain 
mass transit takes. Trajectory in original mass transit data or as 
input given by users as system is a series of road junctions; but 
turns into a series of connecting grids in the graph-like grids for 
further PF inference and route recommendation.  

Definition 5: Route. Route is a set of combination of 
trajectory and stations. Note that same series of trajectories with 
different set of stations does refer to different route. Route is a 
series of connecting grids and several grids la-belled as stations 
in the grid-like graph; however, since we divide the city into 
disjointed grids with a meticulous size, the actual route in real 
world (OSM) can be easily reproduced given a sequence of grids. 
Therefore, though some re-projections from grid to actual road 
network are needed, no other superfluous process needed to 
handle in post-processing.  

Definition 6: Passenger Flow (PF). Since the price is fixed 
fare for Chicago and Tainan bus transit system, and most of 
mass transit transportation system in other cities, the passenger 
flow along the route here refers to the total passengers who 
passed any point along the route. To be more specific, PF is 
counted once someone pay by smart card when getting-into or 
getting-off the mass transit at a station of a route. 

Definition 7: Route affecting region (RAR). The demand for 
public transportation is not only based on the origin and 
destination, but also the nearby geographical environment and 
urban functions of nearby areas [5]. Thus, we exploit RAR for 
considering PF-related features. Circles are first draw from each 
grid of given route, and then a RAR is formed by this set of 
circles. The radius of the circles is 400 meters, which is the 



walking tolerance for pedestrians based on Design Manual for 
Urban Sidewalks [32], we then extract features of corresponding 
grids within RAR for PF inference. Note that the proposed 
algorithm is applicable with feature extraction of the PF 
inference module based on either RAR or Origin-Destination 
(OD) Matrix [33][34]. 

IV. PF INFERENCE MODULE 

A. Problem Definition 
Given a set of trajectories labelled with stations, the goal is 

to infer the PF for that route. 

Since features are already stored in grids, the feature set for 
each existing route is extracted and integrated as training data 
along with its corresponding ticket data, which is associated 
with the timestamp and PF for each route. We adopt DNN for 
regression as the inference model and treat various features as 
inputs while PF values as the predictive label. Finally, the pre-
trained model is utilized in route planning process to infer PF 
value of given route. The procedure for the PF inference module 
is illustrated in Fig. 2. 

B. Feature extraction based on RAR 
To infer the PF value of a trajectory correctly, we consider 

six kinds of relevant urban features in RAR: 

POI-related features. Various POIs (Point-Of-Interest, 
refers to specific point location such as transportation hubs or 
entertainment venues) and their density in RAR indicate the 
function of a region. The POI entropy shows the diversity of 
purpose when people visit the nearby area of a route and is based 
on Information Theory [35]: 

Entropy(li)ൌ െ∑ ቀேംሺ௟೔,௥ሻேሺ௟೔,௥ሻ ൈ log ேംሺ௟೔,௥ሻேሺ௟೔,௥ሻ ቁఊି∈௰   (1) 

Where Γ indicates set of POI, and γ refers to certain type of 
POI. Besides, N (li, r) displays the total number of POI in RAR 
of trajectory li based on radius r, Nγ (li, r) displays the number 
of type-γ POI in RAR of trajectory li. 

Human mobility. The total number of pick-up and drop-off 
records of Taxi (in Chicago) or Bike (in Tainan) trip records that 
occur in RAR are accumulated as the leaving and incoming flow 
respectively. Records taking place in same RAR are viewed as 
transition flow. Dividing these values by number of all taxi 
records, several floating-point numbers are derived. 

Road network structure. Based on grid-like graph, the 
degree and closeness centrality in RAR are calculated as 
floating-point numbers. Degree centrality identifies the total 
number of reachable vertices for all intersections in RAR, and 
closeness centrality shows the average distance between one 
intersection to another in RAR. 

Competition and transference with existing routes. To 
quantify competitive relationship and since the road network 
structure is already reconstructed into grid-like graph, grids that 
holds designated routes and each existing route can be labelled 
respectively. Then a simple algorithm is run to calculate the 
number of grids that are labelled as both designated route and 
certain existing one, or grids that are labelled as designated route 
but nearby grids in its RAR are labelled as certain existing route. 
Through this process, the numbers of overlap grids and nearby 

grids between given route and each existing route are derived; 
meanwhile, if certain existing route is transferable, the grids 
(except for overlap and nearby ones) of that existing route are 
viewed as extended grids. Dividing these values by total grids of 
corresponding existing route, several floating-point numbers are 
derived, representing overlap/ nearby/ extended region between 
given and each existing route respectively 

Population structure. People in RAR of different ages and 
genders have different intentions for taking public transportation. 
Consequently, based on the population pyramid for each village, 
Population in certain RAR of different ages and genders are 
derived as several floating-point numbers. 

Time information and granularity. Seasons and holidays 
can influence the passenger flow of public transportation. We 
adopt one-hot encoding to record the time information for each 
ticket record. 

C. Inference model construction 
We adopt DNN for Regression to derive the PF for the given 

route. The input data includes all the features extracted based on 
the RAR of the given route, while the output is the inferred PF 
value of that route. The architecture of DNN for Regression is a 
feed-forward neural network with many levels of non-linearities. 
Meanwhile, all our input features are rescaled to 0~1, the type 
of the hidden units for 4 dense layers is ReLU and the output 
unit is linear. 

As the features been considered include relationship with 
existing routes and other relevant factors as described above, we 
believe that the model is trained/adapted to infer the PF of an 
arbitrary route (either new one or existing one) with the features 
that are extracted based on RAR of the route. 

 
Fig. 2. The procedure for PF inference module. Which is composed on three 
parts: data preprocessing, model pretrain, and user query. The model chosen to 
infer PF could be replaced with any regression-based method including but not 
limited to DNN, SVR, XGBoost, Linear Regression. The user query here also 
refers to queries generated by different algorithms in the section V. 



V. HIGH PF ROUTE RECOMMENDATION 

A. Problem Definition 
Given constraints consist of (1) range for planning (2) a set 

of must-visit stations SM = {SM0, …, SMi} (3) the number of 
recommended stations r (4) maximum length. Our goal is to 
recommend a trajectory in the given area along with a set of 
stations S=SM+SR to (1) maximize the inferred PF value and 
(2) minimize the length for the route (combination of 
trajectory and stations), where SM refers to the set of must-visit 
stations, SR is the recommended stations {SR0, …, SRr}. 

B. The Strategy 
The optimal solution is quite difficult to obtain in a large 

urban space due to numerous combinations of trajectories and 
stations for forming a route. According to our experiments, some 
exhaustion-based methods are not feasible due to high execution 
time. Meanwhile, considering the non-monotonic characteristics 
of input features and heuristic function based on PF, this 
problem turns out to be NP-Complete and most of heuristic 
algorithms are inappropriate for our case [36]. Therefore, based 
on the idea of parallel computing of bidirectional search and 
goal-directed priority from best-first search, we propose the 
Multi-source Bidirectional Gaussian-Prioritized Spanning Tree 
(BiasSpan) to help retrieve a decent solution in a reasonable 
time frame. The framework is shown in Fig. 3. 

Gird-like graph construction. BiasSpan relies on grid-like 
graph to search possible routes. Grid-like graph can retain the 
connectivity of the original road network and merges vertices 
into fewer grids. To conclude, the benefits is three-fold. First, 
the number of nodes can be reduced from 390,509 and 237,866 
(in the original road network) to 91,320 and 94,282 for two cities 
respectively since only these grids contain road segments. 
Second, given a route, the computational loading and time of 
extracting features in RAR can be saved due to the grid indexing. 
Third, the grid is clear and easy to visualize for both user queries 
and route recommendation in map. 

PF precomputation and lookup table construction. Since 
a route consists of multiple connected girds, we first pre-infer 
the PF value for each grid in the map area and store into a lookup 
table. Another lookup table is constructed for each grid to record 
the connectivity between the grids. Since the distance between 
each grid is either 0.1km or 0.1√2km, there is no need to store 
the edge weights (length). 

Multi-source bidirectional spanning. Multiple queues are 
maintained and kept being merged when frontier of one goes to 
a grid that has been visited by the other queue. We also set a 
constraint in which one source could only connect to a certain 
number of sources to prevent from constructing a radial route. 
The algorithm will repeatedly merge queues until there is a 
queue that contains all the sources. 

Gaussian mixture model for modeling spatial influence. 
We adopt the idea of Gaussian mixture model (GMM) in two 
ways. First, for each must-visit station or recommended one, we 
model its spatial influence (the attractiveness of inferenced 
passenger in spatial aspect) on other grids using two-
dimensional Gaussian distribution. Therefore, for each grid in 
the graph, we can compute its gained Gaussian distributed PF 

value from each station. That is, properties of nearby grids are 
somewhat propagated with a strictly decreasing function based 
on physical distances to complement the lack of specific 
information. This distribution smooth a non-monotonic function, 
which decreases the incorrectness in the number of non-
monotonic features when a grid is selected. 

Second, GMM is useful for selecting deployed stations from 
nodes. Assuming we only select locations which have high PF 
values as recommended stations, it might lead to settle several 
stations in a very small region since the grids in that region have 
high inferenced PF values. To avoid this herding effect, we 
propose to subtract the accumulated Gaussian distributed PF 
value from the pre-inferenced PF value of each grid. The 
calculated PF value is the expected gained passengers 
considering negative effects from other locations. Then, stations 
could be recommended based on these re-calculated PF values 
through an iterative process until the number of recommend 
stations SR is satisfied. Thus, each recommended station selected 
is not only based on high inferenced PF value of the grid itself, 
but also are kept away from each other by adopting this strategy. 

 
Fig. 3. The procedure for high PF route recommendation. Which consists of 
three parts with algorithm description depicted in section V-C. 

C. Algorithm Description 
BiasSpan is composed of three parts: grid-preprocessing, 

station-recommending, and trajectory-routing. 

In grid-preprocessing, it calculates the PF value of each 
must-visit grid utilizing the PF inference module proposed in 
previous section; then it evaluates its spreading impact on other 
grids in the area based on Gaussian function in two dimensions. 
To be more specifically, several independent Gaussian 
distributions representing potential PF of each grid are involved 
in our proposed BiasSpan, where the variance setting of 
Gaussian distribution could refer to the grid size. 

Second, based on the negative Gaussian feedback of inferred 
PF from must-visit and selected stations, the scores of the GMM 



for all grids are derived and we greedily select the grid with 
maximal PF as the recommended station. 

Finally, BiasSpan minimizes depth of search by performing 
multi-source bidirectional search and prunes the breadth of 
search space on the basis of the spreading impact of positive 
Gaussian feedback from other stations, which makes it act as a 
breadth-first-based, target-prioritized spanning tree growing 
from multiple stations simultaneously. To ensure a route that 
connects all stations could be form completely, we allows each 
starter to grow parallelly until all stations could be connected 
once and not repeated. 

Summary of the properties of BiasSpan. 

(1) BiasSpan works for gain function with non-monotonic 
features based on Gaussian mixture model (GMM). 

(2) Vertices in road network structure are contracted into 
grid-like graph to be fetched directly through the primary key. 

(3) Based on GMM with negative feedback, stations are 
recommended with high PF preventing from crowding-out 
effect (herding effect). 

(4) Searching space for BiasSpan is pruned by bidirectional 
approach and goal direction technique. 

D. Time Complexity 
Before exploiting its time complexity, we could transform 

the original problem into a multiple choice branching problem. 
Which is to find a subset A’∈A in a directed graph G=(V,A) and 
a partition of A into disjoint sets A1, A2, …, Am with the sum of 
weights in subset A’ larger than a given positive integer K such 
that A’ contains no cycles and at most one arc from each 
partition. By reducing into a 3-SAT problem, this “multiple 
choice branching” problem turns out to be NP-Complete [37] 
[38]. To be more specific, it remains NP-C even if G is strongly 
connected and all weights are equal as finding maximum weight 
branching was viewed as a 2-matroid intersection problem [39]. 
In other words, a maximum weight branching can be viewed as 
a maximum weight directed spanning tree for a strongly 
connected graph. 

The time complexity of trajectory-routing for BiasSpan ends 
up in O(EV) since the worst case is to traverse each grid in all 
directions, where E refers to the number of maximum directions 
one spanning tree could try (equaling to branching factor in the 
worst case/setting), and V indicates the number of grids labelled 
with the road segment in the given area. The schematic search 
space of Dijkstra’s algorithm [40], bidirectional search, and 
BiasSpan is shown in figure 3, where BiasSpan visits fewer grids 
than bidirectional as the target-prioritized approach restricts the 
breadth based on the tendency to other targets. 

 
Fig. 4. Schematic search space of Dijkstra’s algorithm (left), bidirectional 
search (middle), and BiasSpan (right). 

VI. EVALUATION 

A. Datasets 
We use bus-ticket data on two different types (radial and 

square structure) of public transit networks from Tainan City 
Government and Chicago Transit Authority (CTA). The data for 
Tainan lists ticket id, route id, timestamps, and the starting and 
ending stations; on the other hand, the data for Chicago lists 
route id, timestamps, and number of passengers. The datasets 
contain 14,336,226 and 231,196,847 ticket records respectively 
and hold at least 100 routes and thousands of stations in service. 
Public transit networks for both cities are illustrated in Fig. 5. 

   
Fig. 5. Public transit networks for Tainan (left) and Chicago (right) on the 
same scale. 

The urban spaces of Tainan and Chicago are divided into 
505,296 and 94,282 disjointed grids (0.1km × 0.1km) based on 
EPSG: 3857, which is a variant of the Mercator projection and 
acts as the standard for web mapping applications. Since the unit 
for this projection is meter, we are able to divide the urban 
spaces into disjointed grids based on meters precisely 
considering the ellipsoidal datum when generating grid-like 
graph and pre-processing relevant features in the Geographic 
Information System. Meanwhile, only 94,282 and 91,320 grids 
(vertices) would be considered in route recommendation, which 
are reduced by about three times compared to the original road 
network structure. On the other hand, static features including 
POI and road network structures are extracted from GoogleMap 
and OpenStreetMap. The population are fetched from respective 
agencies. Finally, we take bike trips and taxi trips that list pick-
up and drop-off location as human mobility. Details of both 
cities are presented in Table I. 

TABLE I.  SIZE FIGURES FOR OUR INPUT INSTANCES 

Instance \ Dataset Tainan Chicago 
Bus data Existing routes 104 139 

Existing stations 6.575 11,592 
Ticket records 14,336,226 231,196,847 
Period 01/2017 – 12/2017 11/2017 – 10/2018

Gridized map Grids (0.1km × 0.1km) 505,296 330,335 
Grids labelled with road 94,282 91,320 

Other features POI 8,734 21,889 
Bike trips 
 (for human mobility) 

139,478 N/A 

Taxi trips 
 (for human mobility) 

N/A 68,461,612 

Road nodes 237,866 390,509 
Road edges 414,409 560,810 
Census blocks  
(for population) 

14,730 46,293 

 



B. Evaluation Setting 
We developed six comparative methods to start at one must-

visit station and searches for another iteratively: (a) Dijkstra’s 
Algorithm (Dijkstra’s) [40] (b) Breadth-First Search (BFS) [41] 
(c) Iterative Deepening Depth-First Search (IDDFS) [42] (d) 
Best-First Search (Best-First) based on highest pre-calculated 
PF of the grid [43]. (e) Distance-Based A* (Distance-A*) is A* 
[3] with a heuristic of distance to candidate grid. (f) Passenger-
Flow-Based A* (PF-A*) is A* [3] with a heuristic that predicts 
the inferred PF between destination and candidate grid. Baseline 
method: Brute-Force (BF) systematically enumerates all 
possible combinations and retrieves the optimal one. 

Since our optimization-criteria are maximizing PF and 
minimizing length of route, both results would be reported and 
an index of “PF per unit length” would be adopted for 
illustrating the figures. The evaluation is based on 1,000 
randomly generated testing cases for given constraints. All 
methods are implemented in Java and runtime is based on the 
single core of an Intel i7-7700CPU@3.60GHz with 16 GB of 
RAM. Considering practical applications, queries executed for 
over 30 seconds are identified as failures (failure trials would 
not affect the runtime illustrated in following figures); for 
methods that have more than half failure cases to respond 
queries under the parameter setting, their performance would not 
be considered or displayed in corresponding figures. 

TABLE II.  STRATEGY SETS TO BE USED IN PRELIMINARY EVALUATION 

 

C. Evaluation of BiasSpan parameter setting 
For this experiment, we run BiasSpan under different 

standard deviation and negative feedback ratio setting. 

The larger standard deviation σ is set, grids in a larger range 
are distributed but with a lower influence. Results in Fig. 6 show 
that the ideal setting for σ depends on the size of the mass transit 
system structure. For instance, since the route network in Tainan 
is much sparser than the network in Chicago, the distance 
between station to station is thereafter farther. In other words, 
the σ in Tainan shall not set to a too small value. On the contrary, 
the mass transit system in Chicago holds a tiny but closer 
network structure, experimental results show that a huge drop in 
performance and runtime takes place when the σ is set to higher 
than 15. 

Besides, experimental results show that negative feedback in 
the recommending process does affect the quality of the route. 
More importantly, a huge drop in overall performance takes 
place when this negative feedback ratio is set to higher than 1.5. 
To conclude, an ideal setting for negative feedback ratio to 
effectively prevent herding effect would be 0.6 to 1. 

   

   
Fig. 6. Unit PF and runtime for different standard deviation and negative 
feedback ratio settings in Tainan (up) Chicago (down) dataset. 

D. Evaluation of strategy selection 
To compare the importance of different components of 

strategies in the proposed algorithm, Table II shows the 
components of strategy sets based on multi-source spanning for 
performance comparison. All strategy sets are run under 
different area ranges and results are summarized in Fig. 7, where 
the PF per unit length for comparative strategy sets are divided 
by the value of the strategy set I into a unit PF ratio. 

First, focusing on the strategy of utilizing GMM with 
negative feedback in preventing herding effect, strategy set I 
outperforms set II and set III which only utilized either positive 
or negative GMM in PF routing process based on the concept of 
Best-first spanning. Compared to strategy VII, strategy VI, 
where Depth-first spanning is adopted, soon fails to construct 
routes and to return the results for half of the trials.  We conclude 
that negative GMM in PF routing could help to lead the ideal 
direction into a prior order, but the direction of the first order 
may not be the best choice when constructing the final route 
from the entire perspective considering increasing length. 

Next, focusing on the choice of spanning strategy: when both 
positive and negative GMM are considered in PF routing 
process, strategy set I outperforms set IV twice where the latter 
leaves the Best-first spanning and maintains the Breadth-first 
concept. Furthermore, when Depth-first spanning is adopted, 
strategy set VI fails to construct routes and return the results for 
half of the trials. Similar results are observed when strategy set 
II, V, and VII are compared, where the only difference between 
these methods is the spanning strategy. We conclude that since 
the maximum number of branches that one grid could try is fixed 
and lowered to the average branching factor, Best-first spanning 
strategy does help to construct a better route compared to simply 
Breadth-first or Depth-first. 

On the other hand, utilizing unidirectional spanning strategy 
instead of bidirectional, strategy set VIII (tree search) consumes 
more time than all other comparative strategy sets (graph search). 
To be more specific, since the searching space of unidirectional 
spanning diverges from only single stations, the number of grids 
that are visited grows rapidly before finding another station. 

To conclude, negative feed-back for GMM in PF routing 
process combined with Best-first and bidirectional spanning 
outperforms other strategy sets. 

Strategy \ Set I II III IV V VI VII VIII
PF look-up table        
Positive GMM        
Negative GMM        

Multi-source spanning        
Bidirectional spanning       
Unidirectional spanning        

Best-first spanning        
Breadth-first spanning       
Depth-first spanning         



   

   
Fig. 7. Unit PF ratio and runtime for different strategy sets under area range 
in Tainan (up) and Chicago (down) dataset. 

E. Evaluation with Comparative Methods 
For this experiment, we run BiasSpan and all comparative 

methods for trajectory-routing under different user-constrained 
settings. To be more specific, this experiment focus on whether 
a method could form a route that connect same set of stations 
with a better trajectory. In this section, PF per unit length for 
each method is divided by the value of BiasSpan into a unit PF 
ratio. We then compare the PF ratio and runtime of BiasSpan 
with comparative methods by varying area range and the number 
of must-visit stations. Results are shown in Fig. 8 and Fig. 9. 

First, Fig. 8 shows that proposed BiasSpan performs close to 
optimal solutions in small space and maintains with high PF per 
unit length and success rate in the large-scale region. Although 
IDDFS gains better PF results dealing with requests in some 
cases, the runtime of IDDFS is larger than BiasSpan for at least 
one logarithmic scale. As the main difference between BiasSpan 
and IDDFS is that the latter is a DFS-based algorithm resulting 
in a higher chance of exploring regions where no station exists. 
Results in Fig. 9 show that given a large number of requested 
must-visit stations, IDDFS fails to construct routes for more than 
half of trials. 

Compared to Distance-A* and PF-A*, BiasSpan tends to 
visit more grids (route length) but also results in higher PF; 
BiasSpan ends up in better overall performance. To sum up, the 
proposed BiasSpan outperforms other comparative methods 
from 7% to 22% in a large scale (>9 km2) case and reasonably 
close to optimal solutions where Brute-Force is able to obtain. 

Experimental results on the runtime also meet our estimate 
that the time complexity for BiasSpan is mainly related to the 
area range. Compared to other comparative algorithms, the scale 
of runtime for BiasSpan is close to Best-First Search and 
Distance-A*. To conclude, proposed BiasSpan outperforms 
other comparative methods from 7% to 24% in large scale (>9 
km2) and reasonably close to optimal in small space. Besides, 
Brute-Force can obtain optimal solutions but is only feasible for 
very small ranges (<1 km2) 

 

 

 

   

   
Fig. 8. Unit PF ratio and runtime for different methods under area range in 
Tainan (up) and Chicago (down) dataset. 

   

   
Fig. 9. Unit PF ratio and runtime for different methods under number of must-
visit stations in Tainan (up) and Chicago (down) dataset. 

VII. CONCLUSION 
Based on data and heuristic derived from neural network, 

this paper propose a Gaussian-based-prioritized bidirectional 
searching algorithm - BiasSpan in solving non-monotonic multi-
criteria constrained route planning problem. We focus on the 
application of deploying additional transportation route in 
existing public transit system given constraints including must-
visit stations and area range. Experimental results on mass 
transportation system in Tainan and Chicago cities show that the 
spatial influence modelled by GMM does address the non-
monotonicity produced by neural networks, and the proposed 
negative feedback along with GMM in recommending process 
effectively prevents herding effect. Meanwhile, the proposed 
BiasSpan outperforms comparative methods from 7% to 24% 
and runs in reasonable time compared to state-of-art route-
planning algorithms. 
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