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Abstract—One problem found when working with satellite images
is the radiometric variations across the image and different
images. Intending to improve remote sensing models for the
classification of burnt areas, we set two objectives. The first
is to understand the relationship between feature spaces and
the predictive ability of the models, allowing us to explain the
differences between learning and generalization when training
and testing in different datasets. We find that training on datasets
built from more than one image provides models that generalize
better. These results are explained by visualizing the dispersion
of values on the feature space. The second objective is to
evolve hyper-features that improve the performance of different
classifiers on a variety of test sets. We find the hyper-features to
be beneficial, and obtain the best models with XGBoost, even if
the hyper-features are optimized for a different method.
Index Terms—Genetic Programming, Classification, Remote
Sensing, Feature Spaces, Hyper-features, Transfer Learning

I. INTRODUCTION

Deforestation has serious implications on biodiversity, on
rural communities that depend on forests for survival, and
on greenhouse gas emissions that drive the global climate.
One of the proposed solutions to prevent deforestation is
the use of financing mechanisms, like the REDD+1 and the
Zero Deforestation Program2. These mechanisms require the
ability to perform forest monitoring, normally based on remote
sensing (RS) data like satellite imagery. The machine learning
(ML) community can help by providing predictive models that,
after learning from a small number of samples from an image,
can automatically classify the whole image.

Although previous ML work in forest monitoring has shown
good results, the predictive models are often applied on the
same location where they were learnt, i.e., the models are
trained and tested in samples from the same dataset (e.g., [1])
or time series from the same area (e.g., [2]). In order to
improve the quality of the models, they need to have a better
generalization ability and obtain good results, even when
applied to images from locations where they were not trained.

This task can be particularly hard since each band of the satel-
lite sensors, which translates as each feature of the reference
dataset, contains noise that is originated by the difference in
the amount of water in the air, ground, or vegetation; by the
presence of shadows; or by the angle of incidence of the
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solar radiation [3]. When comparing different images, these
radiometric variations are intensified by differences in weather
conditions, the time of the day, and the plants’ growth stage.

Another challenge for the ML community generating inter-
pretable and meaningful hyper-features, similar to indices,
that facilitate the learning of ML models while also allowing
the RS experts to easily understand the models. Indices are
something the RS community has been using for a long time,
the most popular being the Normalized Difference Vegetation
Index (NDVI) [3], that measures the “greenness” of live vege-
tation. The NDVI is a ratio of wavelengths that is higher in the
solar radiation reflected by surfaces that contain chlorophyll
and protochlorophyll. Ratios always provide interpretable val-
ues when used in cloud-free images, which allows RS experts
to study different scenes using the same index, including time
series [3]. They are also useful to the ML community, as they
help the learning algorithms to model the data [2].

We have the goal of improving the detection of burnt areas
in satellite imagery by providing robust and interpretable clas-
sification models. For the current work, we have established
two objectives:

(1) To understand the relationship between feature spaces and
the predictive ability of the models;

(2) To obtain hyper-features that improve the performance of
ML methods in detecting burnt areas.

For the first objective, we study the effects of training a
model on data from multiple images with different radiometric
characteristics, rather than from a single image. For this task,
we use Genetic Programming (GP) [4], more specifically the
M3GP method [5]. By design, the performance of M3GP is
not affected by the lack of data normalization (which could
alter the radiometric biases of the images). We visualize some
characteristics of the feature space created by each image
dataset and relate it with the observed learning and gener-
alization ability of each evolved model, intuitively explaining
the relationship between the dispersion of the feature values
and the accuracy of the predictions.

For the second objective, we evolve hyper-features from the
original ones and compare the performance of different ML
methods when using the evolved versus the original features.
For this task, we also use M3GP because it naturally evolves
hyper-features during its learning process. The ML methods
tested include Decision Trees, Random Forests and XGBoost.
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II. RELATED WORK

The ML literature is filled with implicit studies of feature
spaces. Nearly every classification method is based on how
to best split the feature space into regions that correspond
to classes. A large body of work dedicated to feature and
instance selection and construction [6], [7] also implicitly
studies feature spaces, as well as work dedicated to data
visualization techniques (review in [8]). In remote sensing,
we have found one explicit study of feature spaces in the
context of classification [9]. Published in 1994, in this work the
authors visualize the feature space and the decision boundaries
induced by neural and statistical classifiers, with the goal of
understanding why a classifier performs better than another
on a given problem. Image sequences are used to visualize
higher-dimensional feature spaces.

Regarding the generation of hyper-features, it falls on a
broad area called Constructive Induction (CI) [10]. A recent
publication on transfer learning [11] has surveyed GP-based CI
methods, finding a considerable amount of old and recent work
where all the authors propose similar methods, apparently
unaware of the existence of the other related works. Among
the CI methods surveyed are the EFS [12], the FFX [13], and
the M3GP [5]. M3GP is the one chosen by the authors for
generating the hyper-features for transfer learning, and also
the one we use in the current work.

In the RS domain, many techniques have been used to extract
features from imagery. Just to name a few, old and recent,
the gray level co-occurrence matrix (GLCM) and other meth-
ods [14] have been used to extract statistical descriptors from
images. Many methods for extracting features of interest (e.g.,
roads) have been used in the past [15], now almost completely
replaced by deep learning techniques (e.g., [16]). PCA is still
very common in the RS domain to extract a set of generic
features from the original ones (e.g., [17]). Temporal features
prove to be very helpful in tasks of forest classification [18].

III. M3GP ALGORITHM

The Multidimensional Multiclass Genetic Programming with
Multidimensional Populations (M3GP) 3 [5] is a cluster-based
algorithm that evolves models similar in structure to the
models of standard GP [4]. The main difference is that, while
standard GP models are limited to one node at their root,
making their output 1-dimensional, the models of M3GP are
allowed to have as many nodes at their root as the evolution
chooses. In previous M3GP work, these nodes (including
their respective branches) were normally called dimensions,
but here we will also call them hyper-features. A M3GP
model uses its evolved hyper-features to convert the original
feature space into a new hyper-feature space. We will call
hyper-dataset to the dataset made of these transformed values.
Depending on the evolutionary process, the number of hyper-
features may decrease, increase or remain the same, when
compared to the original ones.

3Simple M3GP implementation: github.com/jespb/Python-M3GP

The genetic operators of M3GP include the standard subtree
crossover and mutation, as well as one additional crossover
that swaps entire dimensions between individuals, and two
additional mutations that add/remove a dimension to/from
an individual. The fitness of a M3GP model is obtained as
follows: clusters are formed on the hyper-feature space, one
per class; the centroids of the clusters are calculated; the
predicted class of each observation is the class of the nearest
centroid, according to the Mahalanobis distance; the fitness is
the accuracy of this predicted classification. The Mahalanobis
distance is preferred because it returns much better results than
the Euclidean distance [19]. In order to measure the fitness
of a M3GP model on unseen data, one needs to know not
only the structure of the n-rooted tree (the n evolved hyper-
features), but also the cluster centroids, and the covariance
matrices needed to calculate the Mahalanobis distance. It may
not be the most practical model to use, but M3GP has shown
competitive results with other highly ranked ML methods,
such as Multilayer Perceptron and Random Forests [5], [20],
also in multiclass classification problems [5], [21].

However, M3GP does not have to depend on cluster centroids
or covariance matrices. By evolving hyper-features that cause
the class clusters to be more easily separable, it is expected
that the resulting hyper-dataset is easier to learn than the
original dataset, so the transformation defined by the evolved
hyper-features is by itself a very useful output of this method.
Furthermore, in [11], [22] M3GP was successfully used as
a wrapper method for other regression and classification
methods. Indeed, the fitness function of M3GP, that now uses
the Mahalanobis distance nearest centroid classifier (which
we will now call MD classifier) to obtain predictions, can be
replaced by any other classifier. Since the hyper-features are
evolved specifically for that classifier, they are expected to be
optimized for that classifier.

At the end of each M3GP run, we apply two pruning
procedures to the best individual to first decrease the
dimensionality of the model without decreasing its fitness,
and then simplify each of the remaining dimensions. While
the first operation was included in the original M3GP
algorithm, the second was added in this work:
(1) Dimensional Pruning: One by one, each dimension is
temporarily removed and the individual re-evaluated. If the
fitness is not harmed, the dimension is permanently removed.
(2) Dimensional Simplification: Any expressions that are
evaluated as constants are replaced by those constants. The
following rules are applied to any expression E:
E+0 = E,E+E = 2∗E,E−0 = E, 1∗E = E,E/1 = E.

IV. EXPERIMENTAL SETUP

A. Datasets

We use three binary classification datasets, collected from
Landsat-8 images and labelled by experts in the context of
previous work [23]. The images were captured over Brazil(B),
Congo(C), and Mozambique(M). The 20 pixels found mis-



TABLE I
FEATURES, SAMPLES AND % BURNT

Datasets Brazil(B) Congo(C) Mozambique(M)
Features 7 7 7
Samples 4872 2849 3882
% Burnt 42% 31% 41%

TABLE II
PARAMETERS USED BY M3GP

Runs 30
Generations 50
Population Size 200 individuals
Training Set Size 2000 samples
Tree Initialization Grow method (max depth 6)
Function Set +, 9, ×, // (protected)
Terminal Set Dataset features (no constants)
Fitness Accuracy (untied by smaller size)
Selection Tournament (size 5)
Elitism Best individual
Crossover Probability 25% for each of the 2 crossovers
Mutation Probability 16.7% for each of the 3 mutations

labeled in the Brazil dataset [24] were corrected. Table I
summarizes the main characteristics of these “pure” datasets.

In order to study the effect of training a model on data from
multiple images, we also use mixed datasets containing pixels
from two or three pure datasets. From now on, the pure
datasets are identified by their initials (B,C,M) and the mixed
datasets by a concatenation of initials, e.g., a model trained on
a dataset containing samples from Brazil and Congo is referred
to as a model trained in BC. We may refer to models trained
on a single pure dataset as specialized models.

Each model is trained with 2000 samples. When these sam-
ples come from different images, each of the pure datasets
contributes a number of samples that is proportional to its
size, e.g., when selecting samples for the BM dataset, B
contributes with 1113 samples and M with 887 samples. The
same type of stratification is applied when selecting samples
from the two classes. The test set is always composed of all the
remaining samples. This means that, in most cases, the test set
is substantially larger than the training set. A new training/test
partition is made for each run.

B. Parameters

The parameter settings are specified in Table II. We use smaller
populations and fewer generations than the original M3GP [5]
because the preliminary results indicated that more than 200
individuals and 50 generations would not improve the results.
The fitness function is the accuracy, but the smaller individuals
are preferred whenever there is a tie. The probability of
choosing crossover or mutation is 50% for each, and then equal
inside each type, resulting in the 25% and 16.7% indicated in
the table. All other parameters are standard, except the pruning
options described at the end of Sect. III.

C. Hyper-datasets

To compare the performance of different ML methods when
using the evolved versus the original features, we built new

TABLE III
SIMPLIFIED HYPER-FEATURES WITH NAMES AND ORIGINATING RUNS

Run Name Evolved hyper-feature
1 HF0 X62·(X09X3)/X42

3 HF1 (X39(X39X42·(X392·X5)·(X529X3·X5+X4))/X09X42·X52)/X5

7 HF2 X2·(X0·X2+X1·X22·X69X229X0·X1·X2·X6+1)

7 HF3 X39X0·X19X5·X6

12 HF4 ((X64/(X19X6+X5))9X0∗X63)∗X411/X015∗(X59X3)2

12 HF5 X4/X0+X0·X6+X39X5

16 HF6 X6·(X19X0)

26 HF7 X5·X6·(X3+X5)/X4

26 HF8 X09X6

27 HF9 (X49X2)·(X5+X69X0)

hyper-datasets that resulted from applying the hyper-features
in Table III to each of the original (pure and mixed) datasets.
These hyper-features were picked from the models obtained
in the 30 runs on the BCM mixed dataset in the following
way: each model is evaluated with all its dimensions; for each
dimension, the model is evaluated with all but this dimension
and the reduction in training accuracy is registered; all the
dimensions from the 30 models are ranked by their impact on
the accuracy, and the 10 most impactful are chosen as hyper-
features to build the hyper-datasets. While most dimensions
had an impact of less than 5 percentage points on the accuracy,
some had an impact of more than 20 percentage points.

D. Additional Methods and Tools

Besides the M3GP method as described in Section III, other
methods are involved in our experiments:
1) Mahalanobis Distance Classifier (MD): MD is the nearest
centroid classifier used as fitness in M3GP and explained in
Section III. The hyper-features evolved by M3GP are therefore
optimized for MD, so we have used this classifier also on the
original features in order to assess the improvements brought
by the evolved features.
2) Decision Trees (DT), Random Forests (RF) & XGBoost
(XGB): In order to assess the improvements brought by the
evolved features to other ML methods for which the hyper-
features were not optimized, we have selected three well
known state-of-the-art methods: DT [25] and RF [26], with
implementations from the sklearn python library [27], and
XGB [28] with implementation from the xgboost python
library. All were used with default parameters, except the
maximum tree depth of RF that we have set as 6, the same as
the initial maximum tree depth for M3GP. Unlike MD, none
of these three classifiers is distance-based.

For statistical significance (Sect. V) we use the Kruskal-Wallis
test and consider the results to be significantly different if their
p-value is lower than 0.01. Figures 1 and 2 (Sect. VI-A) do not
include outliers, identified with the Tukey’s fences method.

V. RESULTS

Here, we observe the generalization ability of the models on
the same images where they were trained, and then, on images
not used in training. We also compare the results obtained by
MD, DT, RF and XGB on the original versus hyper-datasets.



TABLE IV
MEDIAN TRAINING AND TEST ACCURACY OF THE FIVE METHODS ON

EACH OF THE ORIGINAL (PURE AND MIXED) DATASETS.

M3GP B C M BC BM CM BCM
Training 99.20% 99.00% 100.0% 96.82% 98.50% 99.02% 96.25%
Test 98.88% 98.93% 99.84% 96.25% 98.16% 98.73% 95.53%

MD B C M BC BM CM BCM
Training 96.75% 79.33% 92.67% 86.05% 89.35% 84.58% 84.59%
Test 96.84% 79.06% 92.53% 86.11% 89.21% 84.23% 84.52%

DT B C M BC BM CM BCM
Training 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Test 98.83% 99.64% 99.89% 97.80% 97.91% 99.26% 97.37%

RF B C M BC BM CM BCM
Training 99.17% 99.95% 100.0% 98.27% 98.92% 99.60% 97.77%
Test 98.95% 99.76% 99.86% 97.33% 97.74% 99.12% 96.53%

XGB B C M BC BM CM BCM
Training 99.90% 99.95% 100.0% 99.65% 99.65% 100.0% 99.02%
Test 99.07% 99.76% 99.89% 98.52% 98.63% 99.64% 97.56%

A. Generalization Inside the Training Images

Table IV displays the median (30 runs) training and test
accuracy obtained on the original (pure and mixed) datasets
with the five considered methods (M3GP, MD, DT, RF, XGB).
The models do not seem to overfit their training set in any
of the cases. The largest difference between training and test
was observed when training DT on the BCM dataset (training
accuracy 100% and test accuracy 97.37%). In general, the
accuracy is lower on the mixed datasets (BC, BM, CM, BCM),
and this effect tends to be stronger when the mix includes the
three countries (BCM). More specifically, in most cases, the
models of the mixed datasets have lower test accuracy than
the models specialized in the respective pure datasets (e.g.,
for M3GP the BC test accuracy is 96.25% while the B and C
test accuracies are 98.88% and 98.93%). Although the focus
of the work is not to compare the performance of different
methods, it is clear that MD is the worst while XGB seems
to be the best.

Table V displays the test accuracy obtained in the pure datasets
(B, C, M) by models trained in all different datasets, pure
and mixed. For now, ignore all the “Hyper” subtables, the
colours, and the cases in which the model is tested on a dataset
that was not included in the training. We want to compare
the accuracy of the models trained in pure datasets with the
accuracy of the models trained with mixed datasets, when
tested on the same pure datasets (e,g., when testing M3GP
on B, model B achieves 98.88% while models BC, BM, and
BCM achieve 97.63%, 97.39%, and 94.04%, respectively).
Training on mixed datasets and testing on pure ones results in
a significant decrease in accuracy in 42 out of 45 comparisons.
There is also a significant improvement in two comparisons,
but both with the MD method, which is not so reliable.

B. Generalization Outside the Training Images

Here we are interested in measuring the fitness obtained on
pure datasets that were never seen during training. Keep
ignoring the “Hyper” subtables.

We want to check whether the models trained in mixed datasets
achieve higher accuracy than the models trained in pure
datasets. Table V contains this information, where bold green
means the result is significantly better than the other two cases,
and italic yellow means the result is significantly better than
one of the other two cases. For example, when testing RF on
B, model CM achieves a significantly higher accuracy (82.0%)
than the specialized models C and M (73.46% and 77.12%,
respectively); when testing RF on C, model BM achieves a
significantly higher accuracy than model M, but model B is
significantly better than models M or BM.

When tested on a new image, models trained on mixed
datasets have significantly higher accuracy than the respective
specialized models in 16 out of 30 cases and significantly
lower accuracy in 4 out of 30 cases. This improvement is
noticed particularly when testing models on the B dataset (8
out of 10 cases, against 5/10 for C and 3/10 for M).

The specialized models have significantly higher accuracy in
6/30 cases. Three of these cases are comparisons between
training on B or training on BC, tested on M (introducing C in
training harms the generalization in M). Other two cases are
comparisons between training on B or training on BM, tested
on C (introducing M in training harms the generalization on
C). This apparent incompatibility between datasets C and M
will be discussed later.

Now, we take a closer look at the results restricted to the
cases where the training was made on a pure dataset. We will
refer to the training datasets as sources and the testing datasets
as targets. On average, the accuracy of the models trained on
datasets B and M is 75.90% and 74.12%, respectively, but only
68.88% for the models trained on C. Out of the three datasets,
C seems to be the worst source. On average, the accuracy of
the models tested on dataset C is 76.18% reduced to 72.17%
for models tested on B, and further reduced to 69.74% when
testing on M. Dataset C seems to be the best target. It is worth
mentioning that all these accuracy values are worse than the
ones for training on mixed datasets, which indicates that mixed
datasets make better sources than pure datasets. The suitability
of datasets as sources or targets will also be discussed later.

C. Training and Testing on Hyper-datasets

Now we are interested in the results obtained when using
the hyper-datasets (see Sect. III), and their comparison to
the results already reported for the original datasets. Table V
shows these results in the “Hyper” subtables, and Table VI
contains the p-values of the statistical comparison, where bold
green/italic red means that, for training with the method on
the left and testing on the method on the top, using the hyper-
features is significantly better/worse than using the original
features. We can observe that using the hyper-features yields
significantly better results in 17/21 cases when using MD,
13/21 when using RF, 10/21 with XGB, and 7/21 with DT.

The effect of training with mixed hyper-datasets instead of
pure hyper-datasets is even stronger than it already was for
the original datasets. The accuracy is significantly better in



TABLE V
MEDIAN TEST ACCURACY FROM TRAINING A MODEL IN THE DATASETS ON THE LEFT AND TESTING IN THE DATASETS ABOVE. THE COLORS REPRESENT
THAT THE MODELS HAD SIGNIFICANTLY BETTER RESULTS 1 OR 2 TIMES, COMPARED TO THE MODELS TRYING TO GENERALIZE TO THE DATASET ABOVE.

M3GP B C M
B 98.88% 76.2% 67.5%
C 67.86% 98.93% 53.43%
M 81.88% 75.27% 99.84%
BC 97.63% 94.17% 73.13%
BM 97.39% 76.18% 99.24%
CM 82.36% 98.05% 99.24%
BCM 94.04% 93.4% 99.09%

MD B C M
B 96.84% 67.63% 57.41%
C 58.33% 79.06% 59.45%
M 63.39% 69.21% 92.53%
BC 92.65% 74.91% 90.36%
BM 83.92% 69.28% 95.75%
CM 61.84% 73.45% 91.99%
BCM 84.54% 69.07% 96.12%

MD-Hyper B C M
B 96.72% 80.57% 92.04%
C 58.62% 88.85% 59.47%
M 60.13% 69.18% 99.46%
BC 94.22% 89.24% 97.55%
BM 93.56% 72.27% 99.53%
CM 61.74% 82.24% 97.59%
BCM 91.67% 77.95% 99.39%

DT B C M
B 98.83% 85.06% 76.33%
C 68.0% 99.64% 60.78%
M 77.5% 73.35% 99.89%
BC 97.97% 97.79% 69.86%
BM 97.52% 82.44% 98.44%
CM 81.53% 99.07% 99.54%
BCM 97.07% 96.58% 98.13%

RF B C M
B 98.95% 85.34% 75.82%
C 73.46% 99.76% 81.5%
M 77.12% 72.85% 99.86%
BC 98.64% 95.19% 77.03%
BM 97.21% 81.23% 98.53%
CM 82.0% 99.37% 98.93%
BCM 96.04% 96.28% 97.58%

XGB B C M
B 99.07% 83.71% 75.87%
C 76.66% 99.76% 89.32%
M 77.5% 73.13% 99.89%
BC 98.64% 98.31% 72.53%
BM 98.32% 80.16% 99.06%
CM 80.55% 99.45% 99.74%
BCM 97.65% 95.77% 98.64%

DT-Hyper B C M
B 98.72% 85.29% 81.1%
C 66.7% 99.52% 66.17%
M 85.79% 72.65% 99.78%
BC 97.36% 97.39% 87.71%
BM 97.69% 86.27% 99.21%
CM 83.74% 99.27% 99.7%
BCM 96.67% 96.6% 99.14%

RF-Hyper B C M
B 98.97% 79.46% 81.77%
C 66.94% 99.76% 73.69%
M 83.69% 78.78% 99.94%
BC 98.03% 96.23% 89.47%
BM 98.35% 85.24% 99.28%
CM 85.92% 99.45% 99.68%
BCM 96.97% 96.41% 99.31%

XGB-Hyper B C M
B 98.93% 81.41% 84.04%
C 74.97% 99.76% 88.2%
M 82.59% 78.25% 99.89%
BC 98.15% 97.37% 88.7%
BM 98.33% 86.71% 99.54%
CM 84.9% 99.6% 99.85%
BCM 97.48% 97.11% 99.36%

7/8 cases when testing on hyper-datasets B or M, and 6/8
cases when testing on hyper-dataset C, totaling 20/24 cases.

Focusing on the cases where the training was made on a pure
hyper-dataset, on average the accuracy obtained on unseen
hyper-datasets is 83.21%, 69.35%, and 76.39% for training on
hyper-datasets B, C, and M, respectively. On average, when
testing on hyper-datasets B, C, and M, the accuracy is 72.43%,
78.20%, and 78.31%, respectively. Once again C is a bad
source but a good target. B seems like a good source but
a bad target. Like with the original datasets, all these values
are lower than the ones obtained when training with mixed
hyper-datasets.

TABLE VI
P-VALUES COMPARING THE MODELS TRAINED IN THE ORIGINAL AND

HYPER-DATASETS. THE CASES WHERE USING THE HYPER-DATASETS LEAD
TO SIGNIFICANTLY BETTER OR WORSE TEST RESULTS ARE HIGHLIGHTED.

MD B C M
B 0.237 0.000 0.000
C 0.000 0.000 0.000
M 0.000 0.000 0.000
BC 0.000 0.000 0.000
BM 0.000 0.000 0.000
CM 0.315 0.000 0.000
BCM 0.000 0.000 0.000

DT B C M
B 0.050 0.359 0.000
C 0.006 0.200 0.882
M 0.000 0.021 0.012
BC 0.000 0.001 0.000
BM 0.081 0.005 0.000
CM 0.000 0.033 0.026
BCM 0.003 0.965 0.000

RF B C M
B 0.229 0.000 0.000
C 0.000 0.879 0.003
M 0.000 0.000 0.001
BC 0.000 0.000 0.000
BM 0.000 0.000 0.000
CM 0.000 0.539 0.000
BCM 0.000 0.510 0.000

XGB B C M
B 0.017 0.198 0.000
C 0.000 0.301 0.001
M 0.000 0.000 0.129
BC 0.000 0.000 0.000
BM 0.166 0.000 0.000
CM 0.000 0.072 0.001
BCM 0.024 0.000 0.000

VI. DISCUSSION

Here, we analyze feature spaces and provide tentative expla-
nations for some results reported in the last section, then
we visualize class separability in the hyper-feature space,
and finally, we address the issues of transfer learning and
optimizing features for specific methods.

A. Analyzing Feature Spaces of Sources and Targets

Although we are not able to visualize a feature space in R7, we
can still gather important information by simply observing the
location and dispersion of the values of the different features.
Figure 1 shows the distribution of the burnt and non-burnt
samples of the M dataset. These plots reveal that in 4 out
of 7 features, the burnt class is less disperse and is located
within the limits of the non-burnt class. The plots of the other
datasets (not shown) have similar characteristics. Therefore,
it is expected that the ML methods focus their learning in
recognizing the burnt class (the positive cases), classifying
everything else as non-burnt (the negative cases). This is
problematic when training models on one dataset and applying
them on a different dataset. Figure 2 (top half), showing the
distribution of burnt samples of the three original datasets,
illustrates this problem very well. We can observe that the
burnt samples of the C and M datasets almost do not overlap
in 4 out of 7 features. The effect of this separation is that
the burnt samples of one dataset are likely to be classified as
non-burnt by a model trained on the other dataset. This is a
plausible explanation for the incompatibility between C and M
reported in Sect. V-B. It may also justify why the largest gains
in using a mixed dataset happens precisely when training in
CM (and testing in B).



Fig. 1. Distribution of feature values in the original M dataset.

Figure 2 (top half) also reveals that dataset B has the largest
dispersion of the burnt class, “containing” the C and M burnt
values almost entirely, in all features. This tendency is less
marked but still visible in the hyper-datasets (same figure,
bottom half). Higher dispersion of the burnt class suggests
that a higher diversity of burnt types is available for learning,
which we expect to result in more generalist models. This may
explain why, among the three countries, the specialized models
achieving the highest accuracy when tested on other datasets
are precisely the ones trained on B and hyper-B. Although
these datasets are apparently good sources, they may be bad
targets, since specialized models may find it hard to generalize
well to a large diversity of burnt types. Indeed, the specialized
models tested in B and hyper-B had some of the worst results.

Following the previous logic, one reason for datasets C and
hyper-C being bad sources may be the lowest dispersion of
their features and hyper-features. Mixed datasets increase the
dispersion of the burnt classes, and the effect is that the models
trained on them can generalize better on new data.

B. Visualizing Class Separability

In Fig. 1 we have seen that, on a per-feature basis, the burnt
class is less disperse and mostly located inside the limits of
the non-burnt class. In Fig. 2 we have also seen that the
burnt classes of the three datasets do not match each other,
but the evolved hyper-features seem to reduce this problem
(e.g., in hyper-feature HF4 there is very good matching).
Taking advantage of the high diversity of models that M3GP
can produce in different runs, we have looked among the 30
models produced for each experiment and found some that
reduce the dimensionality of the original feature space to only
three hyper-features, thus allowing its visualization. We have
selected two of these models for illustration purposes. Both
have test results above the median in all test cases when
compared to the other models from the same set of runs. We
intend to visualize the separation of classes inside and outside
the training images.

The first model was obtained when training on the M dataset.
In Fig. 3 we see the result of applying this model on its own
test set, with the burnt and non-burnt classes represented in

Fig. 2. Distribution of feature values of the burnt class in the original datasets
(top half) and in the hyper-datasets (bottom half).

dark and light blue, respectively. There seem to be two clusters
for the non-burnt class, an observation that is compatible with
the two non-burnt peaks visible in most features of Fig. 1.
However, the MD classifier, which is the fitness function of
M3GP, assumes only one cluster per class. The centroids of
each cluster are also represented, with a triangle for burnt and
a circle for non-burnt.

In Fig. 4, we see the result of applying this model on the
C dataset. The M training data is represented in blue, the C
dataset in red, dark and light colours represent burnt and non-
burnt, respectively, and respective centroids as triangles and
circles. What we observe is that, although the dispersion of
values is similar to the one observed in Fig. 3, there is an
offset between the class centroids of the M and C datasets.
Since the class predictions are based on the distances to the
M centroids and the burnt clusters are very compact, this offset
causes many burnt samples in C to be misclassified as non-
burnt. From the confusion matrix in Table VII (left matrix),
we calculate that the accuracy of this model on C is 80.8%,
and it correctly classifies only half of the burnt samples.

The second model was obtained when training on the C
dataset. In Fig. 5, we see the result of applying it on the
M dataset. Like before, training data is represented in blue,
testing data in red; dark and light colours for burnt and non-
burnt; triangles and circles for the centroids of burnt and non-
burnt. Looking again at Table VII (right matrix), we calculate
that the accuracy of this model on M is 57.6%, and it correctly
classifies only 17.2% of the burnt samples.



Fig. 3. 3D Scatter plot of the application of a model trained in the dataset M,
on its own test dataset. Burnt and non-burnt samples are drawn in dark and
light colors, and triangles and circles represent their centroids, respectively.

Fig. 4. Application of a model trained in the M dataset in its training set (blue)
and in the C dataset (red). Burnt and non-burnt samples are drawn in dark and
light colors, and triangles and circles represent their centroids, respectively.

Fig. 5. Application of a model trained in the C dataset in its training set (blue)
and in the M dataset (red). Burnt and non-burnt samples are drawn in dark and
light colors, and triangles and circles represent their centroids, respectively.

TABLE VII
CONFUSION MATRICES OF TESTING IN C A MODEL TRAINED IN M (LEFT)

AND TESTING IN M A MODEL TRAINED IN C (RIGHT).

M ⇒ C ¬ Burnt Burnt
¬ Burnt 1858 114
Burnt 433 444
Predictions 2291 558

C ⇒ M ¬ Burnt Burnt
¬ Burnt 1964 345
Burnt 1302 271
Predictions 3266 616

C. Transferring Hyper-features

The previous discussion on class separability revealed that
centroid offsets are an obstacle to good generalization on
new data. Since the hyper-features were evolved only taking
into consideration pure datasets, they are likely the cause of
this offset. We have already shown that training in mixed
datasets yields better results on a third dataset. However, it
is interesting to check what happens in a transfer learning
scenario where the hyper-features are evolved on the source

dataset, and then transferred and used for further learning on
the target dataset (without any additional feature evolution), as
described in [11]. For the MD classifier, the only additional
learning after adopting the hyper-features is calculating the
centroids and covariance matrices of the target dataset on the
new hyper-feature space. This means, for the model behind
Fig. 4, to use the centroids and covariance matrices of C
(the target), instead of M (the source). Needless to say, this
eliminates the problem of the centroids offset, and the accuracy
of this model increases from 80.8% to 93.06%. For the model
behind Fig. 5, using the centroids and covariance matrices of
M (the target), instead of C (the source), increases the accuracy
from 57.6% to 97.3%.

Our goal of providing improved remote sensing models did not
initially contemplate the possibility of further learning on the
target, since we want to avoid the need to have labelled data on
the target. However, in the case of MD, the additional learning
requires minimal effort, and although it requires some labelled
data, it does not have to be in large quantity, but just enough to
calculate centroids and covariance matrices. Although transfer
learning was not in our initial plans, it may be a path we will
have to take in pursuit of the ideal classification models. In this
work, we still did not perform any proper transfer learning tests
(besides the small exercise at the beginning of this section),
since the hyper-features evolved were obtained on the mix of
three pure datasets, and never transferred for further learning
on a fourth dataset.

D. Tailoring Hyper-features

Regarding the 10 hyper-features evolved for this work, they
were tailored to the MD classifier because M3GP uses MD
as the fitness function. As expected, they have proven to be
more useful to MD than to the other methods (see Table VI).
Nevertheless, even the method that found them less useful
(DT) benefits from using them. The model achieving the high-
est overall accuracy on the test samples of all three datasets,
weighted by the number of samples from each dataset, was
XGB using the hyper-features, with 98.05% (followed closely
by XGB using the original features, with 97.7%).

However, the hyper-features do not have to be tailored to MD.
In fact, by replacing the fitness function of M3GP with any
other classifier, we can choose for which method the features
will be evolved. We expect DT to benefit much more from
features that evolved specifically to be used by DT, and we
hope that the features evolved for XGB will be able to improve
the current results even more.

VII. CONCLUSIONS AND FUTURE WORK

Intending to improve remote sensing models for classifying
burnt areas, this work had two objectives. The first one was
to understand the relationship between feature spaces and the
predictive ability of the models, to explain the differences
in learning and generalization when training and testing in
different datasets. We have studied the effects of training a
model on data from multiple images with different radiometric



characteristics, rather than from a single image. We have found
that training on datasets built from more images provides
models that generalize better, and that some datasets are better
for training while others are better for testing. Visualizing
some characteristics of the feature space created by each
image dataset, we have intuitively explained the differences
in the predictive ability of the evolved models. The second
objective was to evolve hyper-features from the original ones,
and compare the performance of different methods when using
the evolved versus the original features. We have used M3GP
both as a baseline and for inducing the hyper-features, and
other methods including Decision Trees, Random Forests, and
XGBoost, to assess the performance of the hyper-features.
They were found to be beneficial for all the methods, and the
best model was achieved with XGBoost, even if the hyper-
features were tailored to the Mahalanobis Distance classifier
used by M3GP.

As future work, we want to explore and visualize other
characteristics of the feature spaces that may allow us to
predict difficulties in learning and generalization, including
in transfer learning scenarios. We also want to improve the
generation and selection of hyper-features. On the one hand,
we want to impose restrictions on the evolved hyper-features
to make them behave more like indices; on the other hand,
we want to evolve hyper-features tailored to other methods
other than the Mahalanobis Distance classifier. When selecting
a set of evolved hyper-features, we want to test other criteria
besides the effect they have on fitness, for example, the amount
of correlation that exists between each other. Finally, we will
extend this work to multiclass classification problems, and we
will also consider its applicability to regression problems in
the RS domain.
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