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Abstract—Metagenomic shotgun sequencing enables us to 
explore diverse DNA sequences from viruses, bacteria, and 
eukaryotic microbes in complex samples. As the continuous 
advancement of sequencing technology generates a massive 
amount of sequencing data, its overall computational complexity 
has become a major challenge for traditional database sequence 
comparison methods. Studies have shown that deep learning-
oriented methods have been widely adopted to solve many 
classification problems, including those in the bioinformatics field, 
and have demonstrated this method’s accuracy and efficiency for 
analyzing large-scale datasets. The aim of this study attempts to 
investigate how deep learning (LSTM model) can be used to learn 
sequential genome patterns through virus detection from 
metagenomic data. This study provides three major contributions. 
First, we provide the background and steps for the task of DNA 
sequencing classification from data collection, preprocessing, and 
normalization. Second, we analyze the effect of sequence length on 
LSTM classification accuracy and split the raw sequencing data to 
proper subsequences to improve the outcome of virus detection. 
Third, to enhance both the classification accuracy and processing 
speed, we introduce the concept of discrimination function that 
enables prediction results for multiple subsequences results and 
accelerated these processes through GPU parallel computing. Two 
case studies of HCV and influenza detection were conducted to 
elaborate upon the accuracy and computational efficiency of our 
proposed approach. Our test result showed that the proposed 
LSTM model obtained similar pathogen detection accuracy to the 
conventional BLAST method with a speed that was about 36 times 
faster. 

Keywords—Deep Learning, LSTM, GPU Acceleration, Parallel 
Computing, Metagenomic Shotgun Sequencing, DNA Sequence 
Classification 

 

 

I. INTRODUCTION 
Deoxyribonucleic acid (DNA) is fundamental to all living 

species and is based on the order of four nucleotides: guanine 
(G), cytosine (C), adenine (A), and thymine (T). With the 
continual growth of low-cost and high-throughput DNA 
sequence technology, the scale and amount of next-generation 
sequencing (NGS) datasets are continually increasing in many 
genomic research areas. With NGS sufficient sequencing 
throughput, it is also possible to detect rare microbial species 
and those of low abundance within the microbiome. 
Metagenomic shotgun sequencing uses NGS technology to 
sequence DNA strands within a given complex sample 
randomly. Unlike capillary sequencing or PCR-based 
approaches, it sequences a large number of genes and shears 
them into smaller segments. As compared to other types of DNA 
sequencing, it has many short reads of 50 to 600 base pairs 
(sequence length) and is sufficient and sensitive enough for 
clinical pathogen detection. Studies have shown that this method 
enables the evaluation of the diversity of viruses, bacteria, and 
eukaryotic microbes, and can help to estimate their abundances 
in given complex samples. Due to the challenges of large scale 
data and computational complexity, the traditional sequence 
comparison method may require a much longer computation 
time to obtain sequence analyzing results. Commonly used 
methods, such as the Smith-Waterman algorithm [1] and Basic 
Local Alignment Search Tool (BLAST) [2] use sequence 
alignment to measure the similarity between input sequences 
and reference database sequences. This type of distance 
comparison-based algorithm is highly time-consuming. Several 
fast mapping algorithms, such as BWA and Bowtie [1] were 
developed to handle NGS data. However, those algorithms were 
able to find almost complete matching only and may not be 
suitable for the massive amount of metagenomic shotgun 
sequencing studies.  
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Therefore, the aim of this study attempts to explore how a 
deep learning (LSTM model) can be used to learn sequential 
genome patterns through pathogen detection from metagenomic 
data. We propose a bagging-based ensemble LSTM for the task 
of pathogen detection through shotgun metagenomics sequence 
classification. This research makes three major contributions in 
this area. First, we provide the background and steps for the task 
of DNA sequencing classification from data collection, 
preprocessing, and normalization for both using public NCBI 
reference databases and generating DNA sequencing data from 
real patients. Second, as a DNA sequence is a type of sequential 
dataset without specific features, we analyze the effect of 
sequence length on LSTM classification accuracy and split the 
raw sequencing data into proper subsequences to improve the 
outcome of virus detection. Third, to enhance both the 
classification accuracy and processing speed, we introduce the 
concept of discrimination function that enables prediction 
results for multiple subsequences and accelerate the process 
through GPU parallel computing. Two case studies of HCV and 
influenza virus detection were conducted to elaborate upon the 
accuracy and computational efficiency of our proposed 
approach. Towards the end of the paper, we conducted two viral 
sequences detection case studies, i.e., HCV and Influenza viral 
sequences. We elaborate upon the efficiency and computational 
complexity of our proposed approach in an HPC server, which 
has eight NVidia Tesla P100 GPUs. Our experimental result 
shows that we obtained similar accuracy to the conventional 
BLAST method, but with a computational speed that is about 36 
times faster. 

The rest of this paper is organized as follows. In Section II, 
we survey related approaches in the areas of machine learning 
or deep learning-based sequence comparison and classification. 
We provide the background of conducting DNA sequencing 
classification in Section III and the steps of data collection in 
Section IV, while we elaborate on our methodology in Section 
V. To evaluate the advantages and performance of the proposed 
approach; we provide a comprehensive evaluation by using real 
clinical samples in Section VI. A discussion is proved in Section 
VII, and we conclude this paper and discuss future work in 
Section VIII. 

II. RELATED WORKS 
In recent years, huge DNA sequence data have been released 

to the public. To recognize and identify DNA sequences, various 
sequence detection or sequence classification techniques have 
gained a great deal of attention in bioinformatics. Sequence 
alignment is the foundational method for DNA sequence 
comparison, and to measure the similarity between two DNA 
sequences, global alignment and local alignment are widely 
used. The Needleman-Wunsch algorithm [2] is one of the first 
methods, which uses dynamic programming to compute an 
optimum global alignment. In contrast to global alignment 
algorithms, local alignment algorithms, such as the Smith-
Waterman algorithm [3], BLAST [4], and BWA [5] provide fast 
alternatives to assess the similarity between two sequences by 
considering the most similar regions, but not enforcing rigid 
alignment along the full length. 

Other than the above distance-based similarity comparison 
method, Recently, many studies have investigated sequence 

detection or classification using a machine-learning approach 
without considering the overall sequence alignment. In [6], the 
author conducted a study of sequence classification, based on 
support vector machines (SVM) while [7] extending the 
standard hidden Markov model (HMM) to classify protein 
sequences. Since classical machine learning methods cannot 
operate on the sequence directly, it requires preprocessing work 
to extract important features from data such as  [8] and [9] that 
use the approaches of k-mer or motif occurrences. Another 
approach  [10] that apply  convolutional neural network (CNN) 
with one-hot vectors to represent sequences for the task of DNA 
sequence classification. Although the sequence alignment may 
not need by the above machine learning methods, sequence 
classification models may still require input sequences with a 
fixed length. Several machine learning-based studies [11] [12] 
have proposed alignment and length-free methods for the task of 
sequence comparison. They applied a fast Fourier transform 
(FFT) to convert the original sequences to power spectra in the 
format of a real matrix, based on the frequency of each 
nucleotide. Since the preceding vector has a higher weight than 
later vectors, the first few vectors of this matrix are enough to 
represent a given DNA sequence and used for the sequence 
comparison. 

III. BACKGROUND 
DNA molecules consist of four nucleotides and are defined 

as a text string of guanine (G), cytosine (C), adenine (A), and 
thymine (T). The FASTQ format is a standard text-based format 
that stores DNA text strings and their sequencing quality scores 
of high-throughput sequencing instruments. A single ASCII 
character represents both the sequence and quality score. To 
conduct research in the field of DNA sequencing analysis, we 
discuss two background studies of sequence analysis with 
FASTQ data. 
A. Format of DNA sequencing data 

Although many studies can conduct through public reference 
databases such as the GenBank database of National Center for 
Biotechnology Information (NCBI) for the task of species 
identification in metagenomic studies, a DNA sequencer is 
required to obtain the sequencing data directly from the patient’s 
biosample such as blood, stool, or tissue. Hence, the data quality 
is an important preliminary to ensure the confidence of test 
outcomes. A common type of DNA sequencing data is usually 
stored in a text format call FASTQ data. Consider Fig. 1 as an 
example of FASTQ data that is usually structured as four lines 
for each sequence. 

 
Fig. 1. Sample of FASTQ file (reproduced from Wikipedia) 

The quality score is calculated by the equation below, which is 
used to find the optimal sequence length for the subsequent 
analysis. 



 
Fig. 2 illustrates the phenomenon of base calling quality 

(quality score) decreasing from collected real patient samples by 
using the Illumina HiSeq 2500 DNA instrument. From this 
quality boxplot, the reading quality started to significantly 
decrease around the base position of 50 and 110 for influenza 
and HCV, respectively. Based on this observation and to ensure 
the accuracy of sequence classification, it is necessary to 
consider certain preprocessing steps properly, for example, to 
ignore low-quality base reads or to select several proper fixed-
length subsequences. Thus, we were able to ensure that the input 
subsequences always included a portion of high-quality reads as 
the input of any sequence analyzing model. 

 
Fig. 2. Base-calling quality (left, Influenza samples; right, HCV samples) 

B. Sequence comparison scenarios: 

Normally, there are three scenarios to consider for processing 
the DNA sequence comparison: 
(1) Reverse complementary sequences. 
DNA consists of two polynucleotide chains, named “double-
strand,” where each A (adenine) is paired with a T (thymine) and 
vice versa, and similarly, each C (cytosine) is paired with a G 
(guanine) and vice versa. The reverse complementary sequences 
are formed by reversing the letters (by interchanging A and T 
and interchanging C and G) and should also be included in the 
sequence comparison operation. 
(2) The “indel” comparison. 
The genetic sequence comparison includes an assessment for the 
sequence gap, which is often referred to as “Indel”: insertion and 
deletion sequence comparsion. 
(3) Sequence alignment. 
First is the operation of sequence alignment, where the sequence 
similarity is calculated from either a global or local optimal 
sequence alignment scenario. Thus, the match of two sequences 
is not completed by an exact match, but rather by considering 
the similarity. 
The above three sequence comparison scenarios are often 
provided as functions in conventional sequencing comparison 
applications, such as BLAST; therefore, our proposed deep 
learning solution should consider each of these sequence 
comparison capabilities. 

IV. DATA ACQUISITION AND PRETREATMENT 
A large amount of high-quality training data are essential to 

every machine learning application, especially for approaches 

that are closely related to deep learning. Our data collection and 
preprocessing method include both a public database as ground 
reference data and a real patient's sequencing data generated 
from our laboratory. In this section, we discuss our procedures 
of data collection, augmentation, and normalization. 

A. Data collection (Training dataset): 

DNA sequencing data is generated by NGS—an instrument 
that automates the DNA sequencing processer and generates 
text strings of A, C, T, and G from the given biosamples. This 
procedure is commonly referred to as a DNA sequence read. 
Due to the sequencer’s reading capability, there is no DNA 
sequence that can guarantee to produce 100% accurate DNA 
sequencer data. In fact, an accuracy of over 99.9% is an 
acceptable threshold in the industry. 

B. Data argumentation by shifting data 
By directly using the original format of the NCBI sequence, 

deep learning may not be able to learn enough information from 
the above three scenarios. In our proposed approach, building a 
customized shifting reference database provides the 
functionality of sequence comparison based on the three 
concepts above. Inspired by split-read aligners from [5], we 
generated reverse complementary sequences, which are 
segmented sequences with a proper sequence length based on 
their quality. To support the sequence comparison in the 
reverse-complementary sequence scenario, we generated 
reverse complementary sequences, which double the number of 
original sequences. DNA sequences are highly dimensional 
datasets without explicit features; To avoid getting the 
extremely large data training, we randomly analyze and split 
the whole sequence proper size of subsequences to extract 
useful and important features. Our training data includes all 
shifting sequences for viral sequences and random shifting 
sampled non-viral sequences (human DNA sequences). This 
approach enables our model to learn patterns from a sequence 
alignment scenario. 

Fig. 3 illustrates the concept of shifting sequence generation 
from the NCBI HCV reference database. For each sequence in 
the database, we generate more subsequences by using the 
shifting windows = 1. In this manner, those shifting sequences 
facilitate the sequence alignment operation and allow deep 
learning extracts the characteristics of those shifting sequences 
to perform the sequence classification. Please note that the 
subsequence_length is determined by the target testing data set. 
In our study, we explored subsequence lengths from 20bp to 
70bp for our pathogen detection use cases of HCV or influenza 
to fulfill our system requirement. 

 
Fig. 3. Concept of shifting sequence generation 



C. Data normalization 

Data normalization is commonly applied as part of the data 
preparation process for machine learning. The goal of 
normalization is to change the values of numeric columns in the 
dataset to a common scale without distorting differences in the 
ranges of values. Having an appropriate data normalization can 
help to accelerate  the convergence of the training process. We 
adopt the common approach of the DNA nucleotide by using 
one-hot encoding as A = [1 0 0 0], G=[0 1 0 0], C=[0 0 1 0], and 
T=[0 0 0 1]. 

D. Data collection (Testing dataset) 

1) Statistic of the testing data 
We obtained 32 clinical samples for our evaluation dataset, 

which consist of 9 metagenomic datasets from HCV-positive 
(hepatitis C viruses) patients and 13 influenza-infected patients. 
For negative control samples, we used blood samples from 10 
healthy donors. Those 32 clinical samples were processed 
through an Illumina HiSeq 2500 instrument to generate the 
metagenomics shotgun sequencing data with about 2 to 7 
million sequences per sample. Originally, these samples 
account for about 103 million sequences. In this study, we 
exclude sequences that are not either viral or human sequences 
(such as bacterial sequences). Table 1 summarizes the statistics 
of those samples in this study. In total, there are about 78 
million shotgun sequences on average with a different length of 
reads. 

TABLE 1. CHARACTERISTIC OF 32 SHOTGUN SEQUENCE CLINICAL SAMPLES. 

 9 HCV 
blood 
samples 

13 influenza 
nasal swab 
samples 

10 healthy blood 
samples 

Number of 
total 
sequences 

9,574,381 40,195,765 29,294,195 

Average 
number of 
sequences 

1,063,820 3,091,982 2,929,420 

Sequence 
length 

150bp 100bp 199bp 

 
2) Quality of testing data 

Fig. 4 shows the average quality of reads distribution from 
our 32 testing clinical samples, which have approximately 78 
million shotgun sequences. The function considers only 
sequences with an average quality score equal to or greater than 
the threshold. In our case, about 86.34% of these samples have 
an average Phread quality score greater than 30. This high score 
value indicates that the chances of an incorrect base being called 
within 1/1000 (accuracy of 99.9%) and ensures the quality and 
confidence of our testing of these shotgun samples. Recall from 
the above data argumentation that for each input sequence, we 
generate multiple subsequences by using the shifting-window 
method. The final classification outcome is based on the 
ensemble result from the classifications of these subsequences. 
Using this high sequence quality ensures the confidence of our 
data augmentation procedure. 

 
Fig. 4. Sequence quality distribution 

V. METHODOLOGY 
A DNA sequence encapsulates genetic information from 

sequential patterns. In this section, we elaborate upon our 
proposed pathogen detection system. More specifically, we use 
a deep learning method (the LSTM model) to discover the 
sequential patterns of given ground reference databases and 
have adopted it as a disease discriminator to evaluate the given 
shotgun metagenomics samples. A conventional method like 
BLAST is highly time-intensive, due to the process of similarity 
comparison with its reference database. However, it still shows 
a high degree of accuracy and reliability for the task of DNA 
sequence analysis and comparison. 

Fig. 5 illustrates the proposed pathogenic virus detection 
system. After sample preparation and generate DNA sequencing 
data from DNA sequences, our proposed model was designed to 
analyze all sequencing data through sequence classification. 
Depending on the characteristics of input sequences, we provide 
two operation modes: the direct processing mode and the 
sequence filtering mode, to ensure results with high accuracy 
and processing speed. The direct processing mode outputs high 
homology sequences to speed up pathogen detection, and 
sequence filtering mode outputs possible sequences (true 
positive of viral sequences) that are further determined by the 
BLAST method. Although it may take time to run BLAST, it's 
important not to miss sequences with low homology. The 
following subsections elaborate on the components and 
important concepts of this proposed system. 

 
Fig. 5. Data flow in the proposed pathogen detection system 

A. Structure of the proposed LSTM model 

The LSTM model is the core of the proposed system, and we 
describe the detail of model construction in the following. To 
build our model, we obtained the reference sequences of both 
influenza and hepatitis C viruses from the NCBI viral genome 
resource [9], and used hg19 for the human reference genome 
data, as described in the previous section.  



Fig. 6 illustrates the architecture of our proposed LSTM 
network for the DNA sequence classification task. An LSTM 
network is a type of recurrent neural network (RNN) that is 
designed to learn the long-term dependencies between time 
steps of sequential data, which meets the concept of analyzing 
DNA genomic sequences. This network starts with a sequence 
input layer followed by an optional dropout layer, which was 
originally designed to solve the overfitting issue. A sequence 
input layer inputs DNA sequences data into the network and the 
LSTM layer learns long short-term dependency patterns from 
nucleotide sequence representations. A fully connected layer 
extracts features from its preceding LSTM layer and multiplies 
it by a weight matrix, and then adds a bias vector to learn non-
linear combinations of these features. To classify sequences into 
virus or human, a sigmoid layer is added to generate the binary 
classification result at the output layer. It is expected that after 
the model has learned the genomic pattern of the ground truth 
database, it should be able to determine a similar pattern for any 
future input sequence, either as a viral sequence or a human 
sequence. In this work, we build two binary LSTM prediction 
models for labeling the input sequences as [HCV, human] and 
[influenza , human]. 

 
Fig. 6. An illustration of the proposed LSTM model. 

 
Fig. 7. LSTM training loss 
decreasing 

Fig. 8. LSTM training accuracy 
increasing 

We use the hg19 sequence to represent the human genome 
for the model training. Furthermore, we explore optimal 
hyperparameters to improve the accuracy of classification. The 
parameters of the final networks include Adam as the optimizer, 
a batch size of 4096, and 256 as num_units (size of 
the LSTM's hidden state). Fig.s 7 and 8 show that we have 
significantly improved our training loss and accuracy with our 
optimal parameters and with an increasing number of neurons.  

B. Optimal input sequence length 

DNA sequencers commonly generate varying lengths of 
sequencing data, which are defined as the base pair (bp). 
Although the LSTM model is capable of processing inputs as 
different sequence data, we use a fixed sequence length because 

of three underlying reasons. First, shotgun sequencing is 
relatively shorter when compared to other types of genome 
sequencing datasets, and it is relatively easy to adjust the 
sequence length instead of directly inputting various amounts of 
base pairs into the model. Second, when passing data of unfixed 
lengths through the LSTM network, the program pads shorter 
sequences with zeros and truncates longer sequences or splits 
sequences in each batch to provide sequences of the specified 
length. This procedure increases additional run-time 
computational overhead. In practice, to reduce the amount of 
padding or discarded data when padding or truncating 
sequences, we recommend sorting the input data by their 
sequence lengths. In fact, the underlying concepts of padding, 
truncating, and sorting procedures are acutely designed to 
facilitate the concept of fixed length. Third, sequence base 
calling is the process that converts the raw image data to 
nucleotide sequences. The quality of nucleotide reads decreases 
along with the length of the sequence reads, which are caused 
by both the sample quality and the capability of the DNA 
sequencer. It is practical to use only a high-quality sequence for 
sequence analysis. 

C. Discrimination function 

To cope with the complicated scenario of sequence 
classification from both sequence alignment and polymorphism, 
our system first defines the optimal input sequence length as 
previously mentioned and performs classification tasks from 
three subsequences. We create a metaclassifier, the 
discrimination function, to combine those subsequence 
classification results to form the final classification result. 
Different subsequence predictions capture information from 
different angles with different advantages and disadvantages. By 
adequately leveraging the uniqueness of each prediction, in most 
cases, it is possible to obtain a higher prediction accuracy than 
with a single classification [12]. In general, the preceding 
nucleotides in a whole sequence has a higher base calling score 
and should be accountable for higher importance in the 
discrimination function. Fig. 9 illustrates a scenario where we 
divide an HCV sequence of 151bp to 3 subsequences with a 
shifting sequence window of 20. A sequence is classified as an 
HCV-related sequence only when the metaclassifier (the 
discrimination function) is true. 

 

           [Discrimination function] 
* Direct processing: (#00>0.99) and (#01>0.99) and (#02>0.99) 
*  Sequence filtering: (#00>0.99) or (#01>0.99) or (#02>0.99) 

Fig. 9. Ensemble subsequences classification results with the discrimination 
function. 

One advantage of this approach over the traditional sequence 
alignment approach (such as BLAST) is that the machine 
learning approach is able to find important parts from certain 
subsequences without comparing the entire input sequence to 
sequences from the reference database. 



D. Dropout layer 

Dropout is the most common approach to avoid overfitting 
and increase the overall prediction accuracy. The term "dropout" 
refers to dropping out units (both hidden and visible) in a neural 
network. Intuitively, the procedure involves setting some 
neurons in the network to be zero (dropped out) during training 
in each forward pass. The dropout rate corresponds to the 
probability that a neuron is dropped out. Normally, 0.5 is the 
default value, and in this study, we explore various possible 
values from 10% to 50%. The effect of using the dropout layer 
is provided in section 6B. 

E. GPU acceleration 

Depending on the reading capability of NGS technology, one 
data may contain from one million to hundreds of millions of 
metagenomics shotgun sequences. In a conventional 
computation use case, sequence comparison normally runs 
under multiple cores on a single CPU. Analyzing this type of 
big-data task is highly challenging and time-consuming without 
efficient sequence comparison algorithms. A GPU has 
thousands of individual computational cores, which are 
designed to solve both computational and data-intensive 
problems by using parallel computing. Parallel computing 
enhances the computation speed through the concurrent 
execution of multiple processes. Unlike other deep learning 
models, LSTM is only allowed to use a single GPU for the 
model training phase. Depending on the data size and parameter 
setting of the LSTM model, our model training time varies from 
12 to 47 hours. However, for the task of sequence classification, 
by using multi-GPU acceleration, our proposed method is able 
to split a hundred million shotgun DNA sequences into many 
smaller batches of DNA sequences and process them, 
concurrently, within minutes. The detailed result of this type of 
analysis is provided in the experimental section. 

VI. EXPERIMENTAL RESULT 
To evaluate the feasibility of the proposed LSTM model for 

the task of pathogen detection, we conducted experiments by 
comparing it with the standard sequence comparison approach, 
the BLAST, from the aspect of both accuracy and computing 
speed. BLAST is a database search approach with the capability 
to report the confidence of its searching result through the 
indictor expect value (E-value). The E-value indicates the 
number of expected hits of similar quality (score) that could be 
found just by chance between the length of the input query 
sequence and the size of the entire reference database. In other 
words, the lower the E-value (or closer to zero), the more 
significant the match, and the higher the evaluation quality. 

In our experimental design, we use the DNN direct mode to 
compare with the BLAST’s high-quality output sequences by 
using a threshold of E-value < 1e-30 . For the sequencing filter 
mode, and to assess the filtering capability, we use all output 
sequences from BLAST with a threshold of E-value < 1e-10 to 
compare with the output sequences from our proposed LSTM 
model. Recall from section 4D that our testing data consists of 
32 clinical samples: blood samples, i.e., blood samples from 9 
HCV-infected patients and 10 healthy individuals, as well as 
nasal swab samples from 13 influenza-infected patients. The 
data size is approximately 78 million shotgun sequences with 
different sequence lengths. Those samples are metagenomic 

DNA sequencing data that contains all possible genomes from 
given samples, with over 90% of them being human DNA 
sequences. HCV and influenza viral sequences should exist only 
in infected patients (9 HCV and 13 influenza-infected samples). 
Thus, a successful detection method should properly identify 
those viral sequences. We implemented and evaluated the 
proposed LSTM model on an HPC server with dual Intel Xeon 
E5-2690 v4 (2.60GHz) processors, 768GB 2133 MHz DDR4 
LRDIMM of main memory, and eight NVidia Tesla P100 GPUs 
(PCIE-16GB). 

A. Test of direct processing mode 

In this test, we compared our DNN’s result with the BLAST 
threshold of an E-value less than 1e-30, which is considered to be 
a high-quality hit for homology matches. 

Fig. 10 presents the classification result from the 13 
influenza-infected clinical samples, which has about 4.8 million 
shotgun sequences per sample, while Fig. 11 shows the 
sequences selection result from the 5 HCV-positive samples, 
which has about 2.1 million shotgun sequences per sample. 
Since the actual amount of target sequences varies on a scale 
from one to thousands, to access the result with BLAST, we used 
a log scale to represent our result. From the evaluation of the 
influenza test in Fig. 10, it shows that our result is almost 
identical to BLAST in all samples. More precisely, our method 
found slightly more influenza-related sequences than BLAST 
for all samples. Those sequences do not necessarily mean a false 
positive result since BLAST does also generate erroneous 
outputs. We provide a detailed discussion of this finding in the 
false-positive evaluation section. 

 
Fig. 10. Influenza test for the direct processing mode. 

Fig. 11 gives the HCV test result, for samples CW2591, 
CW2592, and CW2593, our approach demonstrates a high 
degree of overlapping with BLAST, and both methods report a 
significantly larger amount of HCV-related sequences. For the 
samples CW2589, CW2590, CW2594, and CW2595, only our 
DNN detected the HCV viral sequences. Both methods do not 
report any viral sequences for sample CW2596, and reports 
completed different viral sequences for sample CW2588. This is 
due to the dynamic amount of virial sequence in the samples. In 
general, our method seems to more sensitive than BLAST; It 
reports more HCV-related sequences than the BLAST method. 
As compared to the test result of influenza (sample from nasal 
swabs), we consider the comparable level of the virus is different 
between these two types of samples. HCV samples are the blood 
sample that has a higher diversity of human-genome–related 



sequences; It may increase the noise level and may cause 
difficulty in discovering the HCV viral sequences. 

 
Fig. 11. HCV test for direct processing mode. 

B. Test of sequence filtering mode 

Within this sequencing filtering mode, we expect our system 
to generate more candidate true positive (viral sequences) and 
reduce the data load of BLAST. In this test, we analyze the 
relationship among discrimination function, dropout layer, 
length of input sequences, and the quality of the output 
sequences. We compare the output sequences from the LSTM 
model to all sequences from BLAST (E-value less than 1e-10). 

1) Effect of the discrimination function 
Fig.s 12 and 13 present the effect of sequence selection 

from HCV samples by using the discrimination functions of the 
direct processing mode and sequence filtering mode, 
respectively. The discrimination function from the direct 
processing mod, as shown in Fig. 12, is more conservative and 
outputs less candidate viral sequences. On the other side, as 
shown in Fig. 13, the sequence filtering mode always outputs 
more candidate viral sequences than the BLAST method. We 
observe that the direct processing mode has a high degree of 
overlapping with BLAST for those high copy number HCV 
cases(CW2591, CW2592, and CW2593) while the filtering 
mode can increase the chance of mutual sequences selection 
results with BLAST such as for CW2588, CW2589, and 
CW2596  

 
Fig.12 discrimination function for ‘direct processing mode.’ 

 
Fig.13 discrimination function for ‘sequence filtering mode.’ 

2) Effect of adding dropout layer 
Fig. 14 and Fig. 15 depict the effect of mutual sequences 

with the BLAST for dropout ratio from 10% to 30% for 
influenza and HCV, respectively. As we discussed in section 
5D, we originally expected that adding a dropout out layer 
would increase the model generalization and output more 
mutual sequences with BLAST (true positive sequences). 
However, both tests show that the original approach (without 
using dropout) consistently has a higher degree of mutually 
selected viral sequences. This outcome is different from what 
we expected, and we discuss this phenomenon in the later 
discussion section. 

 
Fig. 14.  Effect of adding dropout for LSTM (Influenza test) 

 
Fig. 15. Effect of adding dropout for LSTM (HCV test) 

3) Effect of sequence length 
The previous test outcome shows that adding the dropout 

layer in the proposed LSTM model does not facilitate for 



returning more candidate true positive sequences. Here, we 
adjust our approach by changing the length of input sequences 
with the discrimination function. That is, for each input 
sequence, we select three of its subsequences and test with 
various sequence lengths (20 to 70) to check the number of 
output sequences. Fig. 16 shows the true positive rate (TPR or 
Recall) from the three most severe HCV patient’s blood 
samples, based on different discrimination function thresholds 
(0.96~0.99). In general, we observe that using shorter 
subsequences (20 seems too short) as the input sequence length 
of the LSTM outputs more mutually selected sequences with the 
BLAST method. It is also obvious that a lower discrimination 
function threshold leads to a greater number of selected 
sequences. 

 
Fig. 16. Degree of sequence selection from various of sequence length 

On the other hand, as for the sequence filtering mode, we also 
expect the system can significantly reduce the amount of data 
before the sequence flow goes to the BlAST method. Human 
samples contain more than 90% of human-related DNA 
sequences; We define those human sequences are true-negative 
and they should be removed from the LSTM filter. In this study, 
we assume the BLAST’s result is the ground truth since it is the 
most widely used and most reliable sequence analysis tool. Fig. 
17 shows the true negative test result from the Influenza 
samples.We observe that the use longer sequences length as the 
input sequences reflect the better result of true negative rate 
(higher TNR) of detecting human sequences. 

 
Fig. 17. True-negative test from Influenza samples 

 
C. Time complexity test 

The above evaluations were based on the detection of viral-
related sequences from our collected 32 samples, and our results 
were reasonably reliable. In general, a metagenomic shotgun 
dataset can contain anywhere from millions to hundreds of 
millions of sequences; therefore, the speed of processing is 
another important factor for model evaluation.Our approach 
splits large metagenomics shotgun sequences into many smaller 
DNA batches and processes them with a high-performance 
multi-GPU. We compared the processing speed in various 
scenarios from a single CPU (Intel(R) Xeon(R) E5-2690 v4 @ 

2.60GHz) and a single GPU to a multi-GPU (Tesla P100-PCIE-
16GB). The processing speed of BLAST is mainly depended on 
the size of the input sequence and its reference database.  

In this processing speed test, we use BLAST method as the 
baseline approach. The BLAST database includes about 
147,000 sequences (109 million total bases). Fig. 18 shows the 
processing speed comparison for both our proposed deep 
learning approach and the BLAST method by direct processing 
mode of our proposed system. The y-axis describes how many 
millions of sequences are processed and analyzed per minute, 
and the x-axis shows the testing platform. From a single CPU 
test, our method can process 3.24 million sequences, which is 
about 8.7 times faster than the BLAST method. The proposed 
method is ordinarily designed for maximizing GPU acceleration 
with multiple GPUs for detecting target DNA sequences. We 
observe the linear increase pattern between the number of GPUs 
increases and the number of processing sequences per minute. 
Our best case (8 GPUs) shows that our method can evaluate 
about 13.38 million sequences per minute, which is about 36 
times faster than the BLAST method.  

As for the sequence filtering mode shown in Fig. 19, our 
approach also performs faster than the BLAST only method. 
Unlike the direct processing mode above, we do not see a linear 
increase pattern from the number of GPU and the amount of 
processing sequence after accelerating from the 5th GPU. This 
limitation is caused by the BLAST method due to the constrain 
of reaching the max IO threshold.  Overall, our method shows 
the advantage of faster processing speed from 4.6 (use 1GPU) 
to 7.8 times (use 8 GPU) which also demonstrates the advantage 
of this proposed system. 

 
Fig. 18. The processing speed of direct procession mode 

 
Fig. 19. The processing speed of sequence filtering mode 



VII. DISCUSSION  
Our study includes discovering the effect of adding dropout 

layer, number of total base pairs  (sequence length), and 
discrimination. The dropout layer is commonly used to 
regularize deep neural networks to avoid model overfitting and 
improve model performance. However, from our experimental 
result, we find that adding a dropout layer in the proposed LSTM 
model decreases the overall classification performance. One 
explanation may lie in the characteristic of our training data from 
NCBI reference data. These datasets consider the most 
completed (HCV, Influzensa) reference data. In other words, it 
is unlikely to find new HCV or influenza nucleotide sequences 
from given samples unless a new type of virus appears. Besides, 
since adding the dropout usually leads to additional training 
time, without considering dropout, our approach also reduces 
the time complexity. 

In the case of dealing with low homology sequences, we 
proposed sequence filtering mode to select more candidate true 
positive sequences (virus sequences) by combining our 
proposed LSTM model with the conventional method, as 
described in Section V. Our study shows that using shorter base-
pair sequences as an input can have more accurate detection for 
virus sequences, which is the higher TPR. A partial explanation 
for this may lie in the fact that the character of the viral DNA 
sequence is due to a shorter structure. On the other hand, we also 
found  using longer sequences as input can help the system to 
remove more human-related sequences (TNR). By considering 
the trade-offs between TNR and TPR, we believe that not 
missing viral sequences is more important than reducing human 
sequences. From this aspect, we recommend our system adopt a 
shorter sequence for the sequence filtering mode by default. 
Moreover, the proposed prediction model was based on 
combined results from multiple subsequences with a 
discrimination function. Thus, by lowering the threshold of this 
function, the system can increase the number of output 
sequences. 

VIII. CONCLUSION 
In this work, we explored how an LSTM network can be 

used to learn sequential genome patterns through pathogen 
detection from metagenome data. Our method includes steps of 
data collection, preprocessing, and normalization for both public 
NCBI reference databases and shotgun sequences from clinical 
samples. We also conducted a base-calling quality analysis to 
find the optimal subsequence length (base pair) for our proposed 
model, and this further facilitated the accuracy of our pathogen 
detection. The proposed prediction model was based on a 
discrimination function that enables multiple subsequence 
prediction results to increase classification accuracy. We 

collected and conducted case studies that analyzed influenza, 
HCV viral sequences, and healthy samples. As for the high-
performance processing algorithm, it splits large metagenomic 
shotgun sequences into many smaller DNA batches and 
processes them with a multi-GPU. We evaluated the accuracy of 
pathogen detection by using an HPC server that included eight 
NVidia Tesla P100 GPUs. Our experimental result shows that 
we obtained similar accuracy to the conventional BLAST 
method, but at a speed that was about 36 times faster. 
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