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Abstract—Mobile agent path planning (MAPP) problem is a
typical optimization problem. When we consider multiple agents
path planning simultaneously, problems can be seen as multi-task
optimization (MTO) problems. The Multi-factorial evolutionary
algorithm (MFEA) is one promising technique for MTO prob-
lems. Within the MFEA some selective individuals that contain
useful knowledge are transferred among independent tasks to
enhance the convergence. In this work, we investigate what infor-
mation, except to the selective individuals, should be transferred
under the framework of the MFEA. In particular, the difference
between the individuals and the estimated optimal solution of
the corresponding task is used to calculate individual gradient
(IG), which is introduced into the MFEA as additional knowledge
for transferring. Empirical studies on nine benchmarks validate
the effectiveness of IG based MFEA (MFEA-IG). Moreover, we
apply the MFEA-IG to MAPP problems. Simulation results show
that the MFEA-IG outperforms the original MFEA and single
task EA.

Index Terms—multiple agents path planning, multi-task opti-
mization, MFEA, knowledge transfer

I. INTRODUCTION

Path planning is a fairly important technology for mobile
agents. Existing path planning methods can be categorized into
two categories [1]: classical and heuristic. Since the heuristic
method is effective and efficient, it has attracted plenty of
research interest. The researches that are part to the heuristic
method include particle swarm optimization (PSO) [2], [3],
ant colony optimization (ACO) [4], simulated annealing [5],
etc. Genetic algorithm (GA) is one of the heuristic methods
inspired by the process of natural selection. Due to its fast
convergence, GA has been widely used to solve path planning
problems. Farshchi et al. [6] and Karami et al. [7] applied GA
to the dynamic environments for mobile robot path planning.
Roberge et al. [8] used GA and PSO concurrently for the
unmanned aerial vehicles (UAVs) path planning in a complex
3D environment, it shows that GA converges to the optimal
solution faster than PSO.

Plenty of works have been done on path planning problems
for single agent, but when multiple agents are considered, the
problem becomes challenging. Wu et al. [9] proposed a GA-
based algorithm to allocate multiple waypoints to multiple

This work has been supported by National Science Foundation of China
(No. 61473233)

*Corresponding author

UAVs reasonably so that the total length of the path to
be the shortest. In order to solve the problem of multiple
agents colliding with obstacles or colliding with each other in
an obstacle environment, Chakraborty et al. [10] designed a
discrete motion planning frame, and use differential evolution
(DE) algorithm to get the optimal position in next several
time steps for multiple agents simultaneously. Trudeau et
al. [11] proposed a decentralized local genetic programming
(GP) approach to solve mobile agents path planning (MAPP)
problems. This approach firstly studied an effective motion
planning strategy for multiple agents using GP in a virtual
environment. Then this strategy was deployed to each agent
in the real environment. This GP-based approach shows robust
scalability when the number of agents increases.

In this work, we investigate MAPP problems that can
be solved in a multi-task manner. Specifically, MAPP is
conducted for independent agents in a conjoint scene or for
agents in separate scenes, which leads to the investigation of
effective algorithms for multi-task optimization (MTO) prob-
lems. Multi-task Bayesian optimization [12] is a pioneer MTO
paradigm algorithm. However, in recent years, evolutionary
MTO (EMTO) has gained more attention. EMTO was first
proposed in [13], which called multi-factorial evolutionary
algorithm (MFEA). Based on evolutionary algorithm, implicit
knowledge transfer technology is applied in MFEA to enhance
the convergence of multiple tasks simultaneously. Then this
framework was extended to multi-objective problems [14],
[15]. When problems have different optimal location or their
decision space have different dimensions, it is hard for MFEA
to convergence to the optimal. Ding et al. [16] proposed a
generalized multi-tasking algorithm based on MFEA to solve
these two issues and successfully applied it to expensive
problems. An explicit auto-encoding technology was used
in MTO framework in [17]. Compared with MFEA, this
algorithm could use multiple evolutionary search operators
from different optimization algorithms.

In MTO framework, positive knowledge transfer among
different tasks is the main motivation to improve the perfor-
mance of the algorithm, and negative knowledge transfer [18]
may lead to opposite results. In previous works, researchers
pay more attention to decrease negative transfer (or increase
positive transfer) [18], [19], make MTO more efficient with
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dynamic resource allocation strategy [20], etc. These algo-
rithms are all evolutionary algorithm based, and the knowledge
they transferred are all individual solutions, very few of which
discuss what other information can be transferred. Inspired by
this simple idea, we attempt to find a new kind of transferred
knowledge in this paper. In addition to the individual solution,
we use a kind of new knowledge, which is the difference
between individual solution and the estimated optimal solution
of its task as the additional knowledge to be transferred. And
then, we apply our proposed algorithm to solve the MAPP
problem.

The remainder of this paper is organized as follows. Section
II describes a method to model the workspace of mobile agents
and the evaluation function of the path. Then our proposed
algorithm is introduced in Section III. Two experiments are
designed to test the efficiency of our proposed algorithm in
Section IV. Finally, we conclude our work and discuss some
expectations of further research in Section V.

II. PROBLEM FORMULATION

For mobile agents path planning problems, we use the
same method to model each agent separately. Given a two
dimensional environment with some stationary obstacles, path
planning for mobile agents can be described as finding a set
of waypoints between the start point and goal point that agent
must pass through.
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Fig. 1. Modeling method of a path.

Fig. 1 shows a simple yet effective method [21] to model
the workspace of mobile agents. In the global coordinate, StP ,
GoP represent start point and goal point, respectively, and the
polygon areas represent the obstacles. As can be seen from
Fig. 1, a complete path can be expressed as

PATH = {StP, p1, p2, ..., pn, GoP} (1)

where pi(i = 1, 2, ..., n) is a waypoint of a path, and the path
composed of these waypoints should be obstacle-free.

Thus, a suitable set of waypoints could represent a suitable
path. Due to coordinates of waypoint pi in xoy is a two
dimensions data, it is pretty hard to find a suitable set of
waypoints. Taking StP−GoP as the x′ axis, and the direction

perpendicular to x′ and passing through StP as the y′ axis
to build a rotate coordinate x′ − StP − y′. Transformation
method between two coordinate systems is as follows:[

x
y

]
=

[
cosα −sinα
sinα cosα

]
×
[
x′

y′

]
+

[
xStP

yStP

]
(2)

α is the angle between axis x and x′. (xStP , yStP ) is the
coordinates of the start point StP in xoy.

Divide line StP − GoP into n + 1 parts equally. l1, ..., ln
are lines obtained by making a vertical line at each bisection
point. Waypoints p1, ...pn are obtained on each vertical line
l1, ..., ln. In coordinate system x′−StP−y′, the value of each
waypoint in axis x′ is constant. Then finding the suitable value
of each waypoint in axis y′ is same as finding a suitable path
for agent. It is quiet easy to find the suitable path compared
with it in xoy.

Length of the path can be calculated by the sum of the
Euclidean distance of each two waypoints, and it can be
described as follows:

Lpath = LStP,p1
+

n−1∑
i=1

Lpi,pi+1
+ Lpn,GoP (3)

Lpi,pi+1
is the length of two waypoints, it can be calculated

by the follow equation:

Lpi,pi+1 =
√

(xi+1 − xi)2 + (yi+1 − yi)2 (4)

(xi, yi) is the coordinate of point pi in xoy. A suitable path
for mobile agents should be obstacles free. For those paths
which cross over the obstacles, a penalty should be part of the
cost of paths:

Penalty = Nobs × Llong (5)

Nobs is the number of the path cross over obstacles. Llong is
the longest side of the workspace for agents. Then the cost of
path can be calculated by:

Cpath = Lpath + Penalty (6)

Now we can get a better path for mobile agents by optimizing
(6) .

III. ALGORITHM

A. Multi-factorial Evolutionary Algorithm

Multi-factorial evolutionary algorithm (MFEA) [13] is a
MTO paradigm method to solve multiple tasks with one pop-
ulation simultaneously. By sharing useful knowledge among
different tasks, MTO could have a better convergence to the
optimal. Suppose that k tasks are to be optimizing, and,
without loss of generality, the tasks are all single objective
and to be minimizing. Then a MTO paradigm could be de-
scribed as {x1, x2, ..., xk} = argmin(f1(x), f2(x), ..., fk(x)),
xi = (xi(1), xi(2), ..., xi(n)) is the solution of ith task, n
is the dimension of this task. With encoding all tasks to
a unfied space and decoding tasks to their specific space
when evaluating them, MFEA could have implicit knowledge
transfer [17] during its optimizing process. To evaluate each



individual in the population, some properties defined in MFEA
are as follows:

Definition 1 (factorial cost): Factorial cost is the evaluation
of all k tasks corresponding to an individual indi, each dimen-
sion represents the fitness of a task, so it is a k dimensions
vector.

Definition 2 (factorial rank): Factorial rank rij is the index
of individual indi in the population sorted in ascending order
with respect to their factorial costs on task j.

Definition 3 (skill factor): Skill factor τi of individual indi
is the index of the task whose factorial rank is smallest among
all tasks.

Definition 4 (scalar fitness): Scalar fitness ϕi of individual
indi is calculated by ϕi = 1/τi.

B. MFEA-IG

Though many researchers focus on promoting the perfor-
mance of EMTO, very few have studied what other knowledge
but the individual solution can be transferred among different
tasks. In this section, we use MFEA as the basic algorithm and
discuss a new kind of knowledge named individual gradient
as the additional transferred knowledge.

Applying useful knowledge transfer among different tasks,
EMTO can get better performance than single task opti-
mization. Considering this useful knowledge as reflecting
some characteristics of the original task, there must be other
knowledge we could use besides the individual solution. We
utilize the estimate optimal solution xiesti of the i-th task and
individual solution xik to calculate individual gradient.

Definition 5 (individual gradient): Individual gradient
individual gradk is the distance with direction between
individual k and the estimate optimal solution with respect
to task τi

Algorithm 1 shows the structure of our proposed algorithm
indiviudal gradient based MFEA (MFEA-IG). Following
the basic algorithm MFEA, we first initialized N individuals
randomly in the unified space [0,1] and named them as
parent pop. From lines 2 to 5, we assign the skill factor
to each individual and evaluate them with respect to the
corresponding task. Line 8-30 shows the main process of
MFEA-IG. Every GEN TRANS generations we use our
proposed method to compute the individual gradi of each
individual indi, which is introduced in algorithm 2. It is
the same as the original MFEA from line 12 to 29. The
basic GA operators crossover and inherited are used to
generate the offspring population in a multitask paradigm.
Implicit knowledge transfer occurs during these process. We
use NormalDistribution as the basic mutate operator, and
set individual gradi instead of 0 as the mean value for the
distribution to utilize this knowledge. Then we combine the
offspring population and parent population to form the
inter population and use a selection method to select N
fittest individuals to form the new parent population.

Algorithm 2 shows the detailed process of calcu-
lating individual gradient. We estimate the optimal

Algorithm 1 Pseudo-code of the MFEA-IG

1: Randomly initialize N individuals and store them to
parent pop

2: for each individual indi in parent pop do
3: Assign skill factor τi=mod(i,K)+1, for the case of K

tasks.
4: Only evaluate indi for task τi .
5: end for
6: Set gen = 1
7: Set GEN TRANS
8: while gen < GENERATION do
9: if gen % GEN TRANS == 0 then

10: compute individual gradi of each individual indi
11: end if
12: offspring pop=φ
13: for i=1:[N/2] do
14: Pick two individual indi, indN/2+i from parent pop
15: if rand(0,1)< rmp or τi == τN/2+1 then
16: o1, o2 = Crossover(indi, indN/2+i)
17: Assign offspring o1, o2 skill factor τi or τN/2+1

randomly
18: else
19: o1=NormalDistribution(gradi, sigma)
20: o2=NormalDistribution(gradN/2+i, sigma)
21: τo1 , τo1 = τi, τN/2+1

22: end if
23: offspring pop = offspring pop

⋃
[o1, o2]

24: end for
25: Evaluate each individual in offspring pop only for

their assigned skill factors.
26: inter pop = offspring pop

⋃
parent pop

27: Update the scalar fitness and skill factor of every
individual in inter pop

28: Select the fittest N individuals from inter pop to form
the new parent pop

29: gen=gen+1
30: end while

EstiOptimali of the i-th task by the following equation,

EstiOptimali =

EstiNum∑
k=1

Fittestik/EstiNum (7)

EstiNum is the number of individuals we use to estimate
the optimal of tasks. Fittesti is the fittest solution for the i-
th task sorted by ascending order. We use shifting rate in
the range of [0,1] to degree of individual gradk.

IV. SIMULATION ANALYSIS

In this section, we first evaluate the performance of our
proposed algorithm compared with the original MFEA both
on nine single objective MTO benchmarks [22]. Similarity
and intersection are used to described the characteristics of
these benchmarks to verify how these characteristics affect
the effectiveness of the algorithm. Then we applied MFEA-
IG to MAPP and compared with the MFEA and single



Algorithm 2 Process of calculating individual gradient

Input: parent pop, Tasks
Output: updated parent pop

1: num of task = length(Tasks)
2: Set EstiNum
3: Set shifting rate
4: for i=[1:num of task] do
5: Calculate the estimated optimal EstiOptimali of the

i-th task according to Equation 7
6: for each indk in parentpop do
7: if skill factor of indk is i then
8: individual gradk=shifting rate*(EstiOptimali-

xk)
9: end if

10: end for
11: end for

task evolutionary algorithm (STEA). SBX for crossover and
Gaussian mutation are employed to the three algorithms.

A. Empirical studies on benchmark functions

We first compare our algorithm with the original MFEA on
nine benchmarks. The parameters setting for two algorithms
are as follows: the population size N=50, the number of iter-
ation GENERATION = 100, the parameter rmp is set as
0.3. The parameter EstiNum is set as 5 and shifting rate
is set as 0.3 for MFEA-IG. The number of independent runs is
set as 20. Table I shows the mean value of the final generation
of 20 runs for each task. We use the Wilcoxon rank sum test
with 95% confidence level to check the performance of two
algorithms, and the better results are the highlight in bold.
As can be seen from Table I, MFEA-IG performs better than
MFEA on 5 out of 18 tasks. It is clear that the use of additional
knowledge can improve the effectiveness of MFEA-IG.

TABLE I
Performance on nine benchmark functions

Benchmark Task MFEA MFEA-IG

f1 Griewank 0 0
Rastrigin 0 0

f2 Ackley 4.92 4.75
Rastrigin 126.84 106.31

f3 Ackley 19.99 19.99
Schwefel 6499.86 6190.88

f4 Rastrigin 310.35 283.27
Sphere 5.25E-13 5.19E-13

f5 Ackley 1.68 1.34
Rosenbrock 23.12 27.73

f6 Ackley 18.16 11.63
Weierstrass 24.41 14.69

f7 Rosenbrock 33.79 17.23
Rastrigin 3.63 0

f8 Griewank 1.11E-11 1.46E-11
Weierstrass 29.51 29.31

f9 Rastrigin 420.36 401.35
Schwefel 6859.64 6901.24

B. Applying to multiple agents path planning

In this section, we apply our proposed MFEA-IG to MAPP
and compared it with the classical MFEA and single task
evolutionary algorithm (STEA). We use the cost of path Cpath

as the fitness of the task and use the same parameters in
the following experiments: the population size N = 30, the
path is divided into 31 parts, which means the tasks are 30
dimensional, the number of iteration GENERATION = 30.
The parameter rmp is set as 0.3 for MFEA and MFEA-IG,
parameter EstiNum is set as 5 for MFEA-IG and parameter
shifting rate is set as 0.3 for MFEA-IG. The number of
independent runs is set as 20.

Different agents can work in the different workspace. As-
suming their workspaces have the same size of 100×100. The
first experiment tests two agents work in the same workspace,
and the second tests in the different workspace. Then we select
the median result of 20 independent runs from each algorithm
and display them in Fig. 2 and Fig. 3. Table II and Table III
show the mean value of the final generation of 20 runs for
each algorithm.

(1) Experiment 1
This experiment set multiple agents to work in the same

workspace, which includes 7 polygon obstacles. Assum-
ing the start and goal positions of the first agent are
(7.84,90.56), (76.58,40.12), and the second agent are (9.76,70),
(75.11,20.53).

TABLE II
Performance of three algorithms on

Experiment 1

Mean Values of Path Length
MFEA-IG MFEA STEA

path1 128.37 143.68 154.98
path2 116.48 132.68 136.82

(2) Experiment 2
The experiment 2 set multiple agents work in the different

workspace, which the first is the same as experiment 1, and the
second includes 5 polygon obstacles. Assuming the start and
goal positions of the first agent are (7.84,68.45), (76.58,70),
and the second agent are (7.65,44.45), (81.07,32.52). The
coordinates of the second workspace obstacles are as follows:

TABLE III
Performance of three algorithms on

Experiment 2

Mean Values of Path Length
MFEA-IG MFEA STEA

path1 122.91 137.38 154.03
path2 92.38 104.07 111.15

Table II and III demonstrate that MFEA-IG performs bet-
ter than the other two algorithms, which confirm that use
individual gradient as the additional transfer knowledge in
MFEA framework is capable of finding a better solution. The
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Fig. 2. MAPP in one workspace.

same conclusion also can be obtained from Fig. 2 and Fig.
3, what they show is the median of 20 results, but the results
obtained by MFEA-IG are much better than those of the other
two algorithms.

V. CONCLUSION

In order to pursue more possibilities of knowledge transfer
among different tasks, in this paper, we propose MFEA-IG.
Rather than sharing regular individual solutions in conven-
tional approaches, we introduce individual gradient into
MTO framework as the additional knowledge to be transferred.
Empirical studies on nine benchmarks showed that MFEA-
IG performs better than MFEA on 5 out of 18 tasks. Then
we apply this algorithm to several MAPP problems. Two
simulations involving multiple agents working in the same
workspace and in the different workspaces are designed to
test our algorithm. The results demonstrate that the proposed
algorithm is effective and efficient in MAPP problem. In
the future, we will discuss what other knowledge can be
transferred and how to use the knowledge more effectively

and efficiently in MTO paradigm. Also, we will try to apply
our algorithm to MAPP in dynamic environments.
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