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Abstract—This paper deals with the optimization of velocity
trajectories for railway vehicles w.r.t. the total energy con-
sumption between two successive stops. Based on four principle
operating modes – acceleration, cruising, coasting, and braking
– energy-optimal trajectories are computed by optimizing the
sequence of operating modes as well as the corresponding
switching points. The optimization involves two consecutive steps:
As a basic technique in the first step, a multimodal optimization,
namely the Firefly Algorithm (FFA), is utilized to determine the
boundaries defined by the timetable request regarding both time
and position constraints. In a second step, the energy-optimal
solution will be determined within the remaining parameter space
reduced by the first step. The advantages of this approach are
pointed out by detailed simulation results.

Index Terms— Multimodal optimization, firefly algorithm,
energy-optimal trajectory planing, simulation of railway vehicles

I. INTRODUCTION

The trajectory planning for railway applications strongly
profits from the previous knowledge about the duty cycles and
their characteristics. Whereas road-based traffic applications
have to deal with a lot of uncertainties (e.g. unscheduled stops,
traffic jams or unknown routes) that affect the driving style,
the conditions for railway traffic are in most cases known in
advance – like distances, arrival and departure times, speed
limits, traffic stops, as well as altitude and tunnel profiles.
Based on this previous knowledge, the scheduled time reserve
between a time-optimal trajectory (all-out trajectory) and the
required timetable may be utilized to optimize the driving
style with regard to several objectives such as the reduction of
mechanical wear, the reduction of regionally noise pollution
or – as the main objective in the current paper – the lowering
of the energy consumption.
This energy-optimized driving strategy can be implemented in
real-train operations either in the form of a driver advisory
system (DAS) or for an automatic train operation (ATO).
As an intelligent driving style reduces both the total energy
consumption and CO2 emissions, such a strategy leads both
to economic and to environmental benefits.
In the past, a lot of approaches for optimizing the driving
style of railway vehicles have been published. Representing a
very common technique for this kind of application, dynamic
programming was applied in several publications like [1] and

[2]. Further contributions like [3] and [4] investigated model-
based approaches, which included a combination of a model-
based heuristic for the trajectory planning as well as proper
optimization techniques to parametrize this heuristic. It is
based on the assumption that the energy-optimal trajectory
consists of four driving modes – namely acceleration, coasting,
cruising and braking. Like in [3], [4] and [5], the switchings
between the driving modes are implemented by a trajectory
planning module. For an energy-optimal trajectory planning,
the switching-points haves to be optimized in order to find a
trade-off between the avoidance of high velocities (avoidance
of high aerodynamic resistance forces) on the one hand and the
maximisation of the duration of coasting (no active propulsion)
on the other hand. Accordingly, two parameters are introduced,
defining the maximum velocity as well as the length of the
coasting phase, that represent the optimization parameters of
the trajectory planning problem. These two parameters as well
as the functionality of the trajectory planning module are
elaborated in more detail in Sect. III.
In [5], the energy-optimal setting for these two parameters is
determined in one optimization step only – by defining an
objective function that accounts for the total energy consump-
tion and includes additional penalty functions addressing given
time and position constraints of the timetable. As the resulting
optimization problem may take a non-convex form and as
the calculation of gradient information w.r.t. the objective
function may become difficult or even impossible due to
discontinuities, a particle swarm optimization (PSO) according
to [6] is envisaged. However, a high number of particles and
iterations must be accepted in order to calculate the optimal
solution. This results in a high number of simulations and a
corresponding high calculation effort.
The main contributions of this paper can be stated as follows:

• The new two-step optimization approach presented in this
paper allows for a significant reduction of the number of
simulations.

• It enables the use of a detailed simulation model in
practice-relevant tasks.

• It leads to a reduced calculation effort by keeping the
high accuracy of the result.

The presented optimization approach is characterised by two
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consecutive steps, see Fig. 1.

Figure 1. Optimization process with two consecutive steps.

In the first step, the boundaries of feasible solutions, reflecting
both position and time constraints of a given timetable, are
determined. For this step, a simple simulation model covering
the mechanical characteristics of the train only, see Sect. II,
is employed. To implement this first optimization step, an
objective function is defined that comprises only the penalty
terms w.r.t. the constraints. As a result, this objective function
is characterised by a flat region (with vanishing gradients)
within the non-penalized search space. To find the boundaries
of this specific objective function, a multimodal optimization
approach is used. Here, a slightly modified firefly algorithm
according to [7] is chosen. More details regarding the set-
up of this objective function as well as an approach for the
optimization of the flat objective function is presented in
Sect. IV.
In the second optimization step, the energy-optimal velocity
profile is determined by taking advantage of the heavily
reduced search space. For this purpose, a detailed simulation
model is derived in Sect. II to calculate the energy consump-
tion for a specific track and train characteristic.
The corresponding simulation results are summarized and
assessed in Sect. V, whereas Sect. VI concludes the paper
and gives an outlook on future work.

II. MODEL OF THE RAILWAY TRACTION CHAIN

The presented work utilizes a single-train simulation model,
which was developed in the EU-founded project [8]. Within
the scope of [8], the simulation model was verified by indus-
trial partners throughout the railway sector, see [9].
In this paper, the traction chain simulation model for an
electrically driven railway vehicle with an AC power supply is
considered, see Fig. 2. The presented optimization approach,
however, is not limited to this scenario but is applicable
to alternative traction chain characteristics, including trains
with an internal combustion engine, hybrid trains or fuel-cell
powered traction chains.
Here, the considered simulation model is implemented in the
form of a backward simulation, an inverse system model that
is based on a block structure that reflects the reverse direction
of the physical power flow from the output to the input.
Based on a desired velocity profile, a power profile for every
single component as well as a total energy consumption at the
energy source – here, the catenary – can be calculated. The
determination of a proper desired velocity profile is the main

Figure 2. Detailed simulation model of an electrical driven railway vehicle
with AC power supply.

objective of the trajectory planning module, which is the topic
of Sect. III.
As a detailed description of the simulation model can be
already already in [5] and [10], only a short summary of the
simulation model is given below:
As indicated in Fig. 2, the evaluation of the first optimization
step requires only the mechanical properties of the vehicle.
The equation of motion, i.e., the differential equation for the
vehicle velocity v(t), is given by

krotMv̇ = Fwheel−
(
c0 + c1v+ c2v2)︸ ︷︷ ︸

Fres

−Msin(γ)g︸ ︷︷ ︸
Finc

. (1)

Here, M denotes the total mass of the vehicle, krot is a factor
accounting for the additional rotary masses, Fwheel stands
for the force at the wheel, whereas the three coefficients
c0,c1, and c2 represent the driving resistance Fres described
according to the equation of Davis. Moreover, the inclination
γ characterizes the inclination force Finc.
The detailed simulation model of the total traction chain,
however, is evaluated for the second optimization step as an
accurate value for the total energy consumption is desired.
The requirement to track the desired velocity profile, in
compliance with the mechanical properties of the vehicle,
leads to a total power request at the wheel Pwheel . The energy
losses of the included electrical traction components – motor,
motor converter, absorption circuit, line converter, transformer,
auxiliary converter – are determined by the evaluation of
efficiency maps and idle loss characteristics. In addition to
the energy losses of the traction components, the ones of the
auxiliaries are considered as well. Here, auxiliary power is
required among others for the power profile for the HVAC
systems (heating, ventilation and air conditioning), the power
request for electrical on-board devices as well as the cooling
power profile for the traction components.

III. OPERATING STRATEGY OF THE TRAJECTORY
PLANNING MODULE

The heuristic employed in the trajectory planning module
was elaborated in previous work, see [3] and [5]. For the sake
of completeness and to facilitate the understanding, the basic
pillars of this heuristic are briefly summarized in the sequel.
To determine the optimal driving strategy, the proposed ap-
proach uses four basic driving modes, namely:



• Acceleration – limited by the maximum traction effort
and the passenger comfort,

• Cruising – motion at a constant velocity level (no accel-
eration),

• Coasting – motion without active traction or braking at
the wheels,

• Braking – limited by the maximum braking effort as well
as the passenger comfort.

The vehicle motion during this four modes can be simulated
using the equation of motion according to (1). Here, further
physical constraints are taken into account, in particular the
maximum traction effort, which is defined by the torque/speed
characteristic of the traction motors, and a maximum admis-
sible acceleration to guarantee passenger comfort, see [10].
Fig. 3 shows an exemplary trajectory profile consisting of a
combination of all these different driving modes. As indicated
in Fig. 3, the switching points between the driving modes
define the individual velocity profile. The switching conditions
are implemented within the trajectory planning module and are
discussed in the sequel.

Figure 3. Exemplary trajectory profile based on four characteristic driving
modes.

As already mentioned, the optimal location of the switching
points corresponds to a trade-off between the maximum ve-
locity and the amount of coasting. Therefore, two trajectory
parameters bc and pv are introduced. The parameter bc defines
the distance sc, where the coasting mode will be activated.
Given the fixed distance send towards the next station, the
coasting point is calculated as follows

sc = bcsend with bc ∈ [bc,min > 0; bc,max < 1] . (2)

The desired maximum velocity vd of the travel segment is
given by

vd = pv max
{

vlim,k
}

with pv ∈ [pv,min > 0; 1] . (3)

Here, the various segment-specific speed limits are denoted by
vlim,k, whereas pv serves as the second optimization parameter
of the desired trajectory. A simple example explaining the
impact of the two trajectory parameters pv and bc is illustrated
in Fig. 3.
The braking distance sb denotes the maximum distance pos-
sible to initialize braking in order to still meet given distance
constraints for the next stop or the next speed limit. This point
is determined by an evaluation of the equation of motion (1)
in backward-time direction using the maximum braking effort

available.
With this parametrisation of the trajectory planner, the switch-
ing conditions for changing the driving state are defined. The
trajectory always starts with the acceleration mode, followed
by a sequence of other driving modes that are activated as
soon as one of the switching conditions I,. . . , VI is fulfilled
and enforces a new driving state. These switching conditions
are chosen as follows:

I: (v = vd)∨ (v = vlim)
II: (v < vd)∧ (v < vlim)

III: (v = vb)∨ (v > 0)
IV: (s≥ sc)
V: (s < sc)

VI: (s≥ sb)∧ (v > vb)

Consequently, the trajectory planning module is capable of
creating a proper velocity profile, utilizing the switching
strategy as depicted in Fig. 4.

Figure 4. Structure and functionality of the trajectory planning module.

This functionality of the trajectory planning module allows for
several alternative trajectory modes – with different character
and style. To illustrate this variety, a simple example with only
one speed limit is presented in Fig. 5.

Figure 5. Trajectory modes based on different driving styles.

Here, the red line represents the time-optimal solution, which
is denoted as all-out mode. The time-optimal profile includes
no coasting and fully exploits the maximum speed limit.
Hence, it is characterised by the parameter combination pv = 1
and bc = 1. The presentation of the all-out profile is included
only for the purpose of expressing the functionality of the
trajectory planning approach. However, it does not meet the
desired arrival time of the timetable, it arrives too early, and
will not be part of the following discussion.



In contrast, all other velocity profiles fulfil the timetable. For
instance, a fixed parameter pv = 1 defines the green curve,
which represents a characteristic profile for maximising the
amount of coasting (utilizing maximum speed limits). Here,
only the parameter bc has to be determined in order to meet
the timetable constraints. In this work, a bisection technique is
employed for this purpose. In analogy, the yellow curve repre-
sents another important driving profile, which corresponds to
a trajectory without coasting. Here, the parameter bc = bc,max
is fixed, which excludes the possibility of coasting. To fulfil
the timetable requirements, the maximum velocity has to be
reduced. Again, a bisection algorithm is used to determine the
corresponding parameter pv defining the admissible maximum
velocity.
In Fig. 5, the bold orange curve indicates all parameter
combinations that allow for meeting the timetable. This curve
emphasizes the solutions of optimization step I. The determi-
nation of the energy-optimal solution, represented by the blue
curve, within this reduced parameter set is the objective of
optimization step II.

IV. OPTIMIZATION OF A FLAT OBJECTIVE FUNCTION
REPRESENTING THE CONSTRAINTS

This section deals with the determination of flat regions in
the surface described by the objective function. Here, a flat
region is defined as a part of the objective function charac-
terized by a vanishing gradient. The objective is to determine
the boundaries of these flat regions. The presented approach
takes advantage of the firefly algorithm (FFA), cf. [7], which is
capable of solving multimodal optimization problems. A short
summary of the FFA as well as a demonstration example are
provided below.

A. Summary of Firefly Algorithm

The firefly algorithm belongs to the class of particle opti-
mization. As all particle optimization techniques, it does not
require any gradient information of the considered objective
function. Additionally, the firefly algorithm is capable of
finding multiple optimal solutions, including local solutions as
well. This property is beneficial because it allows for a higher
flexibility if the globally optimal solution is not applicable for
some reason.
As the name indicates, the FFA is inspired by the swarm be-
haviour of fireflies in their real natural environment. The light
emission of the fireflies serves for attracting both potential
pray as well as mating partners. For the firefly algorithm, the
analogy between the light intensity and the attractiveness is
exploited. Here, maximising the light intensity corresponds to
optimizing the objective function J(x).
In the sequel, the position of the i-th particle within a 2-
dimensional search space is denoted by xi = [xi yi]

T . The
attractiveness of a single particle i w.r.t. another particle j
is described by

β (r) = β0e−γr2
i j , (4)

where the Euclidean distance ri j between the two particles is
given by

ri j =

√
(xi− x j)

2 +(yi− y j)
2 . (5)

The coefficient γ denotes an absorption factor in analogy to the
absorption of light emitted by the fireflies. The attractiveness
of a firefly for r = 0 is defined as β0. Please note that
the absorption factor represents a parameter to be adjusted
according to the width of the given search space.
Based on this definition of the attractiveness and the additional
assumption that the motion of the firefly is only motivated
by fireflies with higher attractivity, the motion of particle i is
governed by

xi+1 = xi +β (r) ·
(
x j− xi

)
+α · rand([−0.5, 0.5]). (6)

Here, the coefficient α characterises the effect of the random
proper motion. The expression rand([−0.5, 0.5]) denotes a
randomly distributed number in the range of [−0.5, 0,5].
Typically, there is an underlying heuristic to increase the
randomness factor α during the progression of the iterations.

B. Demonstration Examples for Determining Boundaries by
Multimodal Optimization

To express the capability of optimizing a multimodal objec-
tive function, including a flat region, this section demonstrates
the application of the FFA to a simple example:
The considered objective function is given by

J′(x,y)=



2 if (x+2)2 +(y+4)2 < 1,

e(−(x−4)2−(y−4)2) . . .

+ e(−(x+4)2−(y−4)2) . . .

+2e(−(x+1)2−(y+4)2) . . .

+2e(−(x−1)2−(y−1)2) else.

Here, a flat region exists in addition to three other relative
maxima. The simulation result for 100 particles after the
completion of 50 iterations is depicted in Fig. 6.

(a) Demonstration function J′(x,y).
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(b) Particle distribution after 50 it-
erations for demonstration function
J′(x,y).

Figure 6. Application of FFA for an objective function with a flat region.

As visible in Fig. 6 (b), the algorithm is capable of determining
all optimal regions. Within the flat region, the particles are
evenly distributed. By an proper geometrical evaluation of the



particle position at the end of the optimization process, the
boundaries of the flat region can be determined. Please note
that the algorithm can be easily applied for any minimisation
task as well by evaluating

min
x

(J(x)) = max
x

(−J(x)) . (7)

V. APPLICATION TO A RAILWAY SCENARIO

The objective of this section is the application of the
optimization strategy presented above to a selected railway
scenario. A set of generic railway architectures and proper
parametrized traction chains are developed in [8] and [11].
In this paper, a high-speed train service is chosen. This
train service is characterised by a high vehicle speed over a
long distance. Especially for this service, an energy-optimal
trajectory planing offers a huge potential in terms of energy
saving. The reason is that the trade-off between the avoidance
of high aerodynamic drag and the possible coasting is distinct.
For the presented railway application, a high-speed train with
a maximum speed of 300 km/h is considered, approaching 3
different stations (start, intermediate and final) and covering
a total distance of 300 km.
Within this section, the two steps of the optimization process
are applied for this specific scenario:

Step I:
Determination of Boundaries Defined by the Timetable
The objective of the first step is the determination of the
boundaries taking into account the given time and position
constraints of the timetable. The desired departure and arrival
times t0, t f as well as the corresponding positions s0, s f are
utilized to define the following penalty functions

Js =

{(
sdr− (s f − s0)

)2 if
∣∣sdr− (s f − s0)

∣∣> ∆s,
0 else,

(8)

and

Jt =


(
tdr− (t f − t0)

)2 if
∣∣tdr− (t f − t0)

∣∣> ∆s,

0 else.
(9)

Here, ∆t and ∆s are admissible time and position tolerances
for the arrival at the station. These penalty functions assess
the calculated driving time tdr as well as driving distance sdr,
which are determined using the mechanical model of the train,
see Fig. 2.
As a result, the overall cost function for the first optimization
step is chosen as

JI =

{
Jt + Js if Jt 6= 0 ∨ Js 6= 0,

J0 else.
(10)

The term J0 ≤ 0 characterises the flat region of the objective
function, where no active constraints are applied. The solutions
of the optimization problem for step I can now be stated as[

pI
v, bI

c
]
= arg

{
min
pv,bc
{JI(pv,bc)}

}
. (11)

The evaluation of the FFA for this objective function leads
to a particle distribution that represents the parameter space
where all the timetable constraints are fulfilled.
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tion A to B.

0.7 0.8 0.9 1
b

c

0.8

0.85

0.9

0.95

1

p
v

solutions fulfilling the timetable

fitted curve

upper boundary

lower boundary

(b) Result of first optimization step
(FFA-application) for travel from sta-
tion B to C.

Figure 7. Application of the first optimization step to the high-speed scenario.

Fig. 7 depicts the resulting particle distribution as well
as a fitted curve representing averaged solutions, which
are determined by utilizing common fitting techniques.
Additionally, it is possible to determine upper as well as
lower bounds to include the resulting solutions and define
an interval for the permitted parameters. Note that the width
of this interval is correlated with the admissible time and
position tolerances ∆t and ∆s.

Step II:
Determination of the Energy-Optimal Solution
Thanks to step I, the parameter space is limited to a set
of feasible parameters. Now, the objective of step II is the
determination of the energy-optimal solution. Hence, the
objective function for the second step is related to the total
net-energy of the train

JII = Etotal = Econs−Erec . (12)

Here, the total net-energy is the sum of the energy taken from
the net Econs and the recuperated one Erec. For this objective,
the complete traction chain of the train (see Fig. 2) has to be
evaluated to calculate the total energy consumption. Hence,
the corresponding solutions for the optimization problem of
the second step can be stated as[

pII
v , bII

c
]
= arg

{
min

pv∈pI
v,bc∈bI

c

{JII(pv,bc)}
}
. (13)

Also for this optimization problem, gradient information is
not available. Instead, several gradient-free optimization tech-
niques may be applied. For the illustration of the applied
scenario, selected energy consumptions for the average charac-
teristic as well as for the upper and lower boundary are shown
in Fig. 7.
As depicted in Fig. 7, the energy consumption for the lower
and higher boundary is decreased and increased in comparison
to the averaged solutions, respectively. This effect is caused by
the definition of the admissible time and distance tolerances
∆t, ∆s – the lower boundary, e.g., is defined by the longest ad-
missible travel time (tmax = (t f − t0)+∆t) in combination with



the shortest permissible travel distance (smin = (s f − s0)−∆s),
which obviously leads to a decreased energy consumption. For
the upper boundary, this correlation is applicable vice versa.

(a) Total energy consumption for the
travel segment from station A to B.

(b) Total energy consumption for the
travel segment from station A to B.

Figure 8. Total energy consumption for highspeed scenario.

Hence, the average curve can be considered as the solution
with minimum deviations regarding the desired timetable. In
Fig. 9, the resulting speed profiles for the highest and lowest
energy consumption for the mean characteristic are depicted.
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Figure 9. Comparison of the worst and best velocity profile according to the
energy-consumption.

It becomes obvious that the worst solution is related to
the approach of maximising the amount of coasting, which
is, however, a standard approach in railway operation. The
optimal solution allows for a significant reduction in the
energy consumption and clearly points out the benefits of this
optimization study.
The total energy consumptions for both scenarios are com-
prised in Tab. I.

Energy consumption
in kWh

Total energy
savings in kWh

Total energy
savings in %

Segment Maximum
coasting

Optimized
trajectory

Station A–B 1033 1000 33 ≈ 3.2
Station B–C 4070 3766 304 ≈ 7.5
Total net
energy

5103 4766 337 ≈ 6.6

Table I
ENERGY SAVINGS DUE TO THE ENERGY-OPTIMAL DRIVING STYLE.

VI. CONCLUSIONS AND OUTLOOK ON FUTURE RESEARCH

In this paper, an optimization regarding energy-optimal
velocity profiles for railway vehicles is presented. As one pillar
for the calculation of the velocity profiles, a heuristic trajectory
planning module is proposed. This module defines switching
points between typical driving modes. As a second pillar, a
detailed simulation model of the complete traction chain for

the application scenario is presented as well.
A two-step optimization approach was presented for determin-
ing the energy-optimal switching points for the driving modes:
In the first step, a reduced-order simulation model was eval-
uated to determine boundaries caused by time and position
constraints according to the desired timetable. For this pur-
pose, a proper objective function was defined, where the
admissible solutions are located within a flat region with
vanishing gradients. To calculate the boundary of this flat
region, a firefly algorithm (FFA) was successfully applied.
In the second optimization step, the energy-optimal solution is
determined within the reduced parameter space by evaluating
the total energy consumption with the simulation structure of
the total traction chain.
In future research, the investigation of further operating sce-
narios is planned. Especially, the consideration of altitude
profiles is of great interest, because the benefit of applying
energy-optimal driving strategies is even more distinct. The
reason is that the consideration of an altitude profile allows
for additional driving modes (e.g. acceleration/deceleration
without any traction power at the wheel during downhill/uphill
sections).
Moreover, a holistic optimization of the driving style in com-
bination with further operating strategies – strategies for the
energy storage system (ESS) , component switch-offs during
low load phases, adjustments of the auxiliary load according
to the driving mode – is of great interest.
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