

A Gaussian-Prioritized Approach for Deploying
Additional Route on Existing Mass Transportation

with Neural-Network-Based Passenger Flow Inference

Fandel Lin
Institute of Computer and Communication

Engineering
National Cheng Kung University

Tainan, Taiwan
q36084028@mail.ncku.edu.tw

Jie-Yu Fang
Institute of Computer and Communication

Engineering
National Cheng Kung University

Tainan, Taiwan
grace963214789@gmail.com

Hsun-Ping Hsieh
Department of Electrical Engineering

National Cheng Kung University
Tainan, Taiwan

hphsieh@mail.ncku.edu.tw

Abstract— Multi-criteria path planning is an important

combinatorial optimization problem with broad real-world
applications. Finding the Pareto-optimal set of paths ideal for all
requiring features is time-consuming and unclear to obtain the
subset of optimal paths efficiently for multiple origin states in the
planning space. Meanwhile, due to the rise of deep learning,
hybrid systems of computational intelligence thrive in recent years.
When facing non-monotonic data or heuristics derived from pre-
trained neural networks, most of the existing methods for the one-
to-all path problem fail to find an ideal solution. We employ
Gaussian mixture model to propose a target-prioritized searching
algorithm called Multi-Source Bidirectional Gaussian-Prioritized
Spanning Tree (BiasSpan) in solving this non-monotonic multi-
criteria route planning problem given constraints including range,
must-visit vertices, and the number of recommended vertices.
Experimental results on mass transportation system in Tainan and
Chicago cities show that BiasSpan outperforms comparative
methods from 7% to 24% and runs in a reasonable time compared
to state-of-art route-planning algorithms.

Keywords— Constrained route planning, Bidirectional spanning
tree, Gaussian mixture model (GMM), Non-monotonicity, Deep
Neural Network (DNN)

I. INTRODUCTION
Constrained planning is ubiquitous. Many AI-based or

automatic planning tasks can be formulated as the constraint-
satisfaction problem (CSP) which involves the assignment of
values to variables subject to a set of constraints [1]. Among
CSP, though learning-based methods are increasingly popular in
solving single-criterion optimization problems; however, few
works are developed for dealing with multiple-criteria
optimization [2].

Multi-criteria constrained path planning is an important
combinatorial optimization problem with broad applications,
where algorithms with specific or defined heuristic functions are
often utilized. A well-known and state-of-art heuristic algorithm
is A* algorithm [3]. A* could always find the path with the
cheapest cost if the heuristic function is admissible. More

specifically, if the heuristic function (cost function) is
monotonic in the problem space, the algorithm could be proved
to find the optimal solution. Otherwise, approaches are often
infeasible once the heuristic function is not admissible. However,
solving only monotonic problems is not realistic since non-
monotonicity can be observed frequently in our daily life [4].

This work focuses on solving a non-monotonic and multi-
criteria constrained route planning problem and is applied to
realistically existing public transit systems for deploying
additional transportation routes. Where to deploy additional
transportation services such as buses or MRT routes in an urban
space is a time-consuming task for governments or public
transport authority since several criteria such as total passenger-
flow (PF), road structures, fuel consumption, and some other
human-specified parameters should be considered. Although
several traffic planning softwares (e.g. VISUM, EMME) are
already developed, authorities are still often required to provide
effectiveness evaluations or near-optimal plans in a timely
manner when facing the overwhelming number of requests for
deploying new stations or routes from the public. Most
importantly, the potential PF is not monotonic during the route
construction process so that makes it difficult to construct a route
with high PF. Casually adding a new passing area into a forming
route could lead to decrease the accumulated PF because of the
complex geographical environments and the correlation with
existing routes. For example, adequate intersections to existing
routes bring more PF since passengers can make transferences
between routes; however, PF could conversely decrease when
the new route keeps growing too similar to an existing route
since passengers would rather take the original route directly
than to take the new one. To best of our knowledge, most of the
state-of-art route-planning algorithms are not applicable in
addressing such the issue.

With a pre-trained PF inference model based on Deep Neural
Network (DNN) for regression [5], which can accurately infer
PF of arbitrary route, we propose Multi-Source Bidirectional
Gaussian-Prioritized Spanning Tree (BiasSpan) for the non-
monotonic multi-criteria constrained route planning problem,

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

which can be applied to deploy additional transportation route in
existing public transit systems. The key concept is to smooth the
non-monotonic function and input features of the inference
model. Specifically, given a set of must-visit stations and a range
on the map as constraints from traffic management authorities/
users, BiasSpan recommends a route with near-optimally
maximized PF (based on the aforementioned inference model)
along with minimized route length. The system flow of the
proposed framework is illustrated in Fig. 1.

Experimental results on the mass transportation systems in
Tainan and Chicago cities show that BiasSpan outperforms
comparative methods from 7% to 24% and runs in a reasonable
time compared to several route-planning algorithms.

To conclude, we propose a DNN-based best-first searching
algorithm to solve non-monotonic multi-criteria constrained
route planning problems with optimization criteria:

• Maximizing PF of a route. (refers to income of fixed fare)
• Minimizing the length of a route. (fuel consumption)

Fig. 1. System Flow for the proposed framework.

II. BACKGROUND
Research on route planning algorithms in transportation

networks has developed over years, where the network is usually
modeled as a directed graph in order to utilize Dijkstra’s
algorithm to compute a best route between two nodes [6].
Several improvements have been made to run Dijkstra’s
algorithm in almost linear time or using little memory thereafter
[7][8]. However, it is too slow for practical applications in real-
world transportation networks, which consist of millions of
nodes (grids), while instant results are requested [9]. Therefore,
to speed up searching an unimodal transportation network,
bidirectional search (graph search) [10][11][12][13], goal
direction [14][15][16][17], transportation hierarchy [18],
distance table, and separator-based methods [19][20][21] are
generally used [6][22][23][24][25][26].

For multi-criteria path planning, some researches focused on
finding the pareto-optimal set of paths ideal for all requiring
features [27][28]; however, it is time-consuming and unclear to
obtain the subset of optimal paths efficiently for multiple origin
states in the planning space [29]. Moreover, some of the relevant
urban features (i.e. the entropy of urban functions, or the
relationship between new and existing routes) generalized in
inferring the PF are not superimposable, which makes the

heuristic algorithms inappropriate for our case. In other words,
a heuristic shall be monotonic so that its estimate is always less
than or equal to the estimated cost from any neighboring vertex
to the goal plus the cost of reaching that neighbor. However, our
input features and its heuristic are not monotonic. Therefore,
using these speedup techniques mentioned above, along with the
concept of Gaussian mixture model, which is mostly utilized in
solving background modelling for real-time tracking problem
[30], we propose a target-prioritized searching algorithm.

III. PRELIMINARIES
Definition 1: Grid. We divide the city into disjointed grids

(0.1km×0.1km) [31] and store all features that are correlated
with PF (e.g. population in this grid, whether existing routes
passed this grid, etc.) into corresponding grid.

Definition 2: Grid-like graph. Grid-like graph is composed
of disjointed grids that records connections as original road
network based on OpenStreetMap (OSM). Each grid stores the
connections between adjacent grids in its eight directions if there
exists a road in OSM that connects each other.

Definition 3: Station. Station is a facility or area for
passenger to regularly get-into or get-off the mass transit
transportation. (Note that the mass transit transportation here
refers to city bus, light rails, trolley bus, etc.) Passenger need to
pay by smart card when getting-into or/and get-ting-off the mass
transit at a station. Station in original mass transit data or as input
given by users as system is a point with latitude and longitude;
but is labelled on a grid that the point located at in grid-like graph.

Definition 4: Trajectory. Trajectory is the path that certain
mass transit takes. Trajectory in original mass transit data or as
input given by users as system is a series of road junctions; but
turns into a series of connecting grids in the graph-like grids for
further PF inference and route recommendation.

Definition 5: Route. Route is a set of combination of
trajectory and stations. Note that same series of trajectories with
different set of stations does refer to different route. Route is a
series of connecting grids and several grids la-belled as stations
in the grid-like graph; however, since we divide the city into
disjointed grids with a meticulous size, the actual route in real
world (OSM) can be easily reproduced given a sequence of grids.
Therefore, though some re-projections from grid to actual road
network are needed, no other superfluous process needed to
handle in post-processing.

Definition 6: Passenger Flow (PF). Since the price is fixed
fare for Chicago and Tainan bus transit system, and most of
mass transit transportation system in other cities, the passenger
flow along the route here refers to the total passengers who
passed any point along the route. To be more specific, PF is
counted once someone pay by smart card when getting-into or
getting-off the mass transit at a station of a route.

Definition 7: Route affecting region (RAR). The demand for
public transportation is not only based on the origin and
destination, but also the nearby geographical environment and
urban functions of nearby areas [5]. Thus, we exploit RAR for
considering PF-related features. Circles are first draw from each
grid of given route, and then a RAR is formed by this set of
circles. The radius of the circles is 400 meters, which is the

walking tolerance for pedestrians based on Design Manual for
Urban Sidewalks [32], we then extract features of corresponding
grids within RAR for PF inference. Note that the proposed
algorithm is applicable with feature extraction of the PF
inference module based on either RAR or Origin-Destination
(OD) Matrix [33][34].

IV. PF INFERENCE MODULE

A. Problem Definition
Given a set of trajectories labelled with stations, the goal is

to infer the PF for that route.

Since features are already stored in grids, the feature set for
each existing route is extracted and integrated as training data
along with its corresponding ticket data, which is associated
with the timestamp and PF for each route. We adopt DNN for
regression as the inference model and treat various features as
inputs while PF values as the predictive label. Finally, the pre-
trained model is utilized in route planning process to infer PF
value of given route. The procedure for the PF inference module
is illustrated in Fig. 2.

B. Feature extraction based on RAR
To infer the PF value of a trajectory correctly, we consider

six kinds of relevant urban features in RAR:

POI-related features. Various POIs (Point-Of-Interest,
refers to specific point location such as transportation hubs or
entertainment venues) and their density in RAR indicate the
function of a region. The POI entropy shows the diversity of
purpose when people visit the nearby area of a route and is based
on Information Theory [35]:

Entropy(li)ൌ െ∑ ቀேംሺ௟೔,௥ሻேሺ௟೔,௥ሻ ൈ log ேംሺ௟೔,௥ሻேሺ௟೔,௥ሻ ቁఊି∈௰ (1)

Where Γ indicates set of POI, and γ refers to certain type of
POI. Besides, N (li, r) displays the total number of POI in RAR
of trajectory li based on radius r, Nγ (li, r) displays the number
of type-γ POI in RAR of trajectory li.

Human mobility. The total number of pick-up and drop-off
records of Taxi (in Chicago) or Bike (in Tainan) trip records that
occur in RAR are accumulated as the leaving and incoming flow
respectively. Records taking place in same RAR are viewed as
transition flow. Dividing these values by number of all taxi
records, several floating-point numbers are derived.

Road network structure. Based on grid-like graph, the
degree and closeness centrality in RAR are calculated as
floating-point numbers. Degree centrality identifies the total
number of reachable vertices for all intersections in RAR, and
closeness centrality shows the average distance between one
intersection to another in RAR.

Competition and transference with existing routes. To
quantify competitive relationship and since the road network
structure is already reconstructed into grid-like graph, grids that
holds designated routes and each existing route can be labelled
respectively. Then a simple algorithm is run to calculate the
number of grids that are labelled as both designated route and
certain existing one, or grids that are labelled as designated route
but nearby grids in its RAR are labelled as certain existing route.
Through this process, the numbers of overlap grids and nearby

grids between given route and each existing route are derived;
meanwhile, if certain existing route is transferable, the grids
(except for overlap and nearby ones) of that existing route are
viewed as extended grids. Dividing these values by total grids of
corresponding existing route, several floating-point numbers are
derived, representing overlap/ nearby/ extended region between
given and each existing route respectively

Population structure. People in RAR of different ages and
genders have different intentions for taking public transportation.
Consequently, based on the population pyramid for each village,
Population in certain RAR of different ages and genders are
derived as several floating-point numbers.

Time information and granularity. Seasons and holidays
can influence the passenger flow of public transportation. We
adopt one-hot encoding to record the time information for each
ticket record.

C. Inference model construction
We adopt DNN for Regression to derive the PF for the given

route. The input data includes all the features extracted based on
the RAR of the given route, while the output is the inferred PF
value of that route. The architecture of DNN for Regression is a
feed-forward neural network with many levels of non-linearities.
Meanwhile, all our input features are rescaled to 0~1, the type
of the hidden units for 4 dense layers is ReLU and the output
unit is linear.

As the features been considered include relationship with
existing routes and other relevant factors as described above, we
believe that the model is trained/adapted to infer the PF of an
arbitrary route (either new one or existing one) with the features
that are extracted based on RAR of the route.

Fig. 2. The procedure for PF inference module. Which is composed on three
parts: data preprocessing, model pretrain, and user query. The model chosen to
infer PF could be replaced with any regression-based method including but not
limited to DNN, SVR, XGBoost, Linear Regression. The user query here also
refers to queries generated by different algorithms in the section V.

V. HIGH PF ROUTE RECOMMENDATION

A. Problem Definition
Given constraints consist of (1) range for planning (2) a set

of must-visit stations SM = {SM0, …, SMi} (3) the number of
recommended stations r (4) maximum length. Our goal is to
recommend a trajectory in the given area along with a set of
stations S=SM+SR to (1) maximize the inferred PF value and
(2) minimize the length for the route (combination of
trajectory and stations), where SM refers to the set of must-visit
stations, SR is the recommended stations {SR0, …, SRr}.

B. The Strategy
The optimal solution is quite difficult to obtain in a large

urban space due to numerous combinations of trajectories and
stations for forming a route. According to our experiments, some
exhaustion-based methods are not feasible due to high execution
time. Meanwhile, considering the non-monotonic characteristics
of input features and heuristic function based on PF, this
problem turns out to be NP-Complete and most of heuristic
algorithms are inappropriate for our case [36]. Therefore, based
on the idea of parallel computing of bidirectional search and
goal-directed priority from best-first search, we propose the
Multi-source Bidirectional Gaussian-Prioritized Spanning Tree
(BiasSpan) to help retrieve a decent solution in a reasonable
time frame. The framework is shown in Fig. 3.

Gird-like graph construction. BiasSpan relies on grid-like
graph to search possible routes. Grid-like graph can retain the
connectivity of the original road network and merges vertices
into fewer grids. To conclude, the benefits is three-fold. First,
the number of nodes can be reduced from 390,509 and 237,866
(in the original road network) to 91,320 and 94,282 for two cities
respectively since only these grids contain road segments.
Second, given a route, the computational loading and time of
extracting features in RAR can be saved due to the grid indexing.
Third, the grid is clear and easy to visualize for both user queries
and route recommendation in map.

PF precomputation and lookup table construction. Since
a route consists of multiple connected girds, we first pre-infer
the PF value for each grid in the map area and store into a lookup
table. Another lookup table is constructed for each grid to record
the connectivity between the grids. Since the distance between
each grid is either 0.1km or 0.1√2km, there is no need to store
the edge weights (length).

Multi-source bidirectional spanning. Multiple queues are
maintained and kept being merged when frontier of one goes to
a grid that has been visited by the other queue. We also set a
constraint in which one source could only connect to a certain
number of sources to prevent from constructing a radial route.
The algorithm will repeatedly merge queues until there is a
queue that contains all the sources.

Gaussian mixture model for modeling spatial influence.
We adopt the idea of Gaussian mixture model (GMM) in two
ways. First, for each must-visit station or recommended one, we
model its spatial influence (the attractiveness of inferenced
passenger in spatial aspect) on other grids using two-
dimensional Gaussian distribution. Therefore, for each grid in
the graph, we can compute its gained Gaussian distributed PF

value from each station. That is, properties of nearby grids are
somewhat propagated with a strictly decreasing function based
on physical distances to complement the lack of specific
information. This distribution smooth a non-monotonic function,
which decreases the incorrectness in the number of non-
monotonic features when a grid is selected.

Second, GMM is useful for selecting deployed stations from
nodes. Assuming we only select locations which have high PF
values as recommended stations, it might lead to settle several
stations in a very small region since the grids in that region have
high inferenced PF values. To avoid this herding effect, we
propose to subtract the accumulated Gaussian distributed PF
value from the pre-inferenced PF value of each grid. The
calculated PF value is the expected gained passengers
considering negative effects from other locations. Then, stations
could be recommended based on these re-calculated PF values
through an iterative process until the number of recommend
stations SR is satisfied. Thus, each recommended station selected
is not only based on high inferenced PF value of the grid itself,
but also are kept away from each other by adopting this strategy.

Fig. 3. The procedure for high PF route recommendation. Which consists of
three parts with algorithm description depicted in section V-C.

C. Algorithm Description
BiasSpan is composed of three parts: grid-preprocessing,

station-recommending, and trajectory-routing.

In grid-preprocessing, it calculates the PF value of each
must-visit grid utilizing the PF inference module proposed in
previous section; then it evaluates its spreading impact on other
grids in the area based on Gaussian function in two dimensions.
To be more specifically, several independent Gaussian
distributions representing potential PF of each grid are involved
in our proposed BiasSpan, where the variance setting of
Gaussian distribution could refer to the grid size.

Second, based on the negative Gaussian feedback of inferred
PF from must-visit and selected stations, the scores of the GMM

for all grids are derived and we greedily select the grid with
maximal PF as the recommended station.

Finally, BiasSpan minimizes depth of search by performing
multi-source bidirectional search and prunes the breadth of
search space on the basis of the spreading impact of positive
Gaussian feedback from other stations, which makes it act as a
breadth-first-based, target-prioritized spanning tree growing
from multiple stations simultaneously. To ensure a route that
connects all stations could be form completely, we allows each
starter to grow parallelly until all stations could be connected
once and not repeated.

Summary of the properties of BiasSpan.

(1) BiasSpan works for gain function with non-monotonic
features based on Gaussian mixture model (GMM).

(2) Vertices in road network structure are contracted into
grid-like graph to be fetched directly through the primary key.

(3) Based on GMM with negative feedback, stations are
recommended with high PF preventing from crowding-out
effect (herding effect).

(4) Searching space for BiasSpan is pruned by bidirectional
approach and goal direction technique.

D. Time Complexity
Before exploiting its time complexity, we could transform

the original problem into a multiple choice branching problem.
Which is to find a subset A’∈A in a directed graph G=(V,A) and
a partition of A into disjoint sets A1, A2, …, Am with the sum of
weights in subset A’ larger than a given positive integer K such
that A’ contains no cycles and at most one arc from each
partition. By reducing into a 3-SAT problem, this “multiple
choice branching” problem turns out to be NP-Complete [37]
[38]. To be more specific, it remains NP-C even if G is strongly
connected and all weights are equal as finding maximum weight
branching was viewed as a 2-matroid intersection problem [39].
In other words, a maximum weight branching can be viewed as
a maximum weight directed spanning tree for a strongly
connected graph.

The time complexity of trajectory-routing for BiasSpan ends
up in O(EV) since the worst case is to traverse each grid in all
directions, where E refers to the number of maximum directions
one spanning tree could try (equaling to branching factor in the
worst case/setting), and V indicates the number of grids labelled
with the road segment in the given area. The schematic search
space of Dijkstra’s algorithm [40], bidirectional search, and
BiasSpan is shown in figure 3, where BiasSpan visits fewer grids
than bidirectional as the target-prioritized approach restricts the
breadth based on the tendency to other targets.

Fig. 4. Schematic search space of Dijkstra’s algorithm (left), bidirectional
search (middle), and BiasSpan (right).

VI. EVALUATION

A. Datasets
We use bus-ticket data on two different types (radial and

square structure) of public transit networks from Tainan City
Government and Chicago Transit Authority (CTA). The data for
Tainan lists ticket id, route id, timestamps, and the starting and
ending stations; on the other hand, the data for Chicago lists
route id, timestamps, and number of passengers. The datasets
contain 14,336,226 and 231,196,847 ticket records respectively
and hold at least 100 routes and thousands of stations in service.
Public transit networks for both cities are illustrated in Fig. 5.

Fig. 5. Public transit networks for Tainan (left) and Chicago (right) on the
same scale.

The urban spaces of Tainan and Chicago are divided into
505,296 and 94,282 disjointed grids (0.1km × 0.1km) based on
EPSG: 3857, which is a variant of the Mercator projection and
acts as the standard for web mapping applications. Since the unit
for this projection is meter, we are able to divide the urban
spaces into disjointed grids based on meters precisely
considering the ellipsoidal datum when generating grid-like
graph and pre-processing relevant features in the Geographic
Information System. Meanwhile, only 94,282 and 91,320 grids
(vertices) would be considered in route recommendation, which
are reduced by about three times compared to the original road
network structure. On the other hand, static features including
POI and road network structures are extracted from GoogleMap
and OpenStreetMap. The population are fetched from respective
agencies. Finally, we take bike trips and taxi trips that list pick-
up and drop-off location as human mobility. Details of both
cities are presented in Table I.

TABLE I. SIZE FIGURES FOR OUR INPUT INSTANCES

Instance \ Dataset Tainan Chicago
Bus data Existing routes 104 139

Existing stations 6.575 11,592
Ticket records 14,336,226 231,196,847
Period 01/2017 – 12/2017 11/2017 – 10/2018

Gridized map Grids (0.1km × 0.1km) 505,296 330,335
Grids labelled with road 94,282 91,320

Other features POI 8,734 21,889
Bike trips
 (for human mobility)

139,478 N/A

Taxi trips
 (for human mobility)

N/A 68,461,612

Road nodes 237,866 390,509
Road edges 414,409 560,810
Census blocks
(for population)

14,730 46,293

B. Evaluation Setting
We developed six comparative methods to start at one must-

visit station and searches for another iteratively: (a) Dijkstra’s
Algorithm (Dijkstra’s) [40] (b) Breadth-First Search (BFS) [41]
(c) Iterative Deepening Depth-First Search (IDDFS) [42] (d)
Best-First Search (Best-First) based on highest pre-calculated
PF of the grid [43]. (e) Distance-Based A* (Distance-A*) is A*
[3] with a heuristic of distance to candidate grid. (f) Passenger-
Flow-Based A* (PF-A*) is A* [3] with a heuristic that predicts
the inferred PF between destination and candidate grid. Baseline
method: Brute-Force (BF) systematically enumerates all
possible combinations and retrieves the optimal one.

Since our optimization-criteria are maximizing PF and
minimizing length of route, both results would be reported and
an index of “PF per unit length” would be adopted for
illustrating the figures. The evaluation is based on 1,000
randomly generated testing cases for given constraints. All
methods are implemented in Java and runtime is based on the
single core of an Intel i7-7700CPU@3.60GHz with 16 GB of
RAM. Considering practical applications, queries executed for
over 30 seconds are identified as failures (failure trials would
not affect the runtime illustrated in following figures); for
methods that have more than half failure cases to respond
queries under the parameter setting, their performance would not
be considered or displayed in corresponding figures.

TABLE II. STRATEGY SETS TO BE USED IN PRELIMINARY EVALUATION

C. Evaluation of BiasSpan parameter setting
For this experiment, we run BiasSpan under different

standard deviation and negative feedback ratio setting.

The larger standard deviation σ is set, grids in a larger range
are distributed but with a lower influence. Results in Fig. 6 show
that the ideal setting for σ depends on the size of the mass transit
system structure. For instance, since the route network in Tainan
is much sparser than the network in Chicago, the distance
between station to station is thereafter farther. In other words,
the σ in Tainan shall not set to a too small value. On the contrary,
the mass transit system in Chicago holds a tiny but closer
network structure, experimental results show that a huge drop in
performance and runtime takes place when the σ is set to higher
than 15.

Besides, experimental results show that negative feedback in
the recommending process does affect the quality of the route.
More importantly, a huge drop in overall performance takes
place when this negative feedback ratio is set to higher than 1.5.
To conclude, an ideal setting for negative feedback ratio to
effectively prevent herding effect would be 0.6 to 1.

Fig. 6. Unit PF and runtime for different standard deviation and negative
feedback ratio settings in Tainan (up) Chicago (down) dataset.

D. Evaluation of strategy selection
To compare the importance of different components of

strategies in the proposed algorithm, Table II shows the
components of strategy sets based on multi-source spanning for
performance comparison. All strategy sets are run under
different area ranges and results are summarized in Fig. 7, where
the PF per unit length for comparative strategy sets are divided
by the value of the strategy set I into a unit PF ratio.

First, focusing on the strategy of utilizing GMM with
negative feedback in preventing herding effect, strategy set I
outperforms set II and set III which only utilized either positive
or negative GMM in PF routing process based on the concept of
Best-first spanning. Compared to strategy VII, strategy VI,
where Depth-first spanning is adopted, soon fails to construct
routes and to return the results for half of the trials. We conclude
that negative GMM in PF routing could help to lead the ideal
direction into a prior order, but the direction of the first order
may not be the best choice when constructing the final route
from the entire perspective considering increasing length.

Next, focusing on the choice of spanning strategy: when both
positive and negative GMM are considered in PF routing
process, strategy set I outperforms set IV twice where the latter
leaves the Best-first spanning and maintains the Breadth-first
concept. Furthermore, when Depth-first spanning is adopted,
strategy set VI fails to construct routes and return the results for
half of the trials. Similar results are observed when strategy set
II, V, and VII are compared, where the only difference between
these methods is the spanning strategy. We conclude that since
the maximum number of branches that one grid could try is fixed
and lowered to the average branching factor, Best-first spanning
strategy does help to construct a better route compared to simply
Breadth-first or Depth-first.

On the other hand, utilizing unidirectional spanning strategy
instead of bidirectional, strategy set VIII (tree search) consumes
more time than all other comparative strategy sets (graph search).
To be more specific, since the searching space of unidirectional
spanning diverges from only single stations, the number of grids
that are visited grows rapidly before finding another station.

To conclude, negative feed-back for GMM in PF routing
process combined with Best-first and bidirectional spanning
outperforms other strategy sets.

Strategy \ Set I II III IV V VI VII VIII
PF look-up table        
Positive GMM       
Negative GMM     

Multi-source spanning        
Bidirectional spanning       
Unidirectional spanning 

Best-first spanning    
Breadth-first spanning      
Depth-first spanning  

Fig. 7. Unit PF ratio and runtime for different strategy sets under area range
in Tainan (up) and Chicago (down) dataset.

E. Evaluation with Comparative Methods
For this experiment, we run BiasSpan and all comparative

methods for trajectory-routing under different user-constrained
settings. To be more specific, this experiment focus on whether
a method could form a route that connect same set of stations
with a better trajectory. In this section, PF per unit length for
each method is divided by the value of BiasSpan into a unit PF
ratio. We then compare the PF ratio and runtime of BiasSpan
with comparative methods by varying area range and the number
of must-visit stations. Results are shown in Fig. 8 and Fig. 9.

First, Fig. 8 shows that proposed BiasSpan performs close to
optimal solutions in small space and maintains with high PF per
unit length and success rate in the large-scale region. Although
IDDFS gains better PF results dealing with requests in some
cases, the runtime of IDDFS is larger than BiasSpan for at least
one logarithmic scale. As the main difference between BiasSpan
and IDDFS is that the latter is a DFS-based algorithm resulting
in a higher chance of exploring regions where no station exists.
Results in Fig. 9 show that given a large number of requested
must-visit stations, IDDFS fails to construct routes for more than
half of trials.

Compared to Distance-A* and PF-A*, BiasSpan tends to
visit more grids (route length) but also results in higher PF;
BiasSpan ends up in better overall performance. To sum up, the
proposed BiasSpan outperforms other comparative methods
from 7% to 22% in a large scale (>9 km2) case and reasonably
close to optimal solutions where Brute-Force is able to obtain.

Experimental results on the runtime also meet our estimate
that the time complexity for BiasSpan is mainly related to the
area range. Compared to other comparative algorithms, the scale
of runtime for BiasSpan is close to Best-First Search and
Distance-A*. To conclude, proposed BiasSpan outperforms
other comparative methods from 7% to 24% in large scale (>9
km2) and reasonably close to optimal in small space. Besides,
Brute-Force can obtain optimal solutions but is only feasible for
very small ranges (<1 km2)

Fig. 8. Unit PF ratio and runtime for different methods under area range in
Tainan (up) and Chicago (down) dataset.

Fig. 9. Unit PF ratio and runtime for different methods under number of must-
visit stations in Tainan (up) and Chicago (down) dataset.

VII. CONCLUSION
Based on data and heuristic derived from neural network,

this paper propose a Gaussian-based-prioritized bidirectional
searching algorithm - BiasSpan in solving non-monotonic multi-
criteria constrained route planning problem. We focus on the
application of deploying additional transportation route in
existing public transit system given constraints including must-
visit stations and area range. Experimental results on mass
transportation system in Tainan and Chicago cities show that the
spatial influence modelled by GMM does address the non-
monotonicity produced by neural networks, and the proposed
negative feedback along with GMM in recommending process
effectively prevents herding effect. Meanwhile, the proposed
BiasSpan outperforms comparative methods from 7% to 24%
and runs in reasonable time compared to state-of-art route-
planning algorithms.

ACKNOWLEDGEMENT
This work was partially supported by Ministry of Science

and Technology (MOST) of Taiwan under grants 108-2221-E-
006-142 and 108-2636-E-006-013. Meanwhile, we are grateful
to Tainan City Government for providing the bus ticket data.
Finally, we thank the anonymous reviewers for their careful
reading of our manuscript and their many insightful suggestions.

REFERENCES
[1] N. Keng, and Y.Y.D. Yun, “A planning/scheduling methodology for the

constrained resource problem”. In Proceedings of the 11th international
joint conference on Artificial intelligence (2): 998-1003. 1989.

[2] K. Osanlou, C. Guettier, A. Bursuc, T. Cazenave, and E. Jacopin,
“Learning-based Preference Prediction for Constrained Multi-Criteria
Path-Planning”. ICAPS 2019 Scheduling and Planning Applications
Workshop (SPARK). 2019.

[3] P.E. Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths”. IEEE Transactions on Systems
Science and Cybernetics (4)2: 100–107. 1968.

[4] D.W. Etherington, S. Kraus, and D. Perlis, “Nonmonotonicity and the
scope of reasoning”. Artificial Intelligence 52(3): 221-261. 1991.

[5] F. Lin, and H.-P. Hsieh, “An intelligent and interactive route planning
maker for deploying new transportation services”. In Proceedings of the
26th international conference on advances in geographic information
systems(SIGSPATIAL) 620-621. 2018.

[6] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Engineering route
planning algorithms”. Algorithmics of Large and Complex Networks.
Lecture Notes in Computer Science, Vol. 5515. Springer, 117–139. 2009.

[7] I. Abraham, D. Delling, A. Goldberg, and R. Werneck, “A Hub-Based
Labeling Algorithm for Shortest Paths in Road Networks”. In
Proceedings of the 10th International Symposium on Experimental
Algorithms. Vol. 6630. Springer, 230–241. 2011.

[8] A.V. Goldberg, “A Practical Shortest Path Algorithm with Linear
Expected Time”. SIAM Journal on Computing 37(5): 1637–1655. 2008.

[9] D. Julian, P. Thomas, and W. Dorothea, “User-Constrained Multi-Modal
Route Planning”. Journal of Experimental Algorithmics 19(3):1.1-1.19.
2015.

[10] R.C. Holte, A. Felner, G. Sharon, and N.R. Sturtevant, “Bidirectional
Search That Is Guaranteed to Meet in the Middle”. In Proceedings of the
30th National Conference on Artificial Intelligence 3411-3417. 2016.

[11] J. Chen, R. Holte, S. Zilles, and N.R. Sturtevant, “Front-to-End
Bidirectional Heuristic Search with Near-Optimal Node Expansions”. In
Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI) 489-495. 2017.

[12] E. Shaham, A. Felner, N.R. Sturtevant, and J.S. Rosenschein,
“Minimizing Node Expansions in Bidirectional Search with Consistent
Heuristics”. In Proceedings of the 11th International Symposium on
Combinatorial Search (SoCS) 81-98. 2018.

[13] N.R. Sturtevant, and A. Felner, “A Brief History and Recent
Achievements in Bidirectional Search”. In Proceedings of the 32nd
National Conference on Artificial Intelligence (AAAI) 8000-8007. 2018.

[14] A.V. Goldberg, and C. Harrelson, “Computing the shortest path: A*
search meets graph theory”. In Proceedings of 16th Annual ACM–SIAM
Symposium on Discrete Algorithms. 156–165. 2005.

[15] T. Yoshizumi, T. Miura, and T. Ishida, “A* with Partial Expansion for
Large Branching Factor Problems”. In Proceedings of the 17th National
Conference on Artificial Intelligence 923-929. 2000.

[16] D. Wagner, T. Willhalm, and C. Zaroliagis, “Geometric containers for
efficient shortest-path computation”. Journal of Experimental
Algorithmics 10, 1.3: 1–30. 2005.

[17] B. W. Thomas, T. Calogiuri, and M. Hewitt, “An exact bidirectional A⋆
approach for solving resource‐constrained shortest path problems”. Wiley
Online Library. doi: 10.1002/net.21856. 2018.

[18] V. Buchhold, P. Sanders, and D. Wagner, “Real-time Traffic Assignment
Using Engineered Customizable Contraction Hierarchies”. Journal of
Experimental Algorithmics 2.4. doi: 10.1145/3362693. 2019.

[19] D. Delling, A.V. Goldberg, T. Pajor, and R.F. Werneck, “Customizable
route planning”. In Proceedings of the 10th International Symposium on
Experimental Algorithms, Vol. 6630. Springer, 376–387. 2011.

[20] M. Zhang, L. Li, W. Hua, and X. Zhou, “Batch Processing of Shortest
Path Queries in Road Networks”. In Proceedings of Australasian
Database Conference: Databases Theory and Applications 3-16. 2019.

[21] Y.H. Li, H.J. Mao, and Y.M. Qin, “Vehicle Routing Problem with
Multiple Time Windows and Batch Splitting Based on Inferior First

Bidirectional Search Algorithm”. In Proceedings of the 3 rd International
Conference on Electrical, Mechanical and Computer Engineering.
doi:10.1088/1742-6596/1314/1/012116. 2019.

[22] H. Bast, “Car or public transport – two worlds”. Efficient Algorithms.
Lecture Notes in Computer Science, Vol. 5760. Springer, 355–367. 2009.

[23] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger, C. Harrelson, V.
Raychev, and F. Viger, “Fast Routing in Very Large Public
Transportation Networks Using Transfer Patterns”. In Proceedings of the
18th Annual European Symposium on Algorithms. Lecture Notes in
Computer Science, Vol. 6346. Springer, 290–301. 2010.

[24] M. Ehrgott, and K. Klamroth, “Connectedness of efficient solutions in
multiple criteria combinatorial optimization”. European Journal of
Operational Research 97(1): 159-166. 1997.

[25] R. Zhang, S.N. Kabadi, and A.P. Punnen, “The minimum spanning tree
problem with conflict constraints and its variations”. Discrete
Optimization 8: 191-205. 2011.

[26] Q. Song, M. Li, and X. Li, “Accurate and fast path computation on large
urban road networks: A general approach”. PLoS ONE 13(2): e0192274.
https://doi.org/10.1371/journal.pone.0192274. 2018.

[27] D. Delling, J. Dibbelt, and T. Pajor, “Fast and Exact Public Transit
Routing with Restricted Pareto Sets”. In Proceedings of the Twenty-First
Workshop on Algorithm Engineering and Experiments 54-65. 2019.

[28] D. Delling, T. Pajor, and R.F. Werneck, “Round-Based Public Transit
Routing”. Transportation Science, 49(3): 591–604. 2015.

[29] B.D. Ziebart, A.D. Dey, and J.A. Bagnell, “Fast Planning for Dynamic
Preferences”. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 2008.

[30] C. Stauffer, and W.E.L. Grimson, “Adaptive background mixture models
for real-time tracking”. IEEE CVPR. Fort Collins, CO, USA, pp. 246-252
Vol. 2. DOI: 10.1109/CVPR.1999.784637. 1999.

[31] L.A. Silman, Z. Barzily, and U. Passy, “Planning the route system for
urban buses”. Computers & Operations Research 1(2): 201-211. 1974.

[32] H.-M. Su, and C.-C. Kuan, “Planning and design guidelines”. In Design
Manual for Urban Sidewalks, ch. 4, sec. 1, pp. 1-4. 2003.

[33] A. Peterson, “The Origin–Destination Matrix Estimation Problem —
Analysis and Computations”. Doctoral dissertation, Department of
Science and Technology. Linköping University, Sweden. 2007.

[34] H. Yang, and J. Zhou, “Optimal traffic counting locations for origin–
destination matrix estimation”. Transportation Research Part B:
Methodological 32(2): 109–126. 1998.

[35] T.M. Cover, and J.A. Thomas, “Entropy, relative entropy and mutual
information”. Elements of Information Theory, ch. 2, sec. 1, pp. 12-13.
1991.

[36] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P.
Sanders, D. Wagner, and R. Werneck, “Route Planning in Transportation
Networks”. Algorithm Engineering. Lecture Notes in Computer Science,
vol 9220. Springer. 2016.

[37] M.R. Garey, D.S. Johnson, and L. Stockmeyer, “Some simplified NP-
complete graph problems”. Theoretical Computer Science 1(3): 237-267.
1976.

[38] M.R. Garey, and D.S. Johnson, “Computers and intractability: a guide to
the theory of NP-completeness”. W. H. Freeman and Company. Appendix
B. 1979.

[39] M.R. Garey, D.S. Johnson, and R.E. Tarjan, “The Planar Hamiltonian
Circuit Problem is NP-Complete”. SIAM Journal on Computing 5(4),
704–714. 1976.

[40] E.W. Dijkstra, “A note on two problems in connexion with graphs”.
Numerische Mathematik, 269–271. 1959.

[41] C.Y. Lee, “An Algorithm for Path Connections and Its Applications”.
IEEE IRE Transactions on Electronic Computers EC10(3): 346–365.
1961.

[42] R.E. Korf, “Depth-first iterative-deepening: an optimal admissible tree
search”. Artificial Intelligence (27)1: 97–109. 1985.

[43] J. Pearl, “Heuristics: intelligent search strategies for computer problem
solving”. Addison-Wesley Longman Publishing Co. p. 48. 1984.

