
Statistically-driven Coral Reef metaheuristic for
automatic hyperparameter setting and architecture

design of Convolutional Neural Networks
Alejandro Martı́n∗, Raúl Lara-Cabrera∗, Vı́ctor Manuel Vargas†,

Pedro Antonio Gutiérrez†, César Hervás-Martı́nez†, David Camacho∗
∗Universidad Politécnica de Madrid, Madrid, Spain

Email: {alejandro.martin,raul.lara,david.camacho}@upm.es
†Universidad de Córdoba, Córdoba, Spain

Email: {vvargas,pagutierrez,chervas}@uco.es

Abstract—The adjustment of the hyperparameters and net-
work structure of Convolutional Neural Networks (CNNs) com-
poses an important step towards building effective, but still
efficient learning models. The selection of the best configuration
is a problem-dependent task that involves to explore an enormous
and complex search space. Due to this reason, the use of heuristic-
based search fits perfectly within this task, seeking to obtain
a near to optimal solution in a complex and large exploratory
space. This paper presents SCRODeep, a self-adapting algorithm
based on a statistically-driven Coral Reef Optimisation algorithm
(SCRO), for the selection of the most adequate CNNs architecture
in a particular domain. This metaheuristic has been designed to
navigate through a search space where the architecture (defining
the particular set of layers, including convolutional or pooling
layers), and the hyperparameters of the network (i.e. activation
functions, number of units or the kernel initializer, among others)
are represented, but where the connections weights and bias are
inferred using typical CNNs optimisation algorithms. In contrast
to other approaches, where the use of a metaheuristic implies
in turn to fix a series of hyperparameters (i.e. the mutation
probability in a genetic algorithm), our approach follows a self-
parametrisation perspective, thus removing the necessity of fixing
these values. The method has been tested in the design of CNNs
for image classification, showing that SCRODeep is able to find
competitive solutions, while the complexity of the architectures
found is constrained.

Index Terms—Convolutional Neural Networks, Coral Reef
based optimisation, architecture definition, optimisation

I. INTRODUCTION

Recently, machine learning has taken the lead as the
methodology to follow in order to solve complex problems,
especially when dealing with large volumes of data. In the era
of the information society, we are constantly generating data
during our day-to-day activities. This situation has brought to
light a large number of problems which, due to their difficulty,
cannot be solved efficiently with specific algorithms. On the
other hand, machine learning algorithms have proved to solve
these problems efficiently.

Deep neural networks (DNNs) can be found within the
machine learning ecosystem. They can be seen as an improve-
ment of classical artificial neural networks, which exploits
new paradigms of parallel and distributed computation as

well as the current reduced cost of computation. Due to
its features, DNNs are able to tackle complex problems,
comprising thousands of features. In fact, DNN ability to adapt
themselves to non-linear spaces and also their capabilities
of building strong classification and prediction systems are
within the sources of their popularity. However, the training
process is more complex compared to other machine learning
algorithms such as support vector machines or random forests.
Another undesirable feature is that the models built by DNNs
are not self-explanatory, so it is not possible to reason about
the knowledge gathered. The same advantages and disadvan-
tages can be associated with Convolutional Neural Networks
(CNNs), architectures specialised in visual related tasks.

In general, the optimisation of DNNs or CNNs can be
performed at three different levels: architecture, parameters
(connection weights and bias) and hyperparameters, such as
activation function or the batch size. This configures a large
space of possibilities, particularly complex in the case of
Convolutional Neural Networks. These models involve multi-
layered architectures each with its own hyperparameters and
parameters and a large number of neurons in the last lay-
ers. While the definition of the parameters (the connection
weights) during the training process is typically performed
using a backpropagation algorithm, the architecture and the
hyperparameters are fixed by hand, either based on a trial
and error process or based on previous experience. Several
approaches have been followed to improve this process, many
of them relying on evolutionary computation. However, new
features and specifications, as well as an increased complexity,
require from new specialised methods.

In swallow artificial neural networks, it is usually necessary
to train and evaluate the network multiple times to find a
suitable architecture and set of hyperparameters and to account
for random initial weights. Currently, hyperparameter search
is often conducted via rules of thumb and general guidelines,
coupled with manual experiments [1], but it remains as a
major challenge when working with CNNs and DNNs [2],
[3]. Additionally, the optimal set of hyperparameter values
changes during the training process (i.e. the learning rate

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

is reduced), which calls for a dynamic optimisation [4].
Therefore, the design of CNNs architectures can be expressed
as a hyperparameter optimisation problem [5], [6], in which
the number of layers, neurons or strides, among others, can be
optimised using techniques such as evolutionary algorithms [2]
or particle swarm optimisation [7], among others.

One of the biggest challenges to face lies in the long
time necessary to evaluate a given CNN configuration, as it
implies to train the whole model. This is especially the case
of deep models with a potentially high number of filters on
each convolutional layer. Therefore, the automatic design of
CNN architectures has recently become a relevant research
topic, exploring the use of evolutionary algorithms for the
design of CNNs [8]. On the other hand, the performance
of many contemporary machine learning algorithms depends
crucially on the specific initialisation of the hyperparame-
ters [6]. Learning algorithms in CNNs require the practitioner
to manually set the values of many hyperparameters such
as the general architecture, the learning rate, regularisation
parameters, batch size, a fraction of units to drop in the
dropout layers, the number of filters or the stride size in the
convolutional layers, to name a few. In order to assess the
performance of a particular configuration, the model featuring
that configuration has to be trained and evaluated. However, in
CNNs, the training of a model can take a considerable amount
of time and the search space is often very high-dimensional.

As an example of the above, the architecture of the CNN
model used in Simonyan, K. and Zisserman [9] is associated
with filters with a very small receptive field: 3×3, but in one of
the configurations they also use 1× 1 convolution filters. The
convolution stride is fixed to 1 pixel and the spatial padding is
1 pixel for 3×3 conv. layers. Spatial pooling is carried out by
five max-pooling layers (performed over a 2×2 pixel window,
with stride 2), but not all the convolutional layers are followed
by max-pooling. The determination of these hyperparameters
is tedious but finding a near optimal combination is crucial in
order to reach high performance levels.

In this paper, we propose SCRODeep, a self-adaptive algo-
rithm for hyperparameter optimisation of convolutional neural
networks, but which can be easily extended in order to deal
with other architectures such as Recurrent Neural Networks.
SCRODeep is based on a statistically-driven coral reef optimi-
sation algorithm [10], a individual codification which encodes
the hyperparameters and network structure of a deep learning
model, a set of specifically designed reproduction and mutation
operators and finite state machine, in charge of establishing
valid transitions between layers and that allow to build feasible
learning models. The self-parametrisation ability of the SCRO
metaheuristic allows to avoid the necessity of fixing additional
hyperparameters.

Finally, this paper is organised in the following sections:
Section II introduces the background of the problem while
Section III presents SCRODeep. Section IV deals with the
experimental setup and the obtained results. Finally, Section V
enumerates the conclusions drawn and also potential future
work lines.

II. BACKGROUND

According to the first authors referring to the concept of
Artificial neural networks (ANNs), they are a computational
model vaguely inspired on biological neurons [11]. Since their
origin, ANNs have been used to solve a wide range of different
problems, including control systems [12], classification [13],
face recognition [14] and finance [15]. Due to the progress
on computational capabilities, there was a natural transition
to larger number of neurons and more complex architectures
in the 90s with the emergence of DNNs [16] and specific
architectures such as CNNs

As with ANNs, this computing model is very popular in
a wide range of scientific fields, mainly motivated by the
good results this model is able to achieve as well as due
the large number of frameworks and programming libraries
that can be found to develop DNNs. Frameworks such as
Tensorflow [17] and PyTorch [18], to name a few, have
contributed to the rise of these models by making the task
easier for developers and scientists. One of the fields that has
benefited most from deep networks has been computer vision
and image recognition [19], [20]. Within this scope, images
pass through multiple layers that form a deep architecture in
order to extract features from the image and classify them.
Other examples of the dominance of deep networks include
time-series forecasting [21], video recognition [22], malware
detection and classification [23], and audio recognition [24].

Regardless of the domain in which they are used, one of the
most critical moments when configuring and designing a deep
neural network is to properly select the hyperparameters and
architecture of the network. While this task is often performed
by hand following a trial and error scheme, a plausible alter-
native is to use meta-heuristics and bio-inspired algorithms to
make optimal parameter selection. For example, Xin Yao [25]
studied the application of evolutionary computing for this
purpose, coming to the conclusion that these techniques can
be applied in the different phases that comprise the training
of an artificial neural network: synaptic weights, architecture
and learning rules.

Many approaches can be found in the literature when
dealing with the tuning of both the architecture and parameters
of classical neural networks [26]. For instance, the approach by
[27] includes the definition of the architecture altogether with
the adaptation of the weights. Moreover, the problem should
be formulated so it can be solved by means of evolutionary
algorithms, in which the number of neurons is included within
the individual of the population [28]. Keeping with the evolu-
tionary algorithms, [29] presented a hyper-heuristic approach
based on evolutionary algorithms to adjust the polynomial type
of the layers, the number of nodes on each, and the number
of layers in the architecture. This type of methods has also
been used to boost the performance [30] as well as including
connection weights in the evolutionary search [31].

EvoDeep [32] is a method devoted to evolve the hyper-
parameters and the architecture of a Convolutional Neural
Network in order to maximise its classification accuracy, as

well as maintaining a valid sequence of layers. Its core is
an evolutionary algorithm whose population is composed of
individuals that encode not only the hyperparameters of the
CNN, but also the sequence of layers as well as their hy-
perparameters. Furthermore, the algorithm included a Finite-
State Machine to ensure that all the architectures generated are
valid sequences of layers, as they have restrictions on their
inputs and outputs types. The experimental results showed
that EvoDeep was able to build valid CNNs architectures
that, in turn, achieved good accuracy when using a dataset
of handwritten images. However, EvoDeep also requires the
adjustment of different hyperparameters of the evolutionary
algorithm (such as the mutation and crossover probabilities),
which can difficult its application.

In this paper, we present a novel method for the optimisation
of the hyperparameters and network structure of Convolutional
Neural Networks by leveraging a statistically-driven CRO
(SCRO) [10] algorithm. This approach includes a self-adaptive
fine-tuning of the hyperparameters of the evolutionary process
in order to automate the whole optimisation process.

III. SCRODEEP: CONVOLUTIONAL NEURAL NETWORKS
PARAMETRISATION USING A STATISTICALLY-DRIVEN

CORAL REEF OPTIMISATION ALGORITHM

The strengths of Deep Learning (DL) models are offset
by their inherent intricacy and variable architecture. While
training a traditional machine learning algorithm, such as the
popular Random Forest, is a simple and direct task, in which
normally just the number of trees has to be tweaked, DL
necessitates an architecture which typically relies on different
particularities of the problem. For instance, DL applied to
computer vision includes the specification of many layers in
a stipulated order accountable for the assessment of multiple
data alterations.

This architecture consists of many layers distributed to
characterise the non-linear relationships that resolve a specific
problem. Each layer has an undefined number of neurons,
outputs, and distinct methods both for initialisation and ac-
tivation. These hyperparameters must be set up prior to the
training process of the neural network, thereby creating a large
search space with the optimal combination of settings that are
unknown and dependent on the problem.

There are various restrictions on the design of a multi-layer
architecture. For instance, a specific layer’s input form has to
match the previous layer’s output. This might occur when a
layer expects an input vector (i.e. a fully connected layer) to
restrict the preceding layers. In this instance, a reshape layer
can not be left of a fully connected layer as it always delivers
an output of at least 2 dimensions. The parametrization of each
additional layer of the model, which must also fulfil certain
properties, is another restriction to take into consideration.

Hyperparameters and architectures in neural networks form
a broad search area in which many configurations are defined.
Since maximising the network accuracy in the performance
of a particular task is expected, the selection of the correct
configuration can be seen as an optimisation process. An

evolutionary algorithm was used in this paper to perform a
meta-heuristic search in order to reach a configuration, which
maximises precise classification.

A. General description of the SCRO algorithm

The SCRO metaheuristic [10] is a modification of the origi-
nal Coral Reef Optimisation (CRO) approach [33], [34]. CRO
simulates the process of coral reproduction (where sexual and
asexual reproduction operators are considered) and the coral
reef formation (where corals fight for space). These operators
are executed in a loop until a stopping criterion is reached.
The SCRO version of this algorithm includes a statistically-
driven parametrisation in order to avoid the manual adjustment
of the different hyperparameters involved in the evolutionary
process.

The main steps of SCRO are included in Algorithm 1, which
will be described in the following subsections. Moreover, the
specific adaptations of SCRO for dealing with the configura-
tion of CNN training are included in sections III-B and III-E.

Algorithm 1 Statistical coral reef optimisation algorithm

Input: Dataset.
Output: CNN.

1: Initialization of the algorithm.
2: while not Stop Condition do
3: Asexual reproduction.
4: Sexual reproduction (external and internal).
5: Larvae settlement.
6: Evaluate the new population (coral reef).
7: Predation process.
8: end while
9: return Best solution.

In SCRO, the main ingredient is that the algorithm analyses
the fitness values in order to decide how the different operators
are applied, dynamically adapting the behaviour to the state
of the population and avoiding the adjustment of the hyperpa-
rameters in each optimisation problem. In this way, the quality
of a solution is given by f ∈ [0, 1]. The fitness of all corals
define the population state (potential solutions to the problem)
in the reef, {f1j , f2j , . . . , fNj}, where the population size is
Nj corals during the j-th generation of the algorithm. This is
assumed to be a random sample.

The main assumption is that the distribution of the fitness
is approximately Gaussian. In this way, the variance of the
population can be estimated as:

S2
fj =

∑Nj

i=1(fij − f̄j)
2

Nj − 1
, j = 1, . . . ,M, (1)

where fij is the fitness of the i-th individual in the j-
th generation, Nj is the number of individuals of the j-th
generation, and f̄ =

∑Nj

i=1 fij/Nj is the average fitness value
of all the individuals of the generation.

...L
1

iBiOi L
2

i
L

n
i

L
j

i

Individual

Opti
mise

r

Batc
h s

ize

La
ye

r 1

La
ye

r 2

La
ye

r n...

A
j

iKI
j

i U
j

iLT
j

i
Dense

La
ye

r ty
pe

Kern
el

init
iali

se
r

Activ
ati

on

fun
ctio

n

No.
un

its

Convolution2D A
j

iKI
j

i KS
j

iLT
j

i

Kern
el

init
iali

se
r

Activ
ati

on

fun
ctio

n
Kern

el

siz
e

La
ye

r ty
pe

F
j

i

No.

filte
rs

MaxPooling2D S
j

iPS
j

iLT
j

i

Poo
l

siz
e

Strid
es

La
ye

r ty
pe

Reshape LT
j

i

La
ye

r ty
pe

Flatten LT
j

i

La
ye

r ty
pe

Dropout LT
j

i

La
ye

r ty
pe

P
j

i

Rate

Fig. 1: Encoding of the individual, including the different
hyperparameters and layer types.

B. Coral Encoding and fitness function

According to our approach, the corals must represent all the
required hyperparameters to train a CNN (see Fig. 1). Hence,
the individuals of SCRODeep are composed of an array of
global hyperparameters that encode the network’s common
behaviour, and an arbitrary number of layers that make up the
network’s architecture. Each of the latter can be of a different
kind, which also fixes its hyperparameters. In other words,
each layer’s hyperparameters are defined by its layer type (see
Fig. 1).

Regarding the former, there is a global operator Oi that
specifies which of the six optimisers is used. The global
operator Bi represents how many samples the neural network
receives at a time, updating its weights accordingly. Note that
a dynamic stopping criterion has been applied, in a way that
the training process stops if the best accuracy obtained is not
improved over a fixed number of iterations.

The fitness function is calculated according to the final
performance, in terms of accuracy in this research, of training
the CNN model encoded by one specific individual.

C. Evolutionary operators

The evolutionary process performed by the SCRO meta-
heuristics makes use of different operators in order to evolve
the population iteratively. Below there is a summary of these
operations:

1) Initialisation of the algorithm: After generating N ran-
dom solutions to the problem, those corals whose fitness
verifies Equation 2 are deleted.

fi1 6∈ (f̄1 − Sf1 , 1] (2)

2) Asexual reproduction: Asexual reproduction is based on
two consecutive processes: fragmentation (caused by external
agents) and budding. For the former, the candidate corals are
those whose fitness value satisfies:

fij ∈ (f̄j + Sfj , 1]. (3)

After that, a coral is randomly selected from the candidates
and, finally, a mutation is applied to it.

3) Sexual reproduction: SCRO considers two types of
sexual reproduction:

1) External sexual reproduction is similar to a crossover
operator in an evolutionary algorithm. In SCRO, the
algorithm uses those corals whose fitness verifies:

fij ∈ (f̄j − Sfj , 1]. (4)

2) Internal sexual reproduction, which applies a random
mutation to the rest of corals, i.e.:

fij ∈ [0, f̄j − Sfj]. (5)

4) Settlement: The next stage is that the newly generated
corals try to settle and grow in the reef. The process is based
on trying to accommodate the coral in a random position of
the reef. If the position is empty, the coral is automatically
settled. If not, the coral is settled provided that its fitness is
better. The process is repeated until two attempts.

5) Depredation: After settlement is made, those individuals
whose fitness function verifies:

fij ∈ [0, f̄j − 2Sfj], (6)

are eliminated.

D. Operators to evolve CNN architectures

Due to the particularities that CNN architectures entail
and due to the designed encoding of the individuals, it has
been necessary to develop specific mutational operators which
provide valid individuals who can train varied network models.
The operators employed in EVODeep have been adapted
in this case to be part of the SCRO algorithm used. It is
noteworthy that the operators functions at two levels: global
hyperparameters and layer levels. The reason is the encoding
of the individuals, which can be made of a varied number
of layers with different hyperparameters each, depending on
their type. Following is the description of both the mutation
and recombination operators.

1) Mutation: As it has been mentioned, mutation works at
the two levels: global hyperparameters and layers. At the first,
every individual’s global hyperparameter changes according to
a consistent approach, in which each value resets to a random
value with probability p = 0.5 (provided the global probability
of mutation is fulfilled). The new random value is created
based on the range of values and the list of possible values
in the case of numerical and categorical hyperparameters,
respectively.

With respect to layers, the mutation performs as follows:
1) A random point of insertion between two consecutive

layers is selected.
2) The operator inserts a valid sequence of n layers,

with n = {1, 2, 3} and uniformly selected at random,
provided the length of the final sequence of layers does
not exceed the maximum number of layers.

3) Every hyperparameter for each layer is mutated in a
similar way as the global hyperparameters, that is, values
are reset to a random value with a certain probability.

2) Recombination: The recombination, again, works at two
levels: global and layers. At the global level, individuals are
recombined following a uniform crossover. That is, hyperpa-
rameters are swapped pairwise with a probability of p = 0.5.
On the other hand, layers are recombined following a cut-and-
splice approach that works as follows: it randomly selects two
points p1 and p2 that fulfil these conditions:
• 1 < p1 < n and 1 < p2 < m, with n and m are the

number of layers of each individual, so the first and last
layer are always located in the correct place

• The sequence of layers is still valid after swapping parts
• The maximum number of layers is not exceeded after

swapping
Finally, it is necessary to perform a recombination of

the internal hyperparameters of the layers, as they are left
untouched with the aforementioned mechanism. In this case, it
applies a layer level crossover that works as follows: beginning
with the first layer, two hyperparameters pi and p′j from two
layers Ll and L′l placed in the same position l are swapped
until the penultimate layer of the shortest individual is reached.
The last layer of each individual is also crossed, as they always
share the same layer type.

E. Restricting the algorithm: building a valid sequences of
layers

Similarly to EVODeep, all possible transitions between
layers are modelled through a Finite-State Machine (FSM).
When individuals are crossed and mutated, the FSM is used
to avoid invalid structures or to incorporate new consistent
layers. In addition, this FSM is also employed to generate all
possible paths with a minimum and a maximum length, from
which one is selected randomly in order to initialise the first
population.

IV. EXPERIMENTS

A series of experiments allow to test SCRODeep, proving
its ability to automatically adjust both the hyperparameters

Parameter Range of values

Kernel initializer KIi

Uniform, LeCun uniform, Normal, Zero,
Glorot normal, Glorot uniform, He normal,
He uniform

Activation function Ai
ReLU, Softmax, Softplus, Softsign, Tanh,
Sigmoid, Hard sigmoid, Linear

Units Ui {10, 20, 30, ..., 500}
Rate (dropout) Pi {0.1, 0.2, 0.3, ..., 0.8}
No. filters Fi {5, 10, 15, ..., 50}
Kernel size KSi {3, 5, 7, ..., 15}
Pool size PSi {2, 3, 4, 5, 6}
Strides Si {2, 3, 4, 5, 6}

Optimizer Oi
Adam, SGD, RMSProp, Adagrad
Adamax, Nadam

Batch size Bi {100, 200, 300, ..., 1000}
No. layers N {3, 4, 5, ..., 9}

TABLE I: Range of values for each hyperparameter involved
in the heuristic search. Layer level and global hyperparameters
are shown in the table.

and architecture of a Convolutional Neural Network model.
Furthermore, the statistically-driven approach allows to leave
the whole workflow process in hands of the algorithm. The
following subsections describe the dataset used in the experi-
ments, the experimental settings and the results obtained.

A. Dataset

The well known MNIST dataset [35] was used to run
the experiments. The reasons under this decision lie in the
large number of methods proposed in the literature, which
allow to make an objective comparison of the results. More-
over, this dataset was also used for training and testing
EvoDeep [32], thus allowing to make a further comparison
against SCRODeep. The MNIST dataset comprises a database
of 60,000 training examples and 10,000 test examples of
handwritten digits represented with grey levels in 28x28 pixel
pictures.

B. Experimental setting

SCRODeep was run 30 times in order to obtain a repre-
sentative number of solutions to fairly evaluate the proposed
method. While the heuristic search is in charge of automati-
cally providing the relation of hyperparameters and network
architecture which maximises the result of the model in terms
of accuracy, it is required to provide a range of values for
each hyperparameter involved in order to narrow the search
space, thus avoiding to reach values which can be excluded in
advance and to limit the time involved in performing a whole
execution of the search algorithm.

Table I provides a summary of the range of values tested
for each hyperparameter of the different layers considered and
also of the global hyperparameters. In the first case, different
kernel initialisers, activation functions, number of units or
number of filters are some of the hyperparameters for which
different values are explored during search process. In the case
of the global hyperparameters, different optimisers, batch sizes
(restricted to a maximum of 1,000 due to memory limitations)
and size of the network in terms of number of layers. In the

●

●

●

●

●

●
● ●

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

No. generation

P
o
p
u
la

ti
o
n
 f
it
n
e
s
s

Data split ●●● Test Training Validation

Fig. 2: Fitness evolution over generations for the three data
splits for all executions performed.

case of the number of epochs, a stop criteria was set in order
to stop the training step when validation accuracy did not
improve in the last 10 epochs, establishing a maximum of 100
epochs. In general, a wide range of values was established for
each hyperparameter, attempting not to limit the spectrum of
feasible solution to deal with the issue at hand.

For the evaluation, the MNIST dataset was split into two
slices, providing 50% of the examples for training and 50%
for testing purposes. A further division was applied to the
training dataset, allocating 10% of this batch of instances to a
validation set. This last set of instances serves as an external
measure of the quality of a particular coral or model, and it
is used as the fitness function.

Regarding the SCRO parametrisation, although all hyper-
parameters are statistically settled, the reef size requires to be
manually fixed. In these experiments it was to 6×6, a sufficient
size for the algorithm to give an answer in a decent time. In
other words, the size of the reef has been fixed by seeking a
solution that is a compromise between computing speed and
the quality of the individuals. Nevertheless, greater values can
be considered if necessary.

C. Results

SCRODeep seeks to obtain the hyperparameters of a Con-
volutional Neural Network model. In this section, the results
obtained after executing this algorithm with the MNIST dataset
are described, showing how the approach proposed is able
to define the hyperparameters and sequence of layers which
maximise the performance of the model.

First of all, the use of the validation set was evaluated
in order to check if it is a valid procedure to guide the
heuristic search and if the results obtained in this portion can
be extrapolated to the test set. Figure 2 includes the mean
fitness value of the reef resulted at each generation for the three

●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ●

●

●

● ●

●
●

●
● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●
● ● ● ● ● ● ●

●

●

●

●

●
● ● ●

● ●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●
● ●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●
● ●

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

No. generation

P
o

p
u

la
ti
o

n
 m

e
a

n
 f

it
n

e
s
s
 (

te
s
t)

Fig. 3: Fitness evolution over generation in the test split
showing data of all execution run.

data splits. They show a very similar trend, almost identical
in the case of the accuracy achieved in the test and validation
sets. This evidences that the validation set used constitutes a
useful and also unbiased tool for guiding the heuristic search
towards strong models able to achieve high accuracy values.

All executions performed are represented in Fig. 3. In
this plot it is possible to observe that just 6 generations are
sufficient to converge a population with an average accuracy
(in the test set) of more than 92%. From this point, the
accuracy slightly improves towards 99%. Similarly, Fig. 4
represents the accuracy in the test dataset in a box plot, which
allows to better appreciate the distribution of solutions as the
search process progresses. The first three generations introduce
a wide variety of individuals into the reef, showing high
deviation levels, and where a considerable amount of solutions
is not able to achieve good accuracy levels. From this point,
diversity, in terms of accuracy levels, is reduced and the whole
reef is composed by accurate solutions successfully improved
in the following iterations.

The search for new and improved solutions is also expected
to increase their complexity, thus increasing the time needed to
evaluate the new generated individuals at each successive gen-
eration. SCRODeep performs an incremental search procedure,
starting with solutions of low complexity whose evaluation
takes a short period of time. In following generations, the
operators allow to increase the complexity of the solutions
(i.e. increasing the number of layers) in a controlled manner.
Solutions reaching a counterproductive complexity showing no
sign of improvement will be discarded, confining the heuristic
search process to avoid unnecessarily complex models.

The results obtained from the best execution (the one
reaching the highest value in the validation set) are shown in
Table II. SCRODeep reaches 98.36% accuracy on average and
98.67% in the best run. These values show an improvement if

Runs Measure Training Validation Test

SCRODeep 30
Min 99.82% 98.11% 98.11%

Mean 99.95% ± 0.06 98.38% ± 0.16 98.36% ± 0.15
Max 100% 98.59% 98.67%

EvoDeep 30
Min 99.20% 97.77% 97.56%

Mean 99.78% ± 0.21 98.26% ± 0.36 98.24% ± 0.37
Max 100.00% 98.71% 98.71%

TABLE II: Summary of the results obtained with SCRODeep considering the best individual obtained in terms of accuracy in
the validation set for each execution. The lower section allows to make a comparison against EvoDeep.

●

●

●

●

●● ●

●

●

●
●

●●● ●
●
●

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

No. generation

P
o

p
u

la
ti
o

n
 m

e
a

n
 f

it
n

e
s
s
 (

te
s
t)

Fig. 4: Fitness evolution over generations in the test split
grouped for all executions.

Fig. 5: Architecture and hyperparameters of the best individual
found.

compared to EvoDeep.
The variances obtained by SCRODeep are significantly

lower than those obtained by EvoDeep using a Levene test [36]
(p-value = 0.001, F = 14.873). As Correct Classification
Rates (CCR) for both EvoDeep and SCRODeep are not nor-
mal, we performed a Wald-Wolfowitz test [37] for small not-
normal samples with different variances and small differences
between average values. According to this test, there are
statistically significant differences (p-value = 0.038, Z =
−2.073) in the cumulative distributions of SCRODeep versus
EvoDeep. This result stresses the enhancement provided by
SCRODeep, automatically adjusting the hyperparameters and
layers without the need for defining a set of hyperparameters
of the metaheuristic.

Finally, Fig. 5 represents the structure of layers and hyper-
parameters of the best execution found in terms of accuracy
in the validation set. It is composed of two cycles of Con-
volution2D and MaxPooling2D, a flatten layer a final dense
layer of 10 units, directly connected to the outputs. At the
global hyperparameters level, a batch size of 300 instances
and the Adamax optimiser are used. In comparison with state-
of-the-art models using the same layer types, this architecture
is similar to LeNet-4 [35], although with some differences.
The accuracy achieved is also similar, since LeNet-4 performs
classification with 1.1 error rate.

V. CONCLUSIONS AND FUTURE WORKS

Deep learning has been assumed as a powerful tool able to
deal with varied, complex and large problems. The wide range
of techniques falling into this scope have allowed to address
issues with precise and effective models. Nevertheless, they
have a high degree of dependence with the particular problem
definition. Thus, there is a plethora of architectures which
have proven to be successful in specific domains. The design
of the structure or hyperparameters of these models is not a
trivial exercise. SCRODeep aims to address the task in which
these factors are decided by performing a metaheuristic search
where individuals represents potentials sets of hyperparameters
and network structure seeking to maximise the accuracy of the
model. The method proposed improves a previously presented
method, called EvoDeep, by automating the whole search
process eliminating the need for adjusting hyperparameters
of the search algorithm itself. By using a statistically-driven
version of a Coral Reef Optimisation algorithm, SCRODeep
allows to automatically define the most proper model to use.
The experiments show that the approach proposed is able to

provide competitive models able to reach high accuracy rates
with statistical difference. In future work, we aim to enhance
the possibilities of SCRODeep by including new layers able
to deal with more complex problems and also to implement
techniques able to reduce the number of evaluations, given
that this is the most computationally expensive element in the
algorithm.

ACKNOWLEDGMENT

This work has been co-funded by the following grants: Co-
munidad Autónoma de Madrid under grant S2018/TCS-4566
(CYNAMON: Cybersecurity, Network Analysis and Moni-
toring for the Next Generation Internet); Spanish Ministry
of Science and Education and Competitivity (MINECO) and
European Regional Development Fund (FEDER) under grants
TIN2017-85727-C4-3-P (DeepBio), TIN2017-85887-C2-1-P
and TIN2017-90567-REDT and Consejerı́a de Economı́a,
Conocimiento, Empresas y Universidad of the Junta de An-
dalucı́a (Spain) under grant UCO-1261651.

REFERENCES

[1] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2011,
pp. 2546–2554.

[2] I. Loshchilov and F. Hutter, “Cma-es for hyperparameter optimization
of deep neural networks,” arXiv preprint arXiv:1604.07269, 2016.

[3] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter, “To-
wards automatically-tuned neural networks,” in Workshop on Automatic
Machine Learning, 2016, pp. 58–65.

[4] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv preprint
arXiv:1711.09846, 2017.

[5] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[6] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vi-
sion architectures,” in Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ser.
ICML’13. JMLR.org, 2013, p. I–115–I–123.

[7] F. Ye, “Particle swarm optimization-based automatic parameter selection
for deep neural networks and its applications in large-scale and high-
dimensional data,” PLOS ONE, vol. 12, no. 12, p. e0188746, dec 2017.

[8] T. Hinz, N. Navarro-Guerrero, S. Magg, and S. Wermter, “Speeding up
the hyperparameter optimization of deep convolutional neural networks,”
International Journal of Computational Intelligence and Applications,
vol. 17, no. 02, p. 1850008, 2018.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[10] A. M. Durán-Rosal, P. A. Gutiérrez, S. Salcedo-Sanz, and C. Hervás-
Martı́nez, “A statistically-driven coral reef optimization algorithm for
optimal size reduction of time series,” Applied Soft Computing, vol. 63,
pp. 139–153, 2018.

[11] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, Dec 1943.

[12] K. Hunt, D. Sbarbaro, R. Żbikowski, and P. Gawthrop, “Neural networks
for control systems—a survey,” Automatica, vol. 28, no. 6, pp. 1083 –
1112, 1992.

[13] G. P. Zhang, “Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 30, no. 4, pp. 451–462, Nov 2000.

[14] E. Hjelmås and B. K. Low, “Face detection: A survey,” Computer Vision
and Image Understanding, vol. 83, no. 3, pp. 236–274, 2001.

[15] A. Bahrammirzaee, “A comparative survey of artificial intelligence
applications in finance: artificial neural networks, expert system and
hybrid intelligent systems,” Neural Computing and Applications, vol. 19,
no. 8, pp. 1165–1195, Nov 2010.

[16] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[18] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch,” 2017.
[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for

image recognition,” in IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[21] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
Joint Conference on Neural Networks (IJCNN), May 2017, pp. 1578–
1585.

[22] T. Afouras, J. S. Chung, A. Senior, O. Vinyals, and A. Zisserman, “Deep
audio-visual speech recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, pp. 1–11, 2018.

[23] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware char-
acterization and detection using deep learning,” Tsinghua Science and
Technology, vol. 21, no. 1, pp. 114–123, Feb 2016.

[24] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke, “The
microsoft 2017 conversational speech recognition system,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2018, pp. 5934–5938.

[25] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, Sep. 1999.

[26] M. Srinivas and L. Patnaik, “Learning neural network weights using
genetic algorithms-improving performance by search-space reduction,”
in Neural Networks, 1991. 1991 IEEE International Joint Conference
on. IEEE, 1991, pp. 2331–2336.

[27] J. R. Koza and J. P. Rice, “Genetic generation of both the weights and
architecture for a neural network,” in Neural Networks, 1991., IJCNN-
91-Seattle International Joint Conference on, vol. 2. IEEE, 1991, pp.
397–404.

[28] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-S. Tam, “Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,” IEEE Transactions on Neural networks, vol. 14, no. 1, pp.
79–88, 2003.

[29] J. Gascón-Moreno, S. Salcedo-Sanz, B. Saavedra-Moreno, L. Carro-
Calvo, and A. Portilla-Figueras, “An evolutionary-based hyper-heuristic
approach for optimal construction of group method of data handling
networks,” Information Sciences, vol. 247, pp. 94–108, 2013.

[30] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,” IEEE transactions on neural networks, vol. 8, no. 3,
pp. 694–713, 1997.

[31] A. Abraham, “Meta learning evolutionary artificial neural networks,”
Neurocomputing, vol. 56, pp. 1–38, 2004.

[32] A. Martı́n, R. Lara-Cabrera, F. Fuentes-Hurtado, V. Naranjo, and D. Ca-
macho, “EvoDeep: A new evolutionary approach for automatic deep
neural networks parametrisation,” Journal of Parallel and Distributed
Computing, vol. 117, pp. 180 – 191, 2018.

[33] S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, and
A. Portilla-Figueras, “The coral reefs optimization algorithm: an efficient
meta-heuristic for solving hard optimization problems,” in Proceedings
of the 15th International Conference on Applied Stochastic Models and
Data Analysis (ASMDA2013), Mataró, 2013, pp. 751–758.

[34] S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, and
J. Portilla-Figueras, “The coral reefs optimization algorithm: a novel
metaheuristic for efficiently solving optimization problems,” The Scien-
tific World Journal, vol. 2014, 2014.

[35] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[36] H. Levene, “Robust tests for equality of variances,” Contributions to
probability and statistics. Essays in honor of Harold Hotelling, pp. 279–
292, 1961.

[37] R. C. Magel and S. H. Wibowo, “Comparing the powers of the wald-
wolfowitz and kolmogorov-smirnov tests,” Biometrical Journal, vol. 39,
no. 6, pp. 665–675, 1997.

