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Abstract—Despite the significant number of strategies pro-
posed for many-objective optimization, most studies lack the
evaluation of their algorithms in real-world applications. In this
research, we present the analysis of the application of a recently
proposed hyper-heuristic for many-objective optimization to the
wind turbine design problem. This application is a representative
problem for renewable energy, with 32 variables, 22 constraints,
and five objectives. In this study, we solved this problem using the
cooperative hyper-heuristic (HH-CO), which uses eight MOEAs
on its pool, and switches among them during the search. These
MOEAs are representative strategies to deal with multi and
many-objective optimization; within HH-CO, every MOEA has
its internal population. This behavior is particularly suitable
for many-objective optimization, where each MOEA has its
criteria to select the solutions that will be preserved for the
next generation. Besides, the MOEAs exchange information after
being applied, with this migration step, all MOEAs update their
private information even if they were not employed. We also
evaluate the set of eight state-of-the-art multi-objective evolu-
tionary algorithms (MOEAs), adapted to handle constraints. The
empirical analysis uses the hypervolume (HV) quality indicator to
evaluate the results and, the HH-CO achieved results competitive
to the best MOEAs.

Index Terms—Many-objective optimization, Continuous opti-
mization, Real-world applications, Constrained optimization, Se-
lection Hyper-heuristics, Evolutionary Algorithms, Cooperative
Hyper-heuristics

I. INTRODUCTION

Many-objective optimization is a relevant topic in the evo-
lutionary multi-objective field. Therefore, different benchmark
problems have been proposed in the last two decades, for ex-
ample, DTLZ [1], WFG [2], and MaF [3]. In response, several
algorithms have appeared to tackle these problems. However,
these MOEAs (Multi-objective Evolutionary Algorithms) are
usually not evaluated on real-world applications. As a conse-
quence, there are only a few studies on many-objective real-
world problems [4]. A probable reason is the lack of well-
established real-world problem formulations, mainly when
dealing with continuous optimization.
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Recently, the 3rd Evolutionary Computation Competition
presented a real-world many-objective problem [5]. This prob-
lem is an instance of the wind-turbine design for wind power
generation, a relevant problem for renewable energy. It pro-
vides the modeling for the problem and an evaluation module
that computes the objectives and constraints given the variable
values. In addition, it established a methodology for evaluating
algorithms in this problem. It is important to highlight that this
problem, and most real-world problems, have constraints that
must be satisfied. Commonly, researches on many-objective
evolutionary algorithms do not concern about dealing with
constraints. On the other hand, there are examples of how
to extend dominance-based and decomposition-based MOEAs
to deal with these challenges [6].

In many-objective optimization, it is usually discussed that
Pareto based evolutionary algorithms do not scale well when
the number of objectives to be optimized increases. The pri-
mary characteristic observed is the lack of selection pressure,
since, in a high dimensional space, most solutions become
non-dominated to each other (not comparable). Therefore,
different types of MOEAs were proposed, especially those
based on decomposition, reference points, and indicators.
However, depending on the problem characteristics, Pareto
based MOEAs can achieve results similar to or better than
state-of-the-art many-objective evolutionary algorithms [7].
Thus, choosing an appropriate algorithm to solve a problem
becomes another difficult task to be solved.

In this scenario, the use of hyper-heuristic can contribute
to solving many-objective optimization problems. Hyper-
heuristics (HH) are high-level strategies for selecting (or
generating) heuristics [8]. They assume that there is no single
algorithm that can solve every problem in a reasonable time.
In other words, if one algorithm is the best for one prob-
lem, another algorithm is better for another. This behavior
can be observed on many-objective optimization since the
performance of the algorithms depends on the problem char-
acteristics [7]. Hence, HH may contribute to solving a many-
objective problem. In the online case, the HH task is choosing
the algorithms to be applied for a given problem during the



search. Moreover, the best performing MOEA may be different
for different stages of the search; therefore, the hyper-heuristic
switches from MOEAs as the evolution progresses.

In this research, the recently proposed wind-turbine design
problem is solved using a set of eight algorithms, representing
different strategies for many-objective, and HH-CO, a recently
proposed hyper-heuristic with favorable results compared to
a state-of-art hyper-heuristic HH-LA [9]. Additionally, as it
is a constrained problem, a constraint handling approach is
incorporated into the algorithms. Thus, this study contributes
to understanding the problem characteristics and the behavior
of state-of-the-art MOEAS on a real-world application.

The remainder of this study is organized as follows: we
present background about many-objective optimization, real-
world applications, and multi and many-objective evolutionary
algorithms, at Section II. Section III details the recently
proposed Cooperative Hyper-heuristic and review other HHs
for multi-objective optimization. Next, Section IV shows the
empirical analysis, including the hypervolume during the
search and the choices made by the hyper-heuristic. Finally,
Section V presents the main findings and guidelines for future
works.

II. BACKGROUND

In this section, we present definitions and discuss some
difficulties in solving many-objective optimization problems.
We describe a classification for multi and many-objective
evolutionary algorithms. Next, we present the strategies used
in this study to deal with constraints. Finally, some real-world
many-objective applications and their main characteristics are
presented.

A. Many-objective Optimization

A multi-objective problem, represented by (1), searches
for a set of values for n decision variables (x), every one
bounded by a lower (L) and upper (U) value, that minimizes
M objective functions simultaneously (due to the duality prin-
ciple, maximization problems can become minimization) [10].
Further, the solutions must satisfy K equality and J inequality
constraints, such that K, J > 0.

Minimize (fl (X), f2 (X), ceey f]w (X)),

subject to  g;(x) >0, j=1,2,....J, |
he(x)=0, k=1,2,...,K, 1)
s <a <2l i=12,.. 0

A many-objective problem is a problem where the number
of objectives is higher than three. This subcategory has re-
ceived the attention of the researchers due to the difficulties
it presents [11], [12]. First, there is a lack of selection
pressure since, in a high-dimensional space, most solutions
become non-dominated to each other. Thus, the algorithm
finds difficulties in distinguishing which solution is better
than others, thus degrading the search ability. Second, the
computational cost for both fitness evaluation and the algo-
rithm operations increases considerably. Besides, the crossover

operation becomes inefficient, as parents tend to be distant to
one another. Moreover, it is hard to maintain the diversity
of the solutions, since the required number of solutions to
represent the Pareto front (which is a hyper-surface) grows
exponentially as the number of objectives increases. Finally,
when the dimensionality is higher than three, the visual
representation of the solutions is hard, which challenges the
decision-maker at choosing the final solution.

B. Multi and Many-objective Evolutionary Algorithms

Multi-objective problems may present Pareto front with
different shapes due to non-linearities, multi-modalities, or
others. Concavities in the objective front are quite common
on many real problems, leading to discontinuities in the
Pareto front. Therefore, derivative-based methods may have
difficulties in optimizing them. Evolutionary Algorithms (EAs)
are particularly suitable for multi-objective optimization with
conflicting objectives due to their population-based meta-
heuristic, gradient-free, black-box characteristics [4], [13],
[14]: EAs can evaluate a set of solutions simultaneously and
can output a set of solutions with different trade-offs between
objectives in a single run. Further, EAs have a relatively low
computational cost to get an acceptable approximation set and
can solve a variety of optimization problems.

When applied to multi-objective problems, the EAs are
called MOEAs. Usually, Pareto-based MOEAs, such as
NSGA-II and SPEA2, are successful for problems with two
and three objectives. However, increasing the number of objec-
tives, new difficulties arise, as commented before. Due to these
difficulties, different types of MOEAs were proposed [11].
For instance, some of these algorithms are quality indicators
based, such as HypE and MOMBI2. Others are based on
decomposition, like the MOEA/D, or on reference points, such
as the NSGA-III. There are also strategies like the SPEA2SDE
that uses modified diversity maintenance and the ThetaDEA,
which uses a dominance relation other than Pareto. These eight
algorithms are representative of different classes of MOEAs.
Furthermore, their performance, compared to one another,
depends on the problem at hand [9] — for more information
about many-objective optimization, see [7], [11], [15].

1) Constraint handling: Only a few studies handle con-
straints in many-objective optimization [6]. In this research, we
used the following strategy: for dominance-based algorithms
(including Pareto-dominance such as NSGA-II, and other
dominance relations, such as ThetaDEA and MOMBI2), the
method computes the objective values and the violation of each
constraint — i.e., how far the constraint value was from being
feasible. Then, it computes the overall constraint violation of
the solution, i.e., the sum of the violations for every constraint.
Finally, every time that the algorithm needs to compare two
solutions (X1, x2), this method defines when x; dominates xo
by [6]:

1) x; is feasible and x5 is infeasible,

2) x7 and Xo are infeasible and x; has smaller constraint

violation value, or



3) x; and x5 are feasible and x; dominates x2 (using some
dominance relation).

Similarly, this method can be extended for decomposition-
based MOEAs, replacing the dominance relation in the third
condition by the aggregation function. In this study, we in-
clude this constraint handling method into the eight evaluated
algorithms.

C. Real-world applications

There is in the literature examples of real-world many-
objective applications. These examples include the engineering
design [16], a generic formulation aiming at minimizing a set
of constraints. Other examples are the air traffic control prob-
lem, this problem has hard (must be satisfied) and soft (must
be minimized) constraints [17]; scheduling problems, such as
nurse rostering [18], with more than 20 objectives; radar wave-
form design [19], with nine objectives and an integer decision
space; hybrid car controller [20], with seven objectives; space
trajectory design [21] that has up to six objectives; vehicle
routing (M = 6) [4]. Other many-objective examples are the
dispatch of produced electrical power and some problems from
Search-Based Software Engineering (SBSE) [4]. A relevant
example is the water resource planning [22], with five objec-
tives and seven constraints. This problem uses recorded pre-
cipitation data for planning storm-drainage systems for West
Lafayette city. Some works used this problem as validation,
together to benchmark problems [6].

Most of these examples are discrete problems. The con-
tinuous problems usually fall into the engineering design.
However, the descriptions provided are usually not enough for
reproducibility; frequently, the objective functions, decision
variable ranges, and constraints are not fully described. In
other cases, the optimization requires a simulation module,
commonly not easily accessible. In this study, we use the Wind
Turbine Design problem, described next.

1) Wind Turbine Design Optimization Problem: 1t is a
problem proposed for the 3rd Evolutionary Computation Com-
petition organized by the Japanese Society of Evolutionary
Computation [5]. All information about this problem is avail-
able in the competition website.! This problem has 32 real
coded variables that represent measures and parameters of
the turbine. In detail: four variables for blade chord length
in different blade span directions; the blade maximum chord
length position; four directions of blade mounting angle; five
directions of spar-cap thickness; five for trailing edge panel
thickness; three for blade precurve; the ratio between rotational
speed and wind speed; maximum rotation speed; blade length;
tower waist position; three height directions of tower outer
diameter and three of tower thickness. The upper and lower
bound variate for each variable, however, they are normalized
encoded between 0.0 and 1.0 and later converted by the
evaluation module.

Uhttp://www.jpnsec.org/files/competition2019/EC-Symposium-2019-
Competition-English.html

For the many-objective formulation, there are five objec-
tives. All objectives are of minimization, using negative values
for the first objective:

1) Annual power production: to increase profits.

2) Average annual cost: to reduce power generation costs.
3) Tower base load: to reduce construction cost.

4) Blade tip speed: to reduce noise.

5) Fatigue damage: to extend the service life.

Besides, there are 22 constraints, described in the form
g(x) > 0. When g¢(x) is greater than zero, the constraint
is satisfied. The constraints prevent damages, such as the
collision of the blade with the tower, avoid resonance, and
overload. Also, to ensure minimum life, guarantee manufac-
turability and weldability, and limits noise. Therefore, there are
also constraints to prevent failures and to avoid non-physical
solutions [5].

Moreover, the competition provides an evaluation module
that computes the objectives and constraints given as input the
decision variables. Besides, it provides a post-processing tool
for calculating the hypervolume from the history of solutions
found during the search. The maximum number of fitness
evaluations (FE) is 10,000. According to the competition,
the module takes about three seconds to evaluate a single
solution. Therefore it would take about eight hours only to
evaluate all 10,000 generated solutions [5]. This number of
FE is relatively small, in comparison, a problem with the same
number of decision variables, in the MaF benchmark, would
run for 320,000 FE [3].

III. COOPERATIVE HYPER-HEURISTIC

In this research, we focus on the heuristic selection for
controlling multiple metaheuristics [8]. The studies in this
field can be split into three kinds [9]. In the first, the hyper-
heuristic adaptively divides the population, i.e., the better
the performance of a MOEA on the past generation, the
higher is the number of individuals of the share popula-
tion it will receive. Examples in this kind are the Multi-
Indicator Genetic Algorithm (MIGA) [23], AMALGAM [24]
and MOABHH [25] based on Copeland voting.

The second kind is competitive hyper-heuristics. In this
category, at each decision point, the HH selects a MOEA
and applies it for a fixed duration. Then, the executed MOEA
delivers the final population to the subsequent MOEA. The
next algorithm is selected based on its past performance. An
example of this category is the Choice-Function based hyper-
heuristic CF-HH [26], that online selects from three MOEASs
— it outperformed the three MOEAs and AMALGAM. An-
other example is HH-LA [27], based on Learning Automata
— HH-LA achieved better results than CF-HH.

Finally, there are cooperative hyper-heuristics. In this cate-
gory, the HH iteratively selects one algorithm and applies it.
Then, the employed algorithm shares solutions to other algo-
rithms. At this step, every algorithm updates its internal popu-
lation and parameters. In this study, we focus on this category,
specifically on the Cooperative Hyper-heuristic (HH-CO) [9],
a recently proposed HH. HH-CO was successfully applied to



Algorithm 1: Cooperative based Hyper-heuristic

Data: pool of MOEAs

initialization;

while the stop criterion is not met do

foreach moea € MOEAs do
old; < copy_population(moea);

end

selected < heuristic_selection(MOEAs);

offspring < execute(selected);

foreach moea € MOEAs do
migration(moea, offspring);
new; < copy_population(moea);
reward « get_improvement(old;, new;);
set_reward(moea, reward);

end
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many-objective optimization, compared to the MOEAs that
composed its pool and HH-LA. The next section details the
HH-CO procedure and its parameters. For more information
about multi-objective hyper-heuristics, see Section 6 of [8].

A. HH-CO

HH-CO is a recently proposed hyper-heuristic for many-
objective optimization [9]. It achieved competitive results
when compared to the MOEAs from its pool, and better
results than a state-of-the-art HH. HH-CO uses the cooperation
of multiple MOEAs to solve a problem instance. Its main
characteristics are that every algorithm keeps its information
(such as population, nadir approximation, and others) and
communicates to others during all the search. The hyper-
heuristic decides which algorithm is going to generate solu-
tions in the next iteration. (Algorithm 1 details HH-CO [9]).

HH-CO receives as input a set of MOEAs and the prob-
lem instance to be solved. First, it initializes the MOEAs
populations and their parameters; and the heuristic selection
method. Next, it executes the main loop until the stop criterion
is satisfied. In the main loop, it copies the population of
all MOEAs. Later, a selection criterion chooses a MOEA
from the pool. This MOEA is then executed and generates
new solutions. At the cooperative phase, it sends the newly
generated solutions to all other MOEAs. Then, each MOEA
filters the incoming solutions using its environmental selection
method — therefore, incorporating solutions according to their
criteria. Finally, HH-CO rewards every MOEA based on the
improvement of its population in this iteration. Based on
this reward, the selection method is going to choose which
algorithm will produce the next generation [9].

HH-CO uses the R2 improvement to reward the heuristics.
The R2 measures the average of the best Tchebycheff ag-
gregation value for each weight vector (we used the same
vectors as NSGA-III [6]). Compared to the hypervolume, the
R2 presents less computational cost (begin better suited to be
used during the search); and it is assumed to favor uniformly

distributed fronts [28]. After the reward, HH-CO applies a
greedy selection strategy; i.e., it chooses the one with the
best reward in the last iteration. Also, the communication
topology is broadcast, as every MOEA shares information
with all other MOEAs. However, the implementation supports
any other topology strategy, as every MOEA keeps a list of
neighbors [9].

IV. EMPIRICAL ANALYSIS

In this section, we present an empirical analysis of
eight state-of-the-art MOEAs and the HH-CO on a recently
proposed many-objective problem. In this study, HH-CO
uses eight MOEAs on its pool, namely: NSGA-II, SPEA2,
ThetaDEA, NSGA-III, MOMBI2, SPEA2SDE, HypE, and
MOEA/D. We selected those state-of-art algorithms due to
their diversity of characteristics and good results presented in
the literature. Including Pareto based MOEAs, since recent
research has demonstrated that they can outperform many-
objective EAs depending on the problem characteristics, even
for a high number of objectives (e.g., 10) [7]. It is important
to note that all the algorithms were modified to handle con-
straints.2 Further, HH-CO reward, which uses the improvement
of the R2 metric, was also adapted to consider the constraint
violations (using the decomposition-based strategy). In these
analyses, each MOEA uses its default parameter setting pro-
posed in the literature [9]. Therefore, simulating an off-the-
shelf use, rather than a fine-tuning to find the best parameter
setting for each algorithm. The discussions are drawn over the
different strategies used by each MOEA. Finally, the parameter
setting of each MOEA is the same when applied individually
or within the hyper-heuristic.

The problem instance is the Wind Turbine Design problem,
with five objectives, 32 variables and 22 constraints, detailed
at Section II-C1. A module, publicly available [5], evaluates
the objective functions and constraints. The maximum number
of fitness evaluations (FE) is 10,000, and the population
size is 210 for all algorithms [12]. That yields to 47 itera-
tions (9,870 FE), including the random initialization of the
populations. Finally, the hypervolume (HV) quality indicator
evaluates the results. The HV measures the volume of the
space dominated by an approximation front, bounded by a
reference point [7] (given by the competition). Besides, the
HYV values presented are normalized and takes only the feasible
solutions that dominate the reference point.

A. Wind Turbine Design Analysis Results

For the empirical analysis, we evaluated the hypervolume
during the search of the eight MOEAs and the HH-CO. The
hypervolume is computed over an unbounded repository of
non-dominated solutions (i.e., every time one generates a new
solution, its repository is updated, and the HV computed).
In this analysis, hypervolume equals zero represents that no
feasible solution dominates the reference point (probably, all
solutions found so far are infeasible). Next, we present two

2The implementation of all MOEAs uses the jMetal framework:
https://github.com/jMetal
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Fig. 1: The median hypervolume of an external repository of non-dominated solutions for the HH-CO (dashed line) and every

MOEA (other lines) during the search.

analyses: first, the analysis of the median HV trial (considering
the external repository at the end of the search) of each MOEA
and HH-CO. Then, an analysis of the overall behavior for 21
runs.

1) Analysis for the median run: In Fig. 1, the dashed line
shows the HV for HH-CO, and the other lines the HV of
every MOEA. First, the best performing MOEA, considering
the median HV, was NSGA-III, the second-best MOEA was
ThetaDEA, note that it performed worse than most MOEAs
during most of the search (from FE 2,000 to FE 7,000).
Then, SPEA2 and SPEA2SDE achieved similar HV at the end.
However, SPEA2 was the slowest MOEA to start converging,
(about 2,500 FE), on the other hand, SPEA2SDE was one of
the best performing MOEAs on the beginning (from FE 2, 000
to FE 6, 000). Furthermore, NSGA-II and MOMBI2 were no
better or worse than other MOEAs considering all the search.
Finally, MOEA/D was the best MOEA up to FE 4, 000, but it
stagnated and finished with the second worse result, followed
only by HypE.

In this analysis, the HH-CO achieved the second-best hy-
pervolume, worse than only NSGA-IIL. It is noticeable that
HH-CO took longer than any MOEA to start converging since
it generates a set of solutions with random values for each
MOEA. Therefore, it took 8 x 210 = 1,680 FE only to
initialize. After that, it converged and had results better than
most MOEAs from FE 6,000 onwards. The HV values of
every MOEA during the search can help us to understand the
choices of the HH-CO at different stages of the search, for
example, which MOEAs it should select more often.

Fig. 2, presents the choices made by the HH-CO during
the search. It makes its first choice after 1,680 FE (i.e., after
the initialization). We can observe that ThetaDEA was the

most selected MOEA (8 times). ThetaDEA and SPEA2 were
the most selected from the middle to the end of the search.
That is, when they perform better, as we have seen on the
hypervolume analysis. Likewise, SPEA2SDE and NSGA-II
were the most selected from the beginning to the middle of the
search. The HH-CO selected MOMBI2, NSGA-III, and HypE
uniformly distributed over the search. Finally, MOEA/D was
the less selected MOEA. The preference for SPEA2SDE at
the beginning could be explained by its diversity preference
(exploration); on the other hand, the application of ThetaDEA
(with & = 5) at the end could provide more convergence
(exploitation) [7].

It is noticeable that the MOEA with the best hypervolume
when applied alone (NSGA-III), was not among the most
selected MOEAs by HH-CO. A possible explanation is the
greedy selection method applied. It seeks to find MOEAs
improving now rather than one that is consistently improving.
However, as the knowledge of every MOEA is kept internally
safe, these wrong choices are not so critical for the search.
Finally, we can notice that HH-CO selected all MOEAs at
least once. In other words, every MOEA improved more than
all others at a given point in the search. That points out to the
importance of the diversity of a set of MOEAs that is used by
HH-CO.

2) Overall analysis: For some analysis, we made use of
boxplots. The boxplot allows visualizing the distribution of
data through their quartiles. A box extends from the first to
the third quartile (the interquartile range - IQR) and measures
variability, with a line at the median. Circles represent outliers,
i.e., data points distant from the box more than 1.5x IQR [29].

In Fig. 3, we present the boxplot analysis for hypervolume
achieved by every MOEA and HH-CO. This analysis gives
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support to the critical difference plot presented in Fig. 4. The
critical difference plot connects the algorithms to their average
ranking of 21 runs. A bold horizontal line connecting two
(or more) algorithms represents that the algorithms dit not
achieved a statistically significant difference to one another.
This overall statistical evaluation is pairwise performed by the
Nemenyi test, with 95% significance [30].

It is possible to observe that the HV of the MOEAs highly
variates from the best to the worst. Also, we can observe that
the two best MOEAs are from those specifically designed for
many-objective (NSGA-III and ThetaDEA). In general, the
best performing algorithms for this problem were NSGA-III,
followed by the hyper-heuristic (HH-CO), and ThetaDEA.
From those three, the statistical test did not find a significant
difference. From the boxplot, we observe that the HH-CO
was the one with the smallest variability in the results among
different runs. Besides, SPEA2 and NSGA-II, Pareto-based
MOEAs, achieved competitive results, without a significant
difference to the state-of-the-art MOEAs like ThetaDEA and
SPEA2SDE. Finally, the worse performing MOEAs for this
problem where MOEA/D, MOMBI2, and HypE. Although the
boxplot shows differences, the statistical test did not find a
significant difference from HypE and the other four worse-
performing MOEAs.

Fig. 5 presents the accumulated number of applications for
every MOEA. In general, HH-CO applied each MOEA about
five times. SPEA2 and SPEA2SDE stand out, applied around
7.5 times each. On the other hand, NSGA-II was the less
applied MOEA. Since each MOEA performs differently during
the search, HH-CO selects them at different search phases.
However, they end up having a similar accumulated number
of applications.

Finally, we present the boxplot with the average execution
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Fig. 3: Boxplot of hypervolume for HH-CO and each MOEA
after 21 runs.
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Fig. 4: Critical difference plot of Hypervolume. Each algo-
rithm is connected to its average ranking from 21 trials, and
a bold horizontal line connects algorithms without significant
statistical difference
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time, of 21 trials, for every MOEA and the HH-CO in Fig. 6.
The experiments ran on an Intel Xeon CPU E5-2640 v3 of
2.60GHz with 32 CPUs and 94GB of RAM. The jobs were
launched by a process queue every time the load average
drops below 15. The MOEAs spent 16.5 to 18 hours (17.3
hours in average), being ThetaDEA the slowest. The HH-CO
took about 19.5 to 20 hours (about 2.5 hours more than a
MOEA in average). It means that, for this problem, running
it once is about 14% slower than running an off-the-shelf
MOEA. The HH-CO highest cost is the migration step. In
this step, it executes the environmental selection method of
each MOEA. Therefore, considering this method as the most
costly, the HH-CO would take /N times more time than a single
MOEA (ignoring fitness evaluations), being /N the number of
MOEAs. In other words, as large the pool of MOEAs, higher
the computational cost of HH-CO.

In summary, the HH-CO is slower than an off-the-shelf
MOEA. However, it is usually unknown a priori the best
MOEA for a problem. If we want to find the best MOEA for
this problem, running every MOEA at once, it will take more
than five days. Therefore, using HH-CO is faster than running
all MOEAs to find the best one. Those conclusions agree with
previous works about HH-CO [9]. It is worth noticing that the
computational cost of HH-CO can be reduced by decreasing
the number of MOEAs in the pool or using communication
topologies other than broadcast. Moreover, as much expensive
is the fitness evaluation, the smaller is the difference between
HH-CO and the MOEAs. Finally, the implementation is the
same for the MOEA applied inside the HH or alone; therefore,
the difference in computation cost of HH-CO and MOEAs is
not related to implementation details.

V. CONCLUSIONS

In this research, we have analyzed a recently proposed
real-world many-objective problem. This problem presents
interesting properties: 32 continuous variables, five objectives,
and 22 constraints. It is simple to reproduce since the fitness
evaluation module is publicly available. Moreover, it can serve
as a baseline for comparison of MOEAs. Based on those
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Fig. 6: Boxplot for the computational time spent by each
MOEA and HH-CO

characteristics, we solved this problem with a set of eight state-
of-the-art MOEAs for many-objective optimization — adapted
to incorporate constraint handling.

The MOEAs presented a significant difference in quality
measured by the hypervolume indicator. Moreover, it was
possible to identify that some MOEAs had a better HV value
at the beginning of the search. Others stagnated after some
iterations, while others took a while longer to start converging
but keep converging during the rest of the search. Finally,
the best-performing MOEAs for this problem were NSGA-III
and ThetaDEA. Both specifically designed for many-objective
optimization. Besides, SPEA2 presented good overall results.
Those results motivated the study of a hyper-heuristic on this
problem.

Next, we applied a state-of-the-art hyper-heuristic for
many-objective optimization, the Cooperative Hyper-heuristic
(HH-CO). Its main feature is the cooperation of the low-level
heuristics, exchanging information at every generation. The
achieved results were competitive to the best MOEA. Further,
we evaluated the choices made by HH-CO. In general, the
choices agree with the best performing MOEAs in different
phases of the search. Finally, we evaluated the computational
cost. The hyper-heuristic was slower than an average MOEA
but with higher quality in terms of Hypervolume. Compared to
the best algorithm, it achieved competitive results. Moreover,
the search for the best option needs to run every MOEA at
least once, and this will take more than five days.

Future works include the evaluation of the impact of dif-
ferent migration topologies for HH-CO, in both benchmark
and real-world problems, considering the quality and the
computing time. Another future work is the study of the
interactions between MOEA pairs and how to create, on-
line, a communication graph maximizing the quality of the
solutions and minimizing the computational cost. Although
the competition provided only one many-objective real-world
problem, it would be interesting to evaluate HH-CO in other
real-world problem instances. Finally, the HH-CO pool could
be improved, including some of the latest MOEAs from
the literature; also, strategies other than MOEAs, such as



MOPSOs and MOEDA:s.
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