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Abstract—Population-based metaheuristic algorithms are
problem-independent approaches to solve global optimisation
problems. The human mental search (HMS) algorithm is a
powerful population-based metaheuristic algorithm that has
been shown to yield competitive performance for a variety of
optimisation problems. HMS comprises three main operators,
mental search, grouping, and movement. Mental search explores
the neighbourhood of candidate solutions based on a Levy flight
distribution to allow for simultaneous exploration and exploita-
tion. Grouping is used to cluster the current population in order
to find a promising area in search space, while during movement,
candidate solutions move towards the identified promising area.

In this paper, we propose an improved HMS algorithm – HMS-
IS-OSK – that introduces an adaptive selection of the number
of mental processes to improve the exploitation ability of HMS,
and a one-step k-means algorithm for grouping to decrease the
computational complexity. To evaluate the proposed algorithm,
we perform a set of experiments on the CEC 2017 bench-
mark functions with dimensionalities of 30, 50, and 100. The
obtained results show that HMS-IS-OSK outperforms standard
HMS as well as other population-based metaheuristic algorithms
including covariance matrix adaptation evolution strategy (CMA-
ES), particle swarm optimisation (PSO), artificial bee colony
algorithm (ABC), whale optimisation algorithm (WOA), grey wolf
optimiser (GWO), and moth-flame optimisation (MFO).

Index Terms—Global optimisation; metaheuristic algorithms;
human mental search.

I. INTRODUCTION

Many real-world problems can be formulated as optimisa-
tion problems and consequently there is significant interest in
effective global optimisation algorithms in both industry and
academia [1], [2].

Conventional optimisation algorithms such as gradient-
based approaches are often ineffective and sometimes not
applicable [3]–[5] and suffer from local optima stagnation
and the need to calculate derivative information [6]. To ad-
dress these problems, population-based metaheuristic algo-
rithms such as genetic algorithm (GA) [7], particle swarm
optimisation (PSO) [8] and others, have been proposed.

This paper is published due to the financial support of the Federal Target
Programme of the Ministry of Science and Higher Education of Russian
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Population-based metaheuristic algorithms generally start
with a population of randomly generated candidate solutions.
Then, new candidate solutions are generated based on defined
stochastic operators. In this manner, information is shared
among different candidate solutions, allowing candidate so-
lutions to move towards a promising region in search space.
In recent years, much work has been devoted to improving
existing population-based algorithms [3], [5], [9] or proposing
new algorithms [10]–[12].

Human mental search (HMS) [13] is a recent population-
based metaheuristic algorithm inspired by the manner of
exploring the bid space of online auctions. HMS comprises
three operators: (1) mental search, which explores the neigh-
bourhood of each candidate solution based on a Levy flight
distribution; grouping which uses a clustering algorithm, k-
means, to identify a promising region in search space, and
movement during which candidate solutions approach the
promising region.

HMS has shown very competitive performance in com-
parison to other state-of-the-art algorithms for a variety of
optimisation problems with different characteristics such as
unimodal, multi-modal, high-dimensional, complex, shifted,
and rotated functions [13]. Furthermore, HMS outperforms
other algorithms in classic engineering problems such as
pressure vessel design, welded beam design, and three-bar
truss design [13], while also having been used for computer
vision applications such as image segmentation [14] and
thresholding [15].

The mental search operator in HMS explores the vicinity of
candidate solutions based on a Levy flight distribution, a type
of random walk with varying step size, which can improve
exploration and exploitation simultaneously. One parameter
here is the number of searches that is performed for each
candidate solution which is determined randomly between a
pre-set minimum and maximum of mental processes. In this
paper, we propose a novel adaptive approach to determine the
number of mental searches to enhance exploitation ability of
HMS.

In the grouping stage of HMS, standard k-means is em-
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ployed to cluster the current population, which is computa-
tionally expensive. To reduce the computation cost, in this
paper, we propose the use of a one-step k-means algorithm
for grouping. An extensive set of experiments conducted on
the CEC 2017 benchmark functions [16] demonstrate that
our proposed HMS-IS-OSK algorithm outperforms standard
HMS as well as other population-based metaheuristic algo-
rithms including covariance matrix adaptation evolution strat-
egy (CMA-ES) [17], particle swarm optimisation (PSO) [8],
artificial bee colony algorithm (ABC) [18], whale optimisation
algorithm (WOA) [11], grey wolf optimiser (GWO) [10], and
moth-flame optimisation (MFO) [12].

The remainder of the paper is organised as follows. Sec-
tion II explains the original HMS algorithm. Our proposed
improved HMS-IS-OSK algorithm is then described in Sec-
tion III. Experimental results are presented in Section IV while
Section V concludes the paper.

II. HUMAN MENTAL SEARCH

HMS [13] is a recent population-based metaheuristic al-
gorithm for solving optimisation problems which is inspired
by the manner of a human mental search in the bid space
of online auctions. In HMS, each candidate solution is called
a bid. Algorithm 1 defines HMS in terms of pseudo-code.
Like other population-based metaheuristic algorithms, HMS
starts with a population of random candidate solutions. HMS
then iteratively improves these using the algorithm’s main
operators, mental search, grouping, and movement, which are
described in the following.

A. Mental Search

During mental search, several new bids are generated around
each current bid based on a random walk where the step
size follows a Levy distribution. Since there are typically a
number small steps followed by long jump, the use of the Levy
distribution is designed to improve simultaneously exploration
and exploitation in HMS.

A new position is calculated as

NS = bid+ S, (1)

with

S = (2−NFE(2/NFEmax))0.01
u

v1/β
(xi − x∗), (2)

where NFE is the number of function evaluations so far,
NFEmax is the maximum number of function evaluations, xi

is the current bid, and x∗ the best bid found so far. u and v
are random numbers calculated as

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v), (3)

and

σu =

{
Γ(1 + β) sin(πβ2 )

Γ[( 1+β
2 )]β2(β−1)/2

}1/β

, σv = 1, (4)

where Γ is a standard gamma function.
The number of new bids for each bid generated around a

bid is randomly chosen between ML, the minimum number

Algorithm 1 Pseudo-code of HMS algorithm.
1: procedure HMS ALGORITHM
2: // Variables: L: lower bound; U : upper bound, Ml: minimum

number of mental processes, Mh: maximum number of mental
processes, Npop: number of bids, Nvar: number of variables, K:
number of clusters, iter: current iteration, NFEmax: maximum
number of function evaluations

3:
4: X = initialise population of Npop bids
5: Calculate the objective function values of bids
6: x∗ = find the best bid in the initial population
7: for i from 1 to Npop do
8: βi = generate integer random number between L and U
9: end for

10: NFE = Npop

11: iter = 0
12: while NFE <= NFEmax do
13: iter = iter + 1
14: // Mental Search
15: for i from 1 to Npop do
16: qi = generate integer random number between Ml and

Mh

17: end for
18: for i from 1 to Npop do
19: for j from 1 to qi do
20: s = (2− 2NFE

NFEmax
)0.01 u

v1/βi
(xi − x∗)

21: NSj = Xi + s
22: end for
23: t = find NS with lowest objective function value
24: if cost(t) < cost(Xi) then
25: Xi = t
26: end if
27: end for
28: // Clustering
29: Cluster Npop bids into K clusters
30: Calculate mean objective function value of each cluster
31: Select cluster with lowest mean objective function value

as winner cluster
32: winner = select best bid in winner cluster
33: // Move bids towards best strategy
34: for i from 1 to Npop do
35: for n from 1 to Nvar do
36: Xi

n = Xi
n + C(r × winnern −Xi

n)
37: end for
38: end for
39: for i from 1 to Npop do
40: βi = generate random number between L and U
41: end for
42: x+ = find best bid in current bids
43: if cost(x+) < cost(x∗) then
44: x∗ = x+

45: end if
46: end while
47: end procedure

of mental processes, and MH , the maxmum number of mental
processes.

B. Grouping

The goal of the grouping operator is to cluster the population
of bids, with standard HMS algorithm using k-means as the
employed clustering algorithm. After population clustering,
the mean objective function value of each cluster is calculated,



and the cluster with the lowest mean objective function value
(for a minimisation problem) is selected as the winner cluster
representing a promising area in search space.

C. Movement

Having identified the promising area, other bids should
move towards this area. To this end, other bids perform random
movement towards the best bid in the promising area. In
particular, bids are updated as

t+1bidn = tbidn + C(r × twinnern − tbidn), (5)

where t+1bidn is the n-th bid element at iteration t + 1,
twinnern is the n-th element of the best bid in the winner
group, t is the current iteration, C is a constant, and r is
a random number between 0 and 1 taken from the normal
distribution.

III. PROPOSED ALGORITHM

In this paper, we propose a new improved HMS algorithm
named HMS-IS-OSK which is based on two new contribu-
tions. First, we present an adaptive approach to select the
number of mental search processes, while second, during
grouping we use a one-step k-means algorithm to reduce the
computational burden.

A. Selection of the number of mental search processes

The number of mental searches in standard HMS is a
random number between ML (minimum number of mental
processes) and MH (maximum number of mental processes).
In HMS-IS-OSK, instead of randomly determining the number
of mental searches for each bid, it is chosen as a function of the
objective function value. In particular, the number of mental
searches is selected as being proportional to the quality of the
bid as determined by its objective function value. As a result,
the vicinity of a better candidate solution is searched more in
order to increase the chances of finding the global optimum
leading to an improved exploitation ability of HMS.

We calculate NMLi, the number of mental searches for
candidate solution xi, as

NMLi = ML+round
(
Npop − rank(xi) + 1

Npop
(MH −ML)

)
,

(6)
where rank(xi) is the rank of xi when sorting all candidate
solutions by objective function value with the best solution (the
one with the lowest objective function value in a minimisation
problem) being assigned rank 1 and the worst being assigned
rank Npop (the size of the population). Consequently, for the
best solution MH mental searches are performed, while ML

searches are conducted for the worst candidate solution.

B. One-step k-means clustering for grouping

In the grouping operator of HMS, clustering of bids is
performed using the k-means algorithm [19]. Unfortunately,
this represents a computational burden since k-means itera-
tively calculates the centroids of clusters and the mappings of
samples to clusters until a convergence criterion is met.

Consequently, to improve the computational complexity,
we propose to use a one-step k-means algorithm instead of
standard k-means. Here, only one iteration of k-means is
performed, and the grouping operator thus proceeds as follows:
Step 1: Initialise the cluster centres, {c1, c2, ..., cK}, ran-

domly.
Step 2: Assign each bid, xi, i = 1, ..., NP , to its closest

cluster centre, i.e. xi is assigned to cj if and only if
‖xi− cj‖ ≤ ‖xi− cm‖ for all m = {1, 2, ...,K} with
j 6= m, where ‖xi − cj‖ is the (Euclidean) distance
between xi and cm.

Step 3: Update the cluster centres as

c
′

i =
1

ni

∑
xi∈ci

xi, (7)

where ni is the number of bids in the i-th cluster.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of HMS-IS-OSK, we examined
our algorithm on the CEC 2017 benchmark functions [16].
This test suite comprises 30 benchmark functions with dif-
ferent characteristics including unimodal functions (F1 to
F3), multi-modal functions (F4 to F10), hybrid multi-modal
functions (F11 to F20) and composite functions (F21 to
F30). In addition, we compare HMS-IS-OSK to the standard
HMS algorithm as well as several other state-of-the-art op-
timisation algorithms, namely covariance matrix adaptation
evolution strategy (CMA-ES) [17], particle swarm optimisa-
tion (PSO) [8], artificial bee colony algorithm (ABC) [18],
whale optimisation algorithm (WOA) [11], grey wolf optimiser
(GWO) [10], and moth-flame optimisation (MFO) [12].

In all experiments, the maximum number of function eval-
uations is set to 3000 ×D where D is the dimensionality of
the search space with D = {30, 50, 100} in the experiments.
The parameters we use for the various algorithms are listed in
Table I. Due to the stochastic nature of the algorithms, we run
each algorithm 25 times on each problem and report the mean
and standard deviation over these 25 runs, and as performance
measure we use the difference between the (known) optimal
function value and the result achieved by the algorithm.

TABLE I: Parameter settings.

algorithm parameter value
CMA-ES λ 50
PSO cognitive constant (C1) 2

social constant (C2) 2
inertia constant (w) 1 to 0

ABC limit # food sources × # dimensions
GWO no parameters
WOA b 1
HMS number of clusters 5

C 1
minimum mental process 2
maximum mental process 5

HMS-IS-OSK number of clusters 5
C 1
minimum mental process 2
maximum mental process 5



TABLE II: Results for the two components of the proposed algorithm. The last row indicates the wins/ties/losses compared to
standard HMS.

Functions D=30 D=50 D=100
HMS-IS HMS-OSK HMS HMS-IS HMS-OSK HMS HMS-IS HMS-OSK HMS

F1 1.1333E+04 1.6803E+05 4.5474E+06 5.3850E+06 6.4243E+07 2.9857E+08 3.9148E+09 3.9744E+09 1.5123E+10
F2 2.0883E+20 1.3598E+23 4.1884E+24 3.2015E+48 8.5331E+48 1.4181E+53 3.5644E+127 7.1939E+119 6.5322E+134
F3 7.0237E+03 5.1203E+05 1.0924E+04 2.8626E+04 4.1968E+04 3.4819E+04 1.0341E+05 1.7306E+05 1.1390E+05
F4 1.0103E+02 5.4845E+02 1.2098E+02 2.1385E+02 2.9770E+02 3.0418E+02 9.1954E+02 1.0411E+03 2.0087E+03
F5 1.0250E+02 1.1356E+02 1.1852E+02 2.2535E+02 2.4017E+02 2.3754E+02 6.6112E+02 6.9696E+02 6.7842E+02
F6 2.9863E+00 7.6092E+00 1.0126E+01 1.3860E+01 1.8017E+01 1.8691E+01 2.8578E+01 3.3479E+01 3.3241E+01
F7 1.3699E+02 1.4789E+02 1.4604E+02 2.8241E+02 3.7119E+02 3.0006E+02 9.7624E+02 1.2030E+03 9.6739E+02
F8 9.5549E+01 1.1109E+02 1.0710E+02 2.5413E+02 2.6955E+02 2.5397E+02 6.8871E+02 7.1811E+02 7.1447E+02
F9 1.0772E+03 1.4792E+03 1.3897E+03 6.1325E+03 7.2766E+03 6.4648E+03 2.0369E+04 2.2115E+04 2.2191E+04
F10 3.5328E+03 3.9401E+03 3.7070E+03 7.1579E+03 7.1881E+03 7.5305E+03 1.6950E+04 1.7161E+04 1.7861E+04
F11 1.6724E+02 3.3811E+02 2.2836E+02 7.5596E+02 8.1194E+02 8.2531E+02 1.3425E+04 1.6146E+04 1.3478E+04
F12 3.7044E+06 6.6262E+06 7.4963E+06 3.2376E+07 7.4018E+07 1.0680E+08 4.8877E+08 7.3800E+08 1.5186E+09
F13 2.5964E+04 3.2470E+04 4.5431E+04 4.4274E+04 4.9945E+04 1.1729E+05 1.2891E+06 2.5622E+06 3.7796E+07
F14 4.0042E+04 3.4173E+04 4.2677E+04 1.9069E+05 2.3383E+05 2.8548E+05 1.3315E+06 2.0182E+06 2.0662E+06
F15 6.8041E+03 1.3026E+04 7.8994E+03 1.7076E+04 2.0128E+04 3.2367E+04 3.4688E+04 3.7170E+04 5.0022E+05
F16 9.4703E+02 9.4706E+02 9.1324E+02 1.9496E+03 2.1455E+03 2.1049E+03 5.5686E+03 5.2824E+03 6.0599E+03
F17 3.8137E+02 4.3350E+02 4.2775E+02 1.4912E+03 1.3949E+03 1.5141E+03 4.8976E+03 5.0145E+03 5.2535E+03
F18 4.5836E+05 3.3730E+05 5.3347E+05 1.2241E+06 1.8158E+06 1.7825E+06 3.1085E+06 5.0211E+06 5.6661E+06
F19 1.1615E+04 1.6062E+04 1.3463E+04 2.3796E+04 1.8379E+04 3.1230E+04 1.5384E+05 1.6172E+05 1.5409E+06
F20 3.7820E+02 3.8798E+02 3.2808E+02 1.0221E+03 1.1944E+03 1.0999E+03 3.5195E+03 3.3721E+03 3.6500E+03
F21 3.0852E+02 3.2537E+02 3.1963E+02 4.6371E+02 4.8690E+02 4.9060E+02 1.1027E+03 1.0823E+03 1.1029E+03
F22 3.3034E+03 3.9434E+03 3.7307E+03 7.3499E+03 7.9584E+03 7.8483E+03 1.8874E+04 1.8282E+04 1.9942E+04
F23 4.6829E+02 5.0025E+02 5.0421E+02 7.6946E+02 9.7867E+02 8.1351E+02 1.1941E+03 1.2985E+03 1.4144E+03
F24 5.7116E+02 6.0038E+02 5.8483E+02 8.1736E+02 8.6206E+02 8.7778E+02 1.7404E+03 1.8407E+03 1.9496E+03
F25 3.9016E+02 3.9578E+02 3.9819E+02 5.8227E+02 6.2760E+02 6.3361E+02 1.2039E+03 1.3452E+03 1.5947E+03
F26 2.2743E+03 2.2521E+03 2.4883E+03 4.6725E+03 5.0829E+03 5.4707E+03 1.3572E+04 1.3977E+04 1.5759E+04
F27 5.1569E+02 5.1965E+02 5.1885E+02 6.6463E+02 8.8420E+02 7.2196E+02 8.0290E+02 8.5092E+02 8.7511E+02
F28 4.8551E+02 4.8635E+02 5.1503E+02 5.3020E+02 1.0471E+03 7.0932E+02 1.0267E+03 2.3307E+03 2.3667E+03
F29 8.3567E+02 9.5045E+02 9.0647E+02 1.3729E+03 1.6076E+03 1.6741E+03 4.8350E+03 4.8265E+03 5.0434E+03
F30 1.0455E+04 1.9303E+04 3.3808E+04 1.2888E+06 1.6807E+06 2.3078E+06 1.2178E+06 1.1061E+06 1.0232E+07
w/t/l 28/0/2 13/0/17 28/0/2 18/0/12 29/0/1 24/0/6

In our first experiment, we investigate – separately – the
proposed modifications of the HMS algorithm. The results
are given in Table II where HMS-IS indicates HMS with
our proposed selection of mental searches, while HMS-OSK
denotes HMS with one-step k-means.

We also conduct a two-sided Wilcoxon signed test with a
confidence interval of 95% [20] to determine if the proposed
improvements lead to statistical differences. Here, the null
hypothesis H0 indicates no difference between two algorithms,
while the alternative hypothesis H1 points to a statistical
difference. Consequently, if the calculated p-value is below
0.05, there is a significant difference between two algorithms.

The results are given in Table III, from where we can
observe that for D = 30 and D = 50, p > 0.05 indicating
no significance difference between HMS-OSK and HMS,
and thus that although computationally less complex, the
performance of HMS-OSK is comparable to that of standard
HMS. On the other hand, for D = 100, HMS-OK outperforms
HMS and does so statistically. This is interesting, since while
the motivation of the one step k-means algorithm was to
lower the computational complexity, it can also lead to better
optimisation performance, especially for higher-dimensional
problems.

Looking at HMS-IS, from Table II we can see that it
outperforms HMS for almost all cases, while the Wilcoxon
signed rank test results in Table III confirm that this improved
performance is statistically significant for all dimensionalities.

TABLE III: Results (p-values) of Wilcoxon signed rank test
between the two proposed modifications and standard HMS.

D=30 D=50 D=100
HMS-OSK vs. HMS 0.9918 0.1779 3.5888E-04
HMS-IS vs. HMS 1.9729E-05 1.9209E-06 3.1652E-06

Now turning our attention to the full HMS-IS-OSK algo-
rithms, we give its results in Tables IV, V, and IV for D = 30,
D = 50, and D = 100, respectively, while the tables also
contain results for standard HMS and the other optimisation
algorithms mentioned above.

From Table IV, we can see that for D = 30 HMS-IS-OSK
gives the best or second best results for 27 of the 30 test
functions and thus clearly yields the overall best-performing
algorithm followed by standard HMS.

For D = 50 (Table V), HMS-IS-OSK outperforms all other
algorithms for 27 of the 30 benchmark functions while it
does so for 28 of the 30 functions for D = 100 (Table VI),
which rather impressively demonstrates the superiority of our
proposed algorithm compared to other state-of-the-art optimi-
sation techniques. Standard HMS yields the second overall
rank for both D = 50 and D = 100.

Table VII gives the results of the Wilcoxon signed rank test
between HMS-IS-OSK and the other algorithms, showing our
proposed algorithm to be statistically superior to all methods
as indicated by p-values below 0.05 for all comparisons.



TABLE IV: Results for all algorithms and all functions for D = 30. For each function, we report (top row) the difference to
the optimal function value and (bottom row) the ranking of the algorithm.

CMA-ES PSO ABC WOA GWO MFO HMS HMS-IS-OSK
F1 2.1057E+10 7.1568E+07 2.9068E+07 8.4266E+07 1.7484E+09 8.8022E+09 4.5474E+06 1.2433E+04

8 4 3 5 6 7 2 1
F2 3.3285E+42 8.1280E+11 3.9300E+41 1.6974E+32 4.0913E+28 1.1593E+39 4.1884E+24 8.4311E+18

8 1 7 5 4 6 3 2
F3 2.1087E+05 3.2432E+02 3.6790E+05 1.9935E+05 3.9428E+04 1.0779E+05 1.0924E+04 1.0997E+04

7 1 8 6 4 5 2 3
F4 3.6176E+03 7.5395E+01 1.1866E+02 2.0201E+02 1.8606E+02 6.6353E+02 1.2098E+02 1.0075E+02

8 1 3 6 5 7 4 2
F5 3.3072E+02 2.1189E+02 2.3934E+02 2.7780E+02 9.5905E+01 1.9786E+02 1.1852E+02 1.0165E+02

8 5 6 7 1 4 3 2
F6 6.3041E+01 5.2053E+01 5.1961E+00 6.8248E+01 7.5763E+00 3.0375E+01 1.0126E+01 3.3328E+00

7 6 2 8 3 5 4 1
F7 1.8099E+02 2.4703E+02 2.7763E+02 5.0560E+02 1.5277E+02 3.8272E+02 1.4604E+02 1.2812E+02

4 5 6 8 3 7 2 1
F8 2.6860E+02 1.5672E+02 2.4705E+02 2.3121E+02 8.1409E+01 1.9039E+02 1.0710E+02 9.4055E+01

8 4 7 6 1 5 3 2
F9 1.6636E+03 4.6448E+03 3.0760E+03 7.9868E+03 9.4833E+02 5.7595E+03 1.3897E+03 8.9200E+02

4 6 5 8 2 7 3 1
F10 7.0296E+03 4.8263E+03 8.1736E+03 5.4595E+03 3.2182E+03 4.6322E+03 3.7070E+03 3.3349E+03

7 5 8 6 1 4 3 2
F11 1.6670E+04 1.5259E+02 9.4044E+03 1.9779E+03 8.3078E+02 3.6395E+03 2.2836E+02 1.6631E+02

8 1 7 5 4 6 3 2
F12 4.3228E+09 1.4466E+07 4.9689E+08 8.5179E+07 6.4799E+07 2.2258E+08 7.4963E+06 2.2742E+06

8 3 7 5 4 6 2 1
F13 3.8909E+09 1.8713E+06 2.5698E+06 2.0706E+05 1.2327E+07 4.8566E+07 4.5431E+04 2.5190E+04

8 4 5 3 6 7 2 1
F14 5.4543E+06 1.4107E+04 2.9837E+05 2.3871E+06 2.5657E+05 1.2983E+05 4.2677E+04 3.6053E+04

8 1 6 7 5 4 3 2
F15 4.8952E+08 1.5636E+05 1.3958E+06 1.2634E+05 1.5845E+06 4.5340E+04 7.8994E+03 7.3424E+03

8 5 6 4 7 3 2 1
F16 3.2451E+03 1.2571E+03 2.3367E+03 2.0587E+03 9.5852E+02 1.5687E+03 9.1324E+02 9.3363E+02

8 4 7 6 3 5 1 2
F17 1.9053E+03 5.4329E+02 1.1393E+03 9.2401E+02 2.6596E+02 7.1002E+02 4.2775E+02 3.0558E+02

8 4 7 6 1 5 3 2
F18 3.3457E+07 2.1741E+05 1.4622E+07 4.1731E+06 1.1282E+06 3.0607E+06 5.3347E+05 3.6901E+05

8 1 7 6 4 5 3 2
F19 4.4237E+08 5.9588E+05 8.3738E+04 4.3773E+06 8.9645E+05 9.4809E+06 1.3463E+04 1.9372E+04

8 4 3 6 5 7 1 2
F20 8.2500E+02 5.9648E+02 9.9359E+02 8.4174E+02 3.8497E+02 6.5689E+02 3.2808E+02 3.5631E+02

6 4 8 7 3 5 1 2
F21 5.5102E+02 4.0542E+02 4.4639E+02 4.7918E+02 2.8400E+02 3.9721E+02 3.1963E+02 3.0464E+02

8 5 6 7 1 4 3 2
F22 7.4914E+03 3.1253E+03 8.2462E+03 5.1366E+03 2.0673E+03 4.1025E+03 3.7307E+03 3.3341E+03

7 2 8 6 1 5 4 3
F23 7.4573E+02 8.4375E+02 6.0663E+02 7.3688E+02 4.5410E+02 5.1771E+02 5.0421E+02 4.7455E+02

7 8 5 6 1 4 3 2
F24 7.7132E+02 8.1723E+02 6.8304E+02 8.1269E+02 5.1170E+02 5.7800E+02 5.8483E+02 5.6434E+02

6 8 5 7 1 3 4 2
F25 1.4006E+03 3.9652E+02 4.2031E+02 4.9556E+02 4.7356E+02 8.2039E+02 3.9819E+02 3.9060E+02

8 2 4 6 5 7 3 1
F26 5.6196E+03 2.1556E+03 3.1500E+03 5.2144E+03 2.0699E+03 3.0636E+03 2.4883E+03 2.2927E+03

8 2 6 7 1 5 4 3
F27 6.9922E+02 5.1884E+02 5.0001E+02 7.2429E+02 5.4557E+02 5.4642E+02 5.1885E+02 5.1347E+02

7 3 1 8 5 6 4 2
F28 3.8029E+03 4.4412E+02 4.9998E+02 5.7303E+02 5.8176E+02 1.3554E+03 5.1503E+02 4.7622E+02

8 1 3 5 6 7 4 2
F29 2.8292E+03 1.3993E+03 2.0172E+03 2.1742E+03 9.4969E+02 1.1897E+03 9.0647E+02 8.1921E+02

8 5 6 7 3 4 2 1
F30 4.8792E+08 1.8814E+06 4.9885E+05 2.0393E+07 6.7067E+06 1.0783E+06 3.3808E+04 9.6989E+03

8 5 3 7 6 4 2 1
average rank 7.4 3.7 5.5 6.2 3.4 5.3 2.77 1.77



TABLE V: Results For all algorithms and all functions for D = 50, laid out in the same fashion as Table IV.

CMA-ES PSO ABC WOA GWO MFO HMS HMS-IS-OSK
F1 4.6441E+10 2.5720E+08 2.8113E+09 4.9622E+08 5.5904E+09 3.7493E+10 2.9857E+08 4.5474E+06

8 2 5 4 6 7 3 1
F2 5.0690E+79 2.6595E+25 5.4847E+80 1.2544E+70 7.9606E+54 6.9415E+76 1.4181E+53 4.1884E+24

7 2 8 5 4 6 3 1
F3 3.7512E+05 9.4784E+03 7.7088E+05 1.8480E+05 9.4210E+04 1.6749E+05 3.4819E+04 1.0924E+04

7 1 8 6 4 5 3 2
F4 7.6086E+03 1.6199E+02 3.2371E+03 5.3017E+02 7.1393E+02 4.0648E+03 3.0418E+02 1.2098E+02

8 2 6 4 5 7 3 1
F5 3.0757E+02 3.9414E+02 5.4884E+02 4.7031E+02 2.0719E+02 4.6227E+02 2.3754E+02 1.1852E+02

4 5 8 7 2 6 3 1
F6 6.7951E+01 6.9480E+01 4.9262E+01 8.2980E+01 1.7605E+01 4.7800E+01 1.8691E+01 1.0126E+01

6 7 5 8 2 4 3 1
F7 2.2033E+02 5.0114E+02 6.5013E+02 1.0571E+03 3.5860E+02 1.1313E+03 3.0006E+02 1.4604E+02

2 5 6 7 4 8 3 1
F8 5.1706E+02 4.1505E+02 5.5100E+02 4.4884E+02 2.1926E+02 4.7887E+02 2.5397E+02 1.0710E+02

7 4 8 5 2 6 3 1
F9 1.3531E+04 2.4689E+04 4.2688E+04 2.7577E+04 8.1628E+03 1.7132E+04 6.4648E+03 1.3897E+03

4 6 8 7 3 5 2 1
F10 1.3213E+04 8.8185E+03 1.4961E+04 1.0079E+04 6.4989E+03 7.4675E+03 7.5305E+03 3.7070E+03

7 5 8 6 2 3 4 1
F11 6.4508E+04 3.5899E+02 5.5885E+04 1.1658E+03 2.9657E+03 1.2804E+04 8.2531E+02 2.2836E+02

8 2 7 4 5 6 3 1
F12 2.2426E+10 1.0743E+08 1.0541E+10 5.7899E+08 5.4397E+08 4.6250E+09 1.0680E+08 7.4963E+06

8 3 7 5 4 6 2 1
F13 1.2889E+10 1.4658E+07 6.1667E+07 5.5536E+06 1.0500E+08 8.7988E+08 1.1729E+05 4.5431E+04

8 4 5 3 6 7 2 1
F14 2.1737E+07 1.1725E+05 4.2881E+06 1.9715E+06 9.4496E+05 1.0794E+06 2.8548E+05 4.2677E+04

8 2 7 6 4 5 3 1
F15 2.5080E+09 3.0465E+06 1.2845E+07 1.0810E+06 1.5627E+07 8.6522E+06 3.2367E+04 7.8994E+03

8 4 6 3 7 5 2 1
F16 5.3659E+03 2.1542E+03 5.1113E+03 3.8099E+03 1.4609E+03 2.7268E+03 2.1049E+03 9.1324E+02

8 4 7 6 2 5 3 1
F17 1.0470E+03 1.6773E+03 3.1192E+03 2.5499E+03 1.0603E+03 2.3006E+03 1.5141E+03 4.2775E+02

2 5 8 7 3 6 4 1
F18 1.2736E+08 1.4980E+06 6.8308E+07 1.4140E+07 5.0951E+06 2.9571E+06 1.7825E+06 5.3347E+05

8 2 7 6 5 4 3 1
F19 1.1004E+09 2.7802E+06 2.5486E+04 5.1254E+06 3.1637E+06 5.9295E+07 3.1230E+04 1.3463E+04

8 4 2 6 5 7 3 1
F20 1.6233E+03 1.3045E+03 2.5033E+03 1.6992E+03 8.9671E+02 1.4003E+03 1.0999E+03 3.2808E+02

6 4 8 7 2 5 3 1
F21 7.9945E+02 6.6140E+02 7.5220E+02 8.4253E+02 3.9388E+02 6.4065E+02 4.9060E+02 3.1963E+02

7 5 6 8 2 4 3 1
F22 1.4255E+04 9.0947E+03 1.5100E+04 1.0073E+04 6.7774E+03 8.2823E+03 7.8483E+03 3.7307E+03

7 5 8 6 2 4 3 1
F23 1.1399E+03 1.5510E+03 9.7798E+02 1.3481E+03 6.6419E+02 8.4139E+02 8.1351E+02 5.0421E+02

6 8 5 7 2 4 3 1
F24 1.1408E+03 1.2074E+03 1.0874E+03 1.3049E+03 7.2354E+02 8.1562E+02 8.7778E+02 5.8483E+02

6 7 5 8 2 3 4 1
F25 2.7216E+03 5.1174E+02 2.2217E+03 9.1079E+02 1.0626E+03 3.0814E+03 6.3361E+02 3.9819E+02

7 2 6 4 5 8 3 1
F26 8.7578E+03 6.0903E+03 6.3256E+03 1.0536E+04 3.9505E+03 5.8167E+03 5.4707E+03 2.4883E+03

7 5 6 8 2 4 3 1
F27 1.1203E+03 1.0704E+03 5.0001E+02 1.6911E+03 8.9893E+02 8.7495E+02 7.2196E+02 5.1885E+02

7 6 1 8 5 4 3 2
F28 6.7681E+03 4.9726E+02 5.0001E+02 1.1993E+03 1.4770E+03 5.1097E+03 7.0932E+02 5.1503E+02

8 1 2 5 6 7 4 3
F29 1.0413E+04 2.5531E+03 6.2498E+03 4.8495E+03 1.6206E+03 2.3113E+03 1.6741E+03 9.0647E+02

8 5 7 6 2 4 3 1
F30 2.4322E+09 5.5781E+07 3.3766E+08 1.3506E+08 1.0880E+08 1.2885E+08 2.3078E+06 3.3808E+04

8 3 7 6 4 5 2 1
average rank 6.77 4.00 6.23 5.93 3.63 5.33 2.97 1.13



TABLE VI: Results For all algorithms and all functions for D = 100, laid out in the same fashion as Table IV.

CMA-ES PSO ABC WOA GWO MFO HMS HMS-IS-OSK
F1 4.2008E+10 1.0664E+09 3.6114E+11 1.9755E+07 4.2486E+10 1.2403E+11 1.5123E+10 4.5474E+06

5 3 8 2 6 7 4 1
F2 1.0383E+166 8.4451E+71 2.9588E+182 1.1464E+148 4.3009E+133 7.9917E+159 6.5322E+134 4.1884E+24

7 2 8 5 3 6 4 1
F3 8.5028E+05 2.3560E+05 2.2239E+06 7.5474E+05 2.4503E+05 6.5534E+05 1.1390E+05 1.0924E+04

7 3 8 6 4 5 2 1
F4 1.7146E+04 3.8656E+02 1.5305E+05 6.6924E+02 3.3637E+03 2.3752E+04 2.0087E+03 1.2098E+02

6 2 8 3 5 7 4 1
F5 1.0710E+03 1.0851E+03 2.0306E+03 9.2522E+02 6.4067E+02 1.1967E+03 6.7842E+02 1.1852E+02

5 6 8 4 2 7 3 1
F6 1.4423E+01 8.5974E+01 1.3922E+02 7.9330E+01 3.6507E+01 7.3175E+01 3.3241E+01 1.0126E+01

2 7 8 6 4 5 3 1
F7 8.6477E+02 1.2510E+03 9.1900E+03 2.5687E+03 1.2469E+03 4.0405E+03 9.6739E+02 1.4604E+02

2 5 8 6 4 7 3 1
F8 1.2745E+03 1.1991E+03 2.0784E+03 1.1186E+03 6.3276E+02 1.2651E+03 7.1447E+02 1.0710E+02

7 5 8 4 2 6 3 1
F9 3.2532E+04 6.3247E+04 1.9289E+05 3.5369E+04 3.2701E+04 4.2072E+04 2.2191E+04 1.3897E+03

3 7 8 5 4 6 2 1
F10 3.0353E+04 2.1981E+04 3.2594E+04 1.9488E+04 1.5669E+04 1.6792E+04 1.7861E+04 3.7070E+03

7 6 8 5 2 3 4 1
F11 4.5125E+05 2.4397E+03 8.8802E+05 1.1656E+04 5.3270E+04 1.3235E+05 1.3478E+04 2.2836E+02

7 2 8 3 5 6 4 1
F12 5.2721E+10 8.2741E+08 1.1872E+11 7.2320E+08 7.4034E+09 3.4815E+10 1.5186E+09 7.4963E+06

7 3 8 2 5 6 4 1
F13 1.1649E+10 5.0818E+07 3.1252E+09 6.1953E+04 4.1458E+08 4.4317E+09 3.7796E+07 4.5431E+04

8 4 6 2 5 7 3 1
F14 1.1494E+08 1.5734E+06 8.6075E+07 1.4506E+06 4.9534E+06 8.1393E+06 2.0662E+06 4.2677E+04

8 3 7 2 5 6 4 1
F15 5.7293E+09 1.5174E+07 5.6989E+08 6.2129E+04 1.0217E+08 1.8139E+09 5.0022E+05 7.8994E+03

8 4 6 2 5 7 3 1
F16 1.2045E+04 5.8526E+03 1.5177E+04 8.4316E+03 4.4163E+03 6.3580E+03 6.0599E+03 9.1324E+02

7 3 8 6 2 5 4 1
F17 4.2235E+04 4.3163E+03 2.9662E+04 5.4693E+03 3.5358E+03 6.4352E+03 5.2535E+03 4.2775E+02

8 3 7 5 2 6 4 1
F18 1.3858E+08 3.1777E+06 2.8617E+08 1.8815E+06 4.8340E+06 1.6349E+07 5.6661E+06 5.3347E+05

7 3 8 2 4 6 5 1
F19 4.4419E+09 2.6744E+07 7.2872E+06 1.3301E+07 1.1502E+08 7.6923E+08 1.5409E+06 1.3463E+04

8 5 3 4 6 7 2 1
F20 5.1410E+03 3.7676E+03 6.5695E+03 4.2334E+03 3.2788E+03 3.7754E+03 3.6500E+03 3.2808E+02

7 4 8 6 2 5 3 1
F21 1.4369E+03 1.6924E+03 2.5583E+03 1.7856E+03 8.6885E+02 1.5533E+03 1.1029E+03 3.1963E+02

4 6 8 7 2 5 3 1
F22 3.1095E+04 2.4380E+04 3.3449E+04 2.1741E+04 1.7406E+04 1.8352E+04 1.9942E+04 3.7307E+03

7 6 8 5 2 3 4 1
F23 1.8416E+03 2.9073E+03 3.1588E+03 2.4400E+03 1.2305E+03 1.4872E+03 1.4144E+03 5.0421E+02

5 7 8 6 2 4 3 1
F24 2.4409E+03 3.0356E+03 5.1587E+03 3.5545E+03 1.7524E+03 1.9440E+03 1.9496E+03 5.8483E+02

5 6 8 7 2 3 4 1
F25 8.2654E+03 9.4492E+02 8.5519E+04 1.1255E+03 3.4180E+03 1.1216E+04 1.5947E+03 3.9819E+02

6 2 8 3 5 7 4 1
F26 1.9266E+04 1.7110E+04 4.9569E+04 2.8247E+04 1.2222E+04 1.5335E+04 1.5759E+04 2.4883E+03

6 5 8 7 2 3 4 1
F27 1.9963E+03 6.4331E+02 5.0002E+02 2.2667E+03 1.3314E+03 1.2842E+03 8.7511E+02 5.1885E+02

7 3 1 8 6 5 4 2
F28 1.9124E+04 6.3827E+02 5.0002E+02 9.1321E+02 4.7270E+03 1.6200E+04 2.3667E+03 5.1503E+02

8 3 1 4 6 7 5 2
F29 1.3385E+04 6.9356E+03 6.0959E+04 1.1110E+04 5.2786E+03 8.2201E+03 5.0434E+03 9.0647E+02

7 4 8 6 3 5 2 1
F30 1.0157E+10 1.0689E+08 3.2747E+09 1.8263E+08 1.0336E+09 2.3325E+09 1.0232E+07 3.3808E+04

8 3 7 4 5 6 2 1
average rank 6.30 4.17 7.13 4.57 3.73 5.60 3.43 1.06



Fig. 1: Convergence curves for F1 function for D = 30 (left), D = 50 (middle), and D = 100 (right).

TABLE VII: Results of Wilcoxon signed rank test between
HMS-IS-OSK and other algorithms.

D = 30 D = 50 D = 100
HMS-IS-OK vs. CMA-SA 1.7344E-06 1.7344E-06 1.7344E-06
HMS-IS-OK vs. PSO 0.0387 9.3157E-06 1.7344E-06
HMS-IS-OK vs. ABC 2.1266E-06 2.3534E-06 2.3534E-06
HMS-IS-OK vs. WOA 1.7344E-06 1.7344E-06 1.7344E-06
HMS-IS-OK vs. GWO 0.0032 1.7344E-06 1.7344E-06
HMS-IS-OK vs. MFO 1.7344E-06 1.7344E-06 1.7344E-06
HMS-IS-OK vs. HMS 3.3173E-04 1.7344E-06 1.7344E-06

Last not least, we investigate the convergence behaviour of
our proposed modifications. For this, we plot the convergence
curves for (as a representative) the F1 benchmark function
in Figure 1. As can be observed from there, HMS-IS-OSK
consistently converges the fastest.

V. CONCLUSIONS

In this paper, we have proposed HMS-IS-OSK, an improved
human mental search (HMS) optimisation algorithm. HMS-
IS-OK introduces two improvements to standard HMS. First,
to lessen the computational complexity, a one-step k-means
clustering algorithm is employed instead of standard k-means
during the grouping process of HMS. Second, an adaptive
approach is proposed to select the number of mental search
processes in order to yield better exploitation in vicinity of a
good candidate solutions. Experimental results obtained on 30
CEC 2017 benchmark functions confirm superior performance
of HMS-IS-OSK compared to standard HMS and to a number
of state-of-the-art population-based optimisation algorithms.
We are currently investigating the use of HMS-IS-OSK for
optimising neural networks, software systems, and abnormal
behaviour detection.
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