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Abstract—Lethal Wilt (Marchitez Letal) is a disease which
affects Elaeis Guineensis, a plant used in the production of
palm oil. The disease is increasingly common but the spatial-
dynamics of the infection spread remain poorly understood. It
is particularly dangerous due to the speed at which it spreads
and the speed at which infected plants show symptoms and die.
Early identification, or even better, accurate prediction of areas
at high risk of infection can slow the spread of the disease and
limit crop waste. This study is based on data collected over a five-
year period from an affected plantation in Colombia. The aim
of the study is to analyse the collected data to better understand
how the disease spreads and then to model the behaviour. Based
on insights from the initial analysis a multi-agent-based system
is proposed to model the pattern of infection. The model is
comprised of two steps; first Kernel Density Estimation is used
to create an estimation of the distribution from which newly
infected plants are drawn and this density estimation is then
used to direct agents on a biased-walk of the surrounding areas.
Results show that the model can approximate the behaviour of
the disease and can predict areas which are at high risk of future
infection.

Index Terms—Lethal Wilt, Palm Oil, Multi-Agent System,
Disease Modelling

I. INTRODUCTION

Worldwide, the palm oil industry leads the supply of oils
and fats within a very dynamic sector. Palm oil is formed
from the mechanical pressing of the mesocarp of the palm
fruit Elaeis guineensis [1]. The applications of this oil are
extremely diverse, from cooking to cleaning products, greases
and lubricants, the production of biodiesel and electrical
energy [2], alongside uses in the leather, steel and textile
industries. It is estimated that one hectare planted with the
most common palm, i.e. Elaeis Guineensis, produces between
6 to 10 times more oil than any other type of oil-seed, and is
second only to soybean oil [3]. One of the highest producers
in South America is Colombia. The Colombian Government
promote it as one of the main agricultural substitutes for
illegal crops, leading to rural job creation and ultimately to
a sustainable peace process. Annually, Colombia produces 1.6
million tonnes of palm oil (2% of global production) [4].
However, successful and sustainable production is increasingly
affected by a relatively new, highly infectious disease known
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(a) Infected palms (b) Eradicated area

Fig. 1. Lethal Wilt symptoms (a), large areas of infected plants now desert
after eradication (b). More photographs are available in [8]

as Lethal Wilt (Marchitez Letal in Spanish). The cause of
the disease is unknown but is believed to be a phytoplasma,
possibly related to the ‘fatal yellowing’ disease which is
known to infect other species of palm plant [5]. Phytoplasmas
are bacterial parasites in plant tissue and it is believed that
insects such as plant-hoppers are responsible for their plant-
to-plant transmission. Phytoplasmas have been associated with
diseases in several hundred plant species [7].

Symptoms of Lethal Wilt include the discolouration (yel-
lowing) of leaves in mature plants (as shown in Figure 1 (a)).
This is followed by leaf drying, tissue necrosis, leaf wilt, and
eventually plant collapse. Plants showing these symptoms are
injected with chemicals and destroyed, leaving large swaths of
a plantation dormant (the aftermath of this culling is shown in
Figure 1 (b)). Lethal Wilt is very destructive because it rapidly
spreads through plantations and kills plants within 4-6 months
after symptoms first appear [9].

This study is based on data collected from the Santa Barbara
plantation in Colombia. The 2, 800 hectare plantation is one of
two plantations owned by Unipalmas [10] a company that is
located in the Meta province (4◦ 13’ 33” N, 73◦ 14’ 50” W).
The data is collected over a five year period from January 2013
to January 2018 and describes 258, 046 plants. The dataset
contains the spatial position of each plant in the plantation,
whether or not the plant displays Lethal Wilt symptoms, and
an associated timestamp (month and year).
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The aim of this study is two-fold. One, to understand the
pattern (if any) of the disease spread over time and two, to
model this behaviour. Modelling the disease allows us to make
predictions and identify areas which are at high risk of future
infection.

We analyse the collected data and use the resultant insights
to justify and inform a multi-agent-based system for modelling
the behaviour of Lethal Wilt over time. The model consists of
two steps; first, at each time step ti we use Kernel Density
Estimation to estimate the probability distribution from which
each of the newly infected plants at ti is drawn. Then, we
use this density function to bias or ‘direct’ a multi-agent-
based local search, whereby agents begin each time-step at
newly infected sites and perform a biased random walk. Areas
which are visited most frequently by the multi-agent system
are considered to be at a higher risk of infection at ti+n

The remainder of this paper is outlined as follows: Section
II outlines relevant, related work. The data, analysis and
developed model is described in Section III. The experimental
set-up, metrics, and results are described in Section IV, and
finally some conclusions along with future directions are
described in Section V.

II. RELATED WORK

Palm Oil production is criticised for its negative envi-
ronmental impact; deforestation, loss of biodiversity, and a
disruption of the carbon cycle. However, this happens less
often in Colombia than in other palm-oil producing countries.
The reason for this is that between 60% and 70% of the palm
oil is not produced on deforested land but on land which was
formerly pasture land for livestock or land previously used to
grow other crops [11]. However, there is still pressure to make
the industry more sustainable. Governmental institutions, and
international bodies, such as the United Nations Framework
Convention on Climate Change (UNFCC) and the Round
table on Sustainable Palm Oil (RSPO) demand that oil palm
production should be managed responsibly and sustainably
with minimal environmental impact. A study [12] on the
academic response to these calls for greater sustainability show
that the number of papers indexed in the Thomson Reuters
Institute for Scientific Information has grown exponentially
from just 4 in 2011 to 713 in 2013 and continues to grow.
The study proposes a framework for palm oil sustainability
and emphasises the necessity for greater collaboration between
industry and academia. An exemplary study [13] uses system
dynamics modelling to investigate the trade-off and synergies
with different approaches to conserve biodiversity while im-
proving people’s livelihood, essentially the trade-off between
development and conservation. Other modelling approaches
are used to predict annual yield [14] and seasonal variation
in yield [15], [16]. In [16] the authors propose OPRODSIM
(Oil Palm Production Simulator) in order predict plantation
responses to climatic changes during the first six years after
planting. The simulation effectively simulates bunch yields and
corroborates measured trends in soil water and crop water use.

Technological applications such as remote sensing are being
used for land cover classification [17] and change detection
[18]. After classifying palm-oil plantations from satellite data,
change detection is used to monitor illegal expansion, or to
identify whether new plantations have been developed on areas
with a high conservation value (HCV). Perpetrators lose their
sustainability certificate or receive heavy fines [19] and the
data can inform local government law-making and regulations.
Remote sensing is also used for tree counting [20], carbon
estimation [21] and others [22], a comprehensive overview of
remote sensing applications in palm oil production is given in
[23]. A particularly relevant application is the use of remote
sensing for disease detection [24], [25]. In [24] a portable hy-
perspectral instrument was used to differentiate healthy plants
and plants infected with the disease Gandoderma boninsis
before the infected plants display symptoms visible to the
naked eye. The authors report a 97% prediction accuracy,
however, the experiments were carried out in laboratory con-
ditions and are not yet realistic for airborne (UAV) application
due to the lower spatial resolution. In a more realistic large
scale study using satellite images [25], infected plants can be
identified with 62% accuracy, though only when the plants
are at the terminal stage 4 of infection. Both studies focus
on the Gandoderma boninsis disease and, to the best of our
knowledge, no study exists for the Lethal Wilt disease, either
using remote-sensing or in epidemiological models.

Epidemiological modelling can be classified into three types
[26]. Descriptive models which provide hypotheses or exper-
imental results but typically do not reveal the underlying me-
chanics of the disease progression. Predictive models (which
are also descriptive) and Conceptual models which attempt
to distinguish cause from effect and formalise the effect of
specific events on the progression of the disease. In [27]
thirteen challenges for modelling plant disease are outlined,
these include factors such as multiple host species, accounting
for time-varying infection rates, and the effects of vector
preference on disease diffusion. As plant locations are fixed,
modelling approaches are typically based on static graphs
(nodes connected by edges) or on a lattice which can be regular
[28] or Small World [29] (most nodes are not neighbours
but can be reached via other nodes). With regular lattices,
the probability of neighbouring nodes getting infected can be
constant [30], or random [31] or can be treated as a function of
distance, producing ‘waves’ in continuum models [32]. Agent-
based disease models [33]–[35] also typically operate on a
network or lattice. In [36] the Grapevine Leafroll Disease is
modelled using heterogeneous agents (in age and infection
state) with a cellular automaton system.

III. METHODOLOGY

In this section, we first analyse the dataset and based on
insights from this analysis we propose a method to model the
spread of Lethal Wilt.



(a) Jan. 2013 (b) July 2015 (c) Jan. 2018

Fig. 2. Spread of disease start month (a), mid-point (b), and final month (c). Red indicates plants infected in current month, orange indicates plants infected
in previous six months.

Fig. 3. Area considered in this study highlighted in blue

A. Data Analysis

The data were collected monthly between 2013 and 2018.
The original data consists of 8 variables; 1) ID, 2) Block, 3)
Parcel, 4) Line, 5) X-coordinate, 6) Y-coordinate, 7) Month,
8) Year. We extract variables 5-8; the x and y coordinate
of the plant (x and y in a coordinate system local to the
plantation) and the timestamp for the sample. Each sample has
an associated binary label; whether the plant exhibits Lethal
Wilt symptoms or not. Before analysis, we remove incomplete
samples and sort the data in time order from January 2013
to January 2018 (72 time-steps). This gives 258,046 samples
with 93,345 infected plants (1̃5%) in total. The disease spread
over time can be seen in Figure 2. Here, red marks represent
plants infected in the current month, while the orange marks
represent plants which have been infected within the previous
6 months. The figure shows the speed and range of infections
over 5 years.

To simplify the preliminary data analysis we take a subset
S of the data (a square region of the map, displayed in Figure
3). This region contains 93, 345 plants. We take this area
and further divide it into N ∗ N grid cells. The analysis
is performed on these grid cells at different granularities.
Consider a cell ci ∈ S with 8 immediate neighbouring cells
cnj , {j = 1, . . . , j = 8} and a time-window of W months.
We first analyse the frequency of the disease spreading locally

TABLE I
CELL RISK OF INFECTION AT VARYING GRANULARITIES (WINDOWS = 6)

Grid RI PNI ANI NI NNI

82 0.94 0.83 0.99 0.56 0.04
162 0.67 0.64 0.95 0.33 0.14
322 0.4 0.38 0.71 0.15 0.08
642 0.1 0.1 0.28 0.05 0.03

TABLE II
CELL RISK OF INFECTION AT VARYING WINDOWS (GRANULARITY = 322)

Window RI PNI ANI NI NNI

1 0.15 0.13 0.14 0.06 0.05
3 0.28 0.27 0.54 0.11 0.07
6 0.4 0.38 0.71 0.15 0.08
12 0.57 0.53 0.86 0.02 0.08

with the following questions; if a cell ci has shown signs
of infection in the previous W months, how often does it
get re-infected in the subsequent W months? (Re-Infection
(RI)). If ci has been infected in the previous W months,
how frequently does a particular neighbouring cell cnj get
infected in the subsequent W months? (Particular Neighbour
Infected (PNI)). If ci has been infected in the previous W
months, how frequently does at least one of its immediate
neighbours get infected in the subsequent W months? (Any
Neighbour Infected (ANI)). We then analyse the frequencies of
the disease appearing in previously uninfected areas; if ci has
not been infected in the previous W months, how often does
it get infected in the subsequent W months? (New Infection
(NI)). And finally, if ci has not been infected and neither have
any of its immediate neighbours, how often does ci show signs
of infection in the subsequent W months? (Neighbours New
Infection (NNI)).

The results, at different grid-granularities are displayed in
Table I and with different values for W are displayed in Table
II. The results are consistent and relative at each granularity
and window size. If we take, for example, a 322 grid and
a 6-month time-window we can say that if a cell has been
infected in the previous 6 months then 40% of the time it will
get re-infected in the following 6 months. We can say that any



particular neighbouring cell (top left, right, etc.) has a similar,
though slightly lower chance (38%), of getting infected, and
we can say that there is a very high chance (70%) of at least
one neighbouring cell getting infected. Conversely, if a cell has
shown no signs of infection in the previous 6 months there is
only a 15% chance of the cell getting infected, and if the cell
or any of its immediate neighbours have not been infected
there is a relatively small (8%) chance of infection in the next
months.

Based on this analysis we conclude that the disease is much
more likely to spread locally from infected areas. This also
highlights the inherent complexity of the problem; the disease
is just as likely to spread to any of the neighbouring areas and
the direction and severity of infection emerge as a consequence
of the number of surrounding infected areas. These areas are
themselves affected by their own surroundings.

B. Proposed Method

To model the spread of Lethal Wilt we build upon some
of the insights from the previous data analysis. Ideally, the
model will be biased towards the spatial and temporal locality
of the infection spread. The model should also incorporate
some of the apparent randomnesses of new infections and it
should account for the complexity and emergent behaviour of
the spread.

We propose a multi-agent based approach whereby agents
take a directed walk from all newly infected cells. Based on
the cells where these agents end their walk, coupled with the
number of times each cell is visited during a walk, we make
predictions of how the disease will spread.

There are two stages to the proposed model. First, Kernel
Density Estimation (KDE) is performed. Areas with more
infections have a higher density, this creates a compact rep-
resentation of the problem and is used to direct each agent’s
walk. Each agent is biased to walk ‘uphill’ towards denser
areas.

1) Kernel Density Estimation: A density estimator takes
data, in this case the infected plants at time-step t in the
N ∗ N grid S, and produces an estimate of the probability
distribution from which that data is drawn from. KDE is a
non-parametric estimator and all the data points are used to
make an estimate. A kernel is centred on each point in the
data and the estimator smooths each observation over the local
neighbourhood of that data point. The amount that point x(i)
contributes to the estimate at some point x depends on the
difference between x(i) and x. This contribution is dependant
on the choice of kernel function K and the bandwidth (the
width of the function) h. The estimated density of any point
x is described by:

f̂(x) =
1

N

n∑
i=1

K
(x− x(i)

h

)
(1)

We use a Gaussian Kernel ( 1√
2π

exp(− 1
2µ

2)) . Bandwidth
selection is a common problem, too small a value for h can
give a ‘spikey’ estimate (not enough smoothing) while large

values for h can over-smooth the estimate. This value can
be tuned [37], or the AMISE (Asymptotic Mean Integrated
Square Error) can be used [38]. This also needs to be estimated
from the data, so h is an estimate of an asymptotic approxima-
tion. We use the ‘plug-in bandwidth selection method’ outlined
in [39] which is also non-parametric and data-driven. Here, h
is asymptotically optimal in the mean-squared error sense.

At the end of this step, the distribution of infection densities
is estimated at time-step ti. These densities are visualised n
Figure 4.

2) Biased Walk: In the second part of the algorithm, agents
start in newly infected cells and take steps number of steps.
At each step of the walk, an agent can move into any of one of
its immediate neighbouring cells cni. The probability of each
cell being selected is proportional to its density. If di is the
density of a neighbouring cell, the probability of neighbouring
cell Pcni

being selected is:

Pcni
=

di
8∑
j=1

dj

(2)

During each walk, if an agent visits a cell ci, a counter for ci
is incremented. Once all agents have completed their walks we
have an N ∗N matrix of predictions Pred, where each value
in Pred represents the number of times an agent visited the
corresponding cell in S. This allows us to visually display the
model’s prediction at ti+W using a heat map, where brighter
areas represent the cells most visited by agents.

IV. EXPERIMENTAL SECTION

In this section, we evaluate the model’s performance both
visually and analytically. Metrics are described along with
the experimental set-up. Results and parameter sensitivity is
discussed.

A. Metrics and Set-Up
We evaluate the performance in terms of True Positives

(TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN). We evaluate the precision P of the model :

P =
TP

TP + FP
(3)

The model’s recall score R :

R =
TP

TP + FN
(4)

And the Rand Index which is essentially the overall accuracy
of the model :

RI =
TP + TN

TP + FN + TN + FN
(5)

In each experiment we start in the current time-step ti
(t1 = 1, . . . , tend = (72−W )). We run the model and then
evaluate the predictions against the ground-truth during the
subsequent W months. For example, with a 6-month window,
the first run is in January 2013 and we evaluate the model’s
predictions against actual infections up to July 2013.

Due to the stochastic nature of the model, for each experi-
ment we present the mean (and deviation) of 100 runs.



(a) Jan. 2013 (b) July 2015 (c) Jan. 2018

Fig. 4. Density Estimation of infected plants over time. Start month (a), mid-point (b), and final month (c).

(a) Actual Density, July 2013 (b) Actual Density July 2015 (c) Actual Density, Jan. 2018

(d) Predicted Density for July 2013 (e) Predicted Density for July 2015 (f) Predicted Density for Jan. 2018

Fig. 5. 322 grid with 6 month window. Top row displays actual densities. Bottom row displays the model’s predicted densities (avg. 100 runs)
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B. Results

Visual examples of the model’s predictions are given in
Figure 5. The results are based on a 322 grid and show
predicted densities 6 months in advance. The top row in the
figure displays the actual densities at months 7 (6 months after
the first prediction), month 33 (middle of the simulation) and
month 72 (the final month of the simulation). In this figure, the
brighter, yellow regions indicate a higher number of infections
per cell. The bottom row displays the predicted densities for
the same months. These densities are approximated by the
number of times each cell was visited by an agent.

It can be seen that the model does not correctly predict every
single new infection but can identify the major, concentrated
areas of infection and approximates the spread of disease
through the plantation.

To formally measure the model’s performance we use the
metrics described in the previous section. Here, we only count
the cells where an agent finishes its walk (as opposed to each
cell visited). If the predicted density of a cell is above a
threshold value we assume that this is a positive prediction. For
60 agents taking 3 steps and a threshold value of 1.5 the model
achieves 69% precision (±0.002), 75% Recall (±0.001) and a
Rand Index of 74% (±0.001). The month by month accuracy
is displayed in Figure 5.

The sensitivity of each of these parameters is displayed
in Figure 7 measured using the precision (P ) and recall (R)
scores. For the threshold and Steps parameters, it can be seen
as expected that there is a trade-off between precision and
recall. A lower threshold allows the model to make more
predictions thus increasing the recall score, however, this
results in a greater number of incorrect predictions which
lowers the precision. Similarly with the number of steps, if
an agent is allowed to take a lot of steps it will make more
predictions but the confidence in each particular prediction will
be lower (because fewer agents will land on the same cell if
there is a greater range). This, coupled with the threshold value
means that fewer predictions will be made. The number of
agents does not greatly affect the model’s performance if the

number is sufficiently high (> 50). The model’s performance
is affected if this number is too low.

V. CONCLUSION AND FUTURE DIRECTIONS

The study in this paper is based on data collected over five
years from a palm-oil plantation in Colombia. Monthly data
was collected from 2013 to 2018 and contains information
about the infection rate and spread of Lethal Wilt (marchetez
letal) disease throughout the plantation. A sub-sample of this
data was used in this initial study (≈ 95, 500 plants) and the
aim of the study was two-fold; to first analyse the collected
data and attempt to understand how the disease spreads, and
secondly, to model this pattern of infection.

Our analysis of the data shows that the disease is much
more likely to spread to a local area (for example through
insect vectors) rather than a far-way area (for example, via
an airborne vector). Though, there still is a small chance that
plants in previously unaffected areas can suddenly show symp-
toms. The direction and severity of the spread is an emergent
consequence, a result of a local ‘build-up’ of infections. The
data confirms the intuition, though modelling this is difficult
due to the frequently stochastic behaviour of the process. We
use the insights from the data analysis to build a model of
the disease spread with the aim that the model should 1)
conform to the spatial locality of infection spread (but allow
for randomness), and 2) address the inherent complexity and
the emergent behaviour of the spread. The proposed model
is a multi-agent system which is comprised of two steps;
first Kernel Density Estimation (KDE) is used to create an
estimation of the distribution from which newly infected plants
are drawn from and this density estimation is used to direct
agents on a biased-walk on a N ∗ ×N grid. We say that the
more frequently a particular cell is visited the higher its risk
of future infection.

The resulting model approximates the spread of the disease
and can predict concentrated areas of infection in advance
along with the most likely direction of the spread. To formally
gauge the model’s performance we measure the precision,
recall, and accuracy of the model’s predictions with the ground



truth. Over a 100 runs the model achieves an average score of
69% (0.002) precision, 75% (0.001) recall and 74% (0.001)
accuracy.

Future work investigates more sophisticated agent-based
models, for example, agents that can learn from previous
decisions as opposed to a biased-walk directed only by an
estimated density. In future work, the results will be tested
on other areas of the plantation and scaled up to evaluate its
performance across the entire plantation.
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