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Abstract—We propose a neuroevolutionary speciation mecha-
nism that is applied on NeuroEvolution of Augmenting Topologies
(NEAT) that solely evolves neural networks’ topology and weights
and its extension HA-NEAT that also evolves activation functions.
The new speciation mechanism is defined based on the behavior
of the individuals rather than their topological similarity. Fo-
cusing on classification tasks we build artificial datasets of high
complexity. Performance is described by (i) median classification
accuracy, (ii) computational efficiency (number of generations)
and (iii) network complexity (number of nodes and connections).
The performance metrics are compared using Kruskal-Wallis
hypothesis tests with Bonferroni correction. It is found that
the proposed behavioral speciation mechanism outperforms the
original speciation solving problems that were not solvable before
or improving the accuracy and reducing the network complexity.

Index Terms—NeuroEvolution, speciation, behavior, classifica-
tion

I. INTRODUCTION

NeuroEvolution (NE) is a learning method that uses Evolu-
tionary Algorithms (EAs) to optimize parameters of Artificial
Neural Networks (ANNSs) [1]. NeuroEvolution of Augmenting
Topologies (NEAT) [2] is a neuroevolutionary method for
optimizing both the connection weights and the topology of
ANNSs. NEAT introduces three main innovations (section II)
that solve significant problems in the field of NE such as the
competing conventions problem and facilitates the crossover
between individuals of different length. Moreover, NEAT
evolves networks by adding new structure when necessary
and protects new individuals by organizing them in species.
Heterogeneous Activation NEAT (HA-NEAT) [3], that evolves
ANNs with mixed activation functions, is one of the many
methods [3]-[5] proposed to extend NEAT’s functionality.

Speciation or niching is a mechanism of protecting innova-
tion inspired by nature. Individuals are assigned into species
based on a similarity metric. In NEAT and HA-NEAT this
metric assesses how similar two topologies are, based on how
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matching or disjoint the connection genes of two individuals
are. However, especially in HA-NEAT that evolves ANNs
with nodes of different activation functions, the definition of a
similarity metric based only on the connection genes is not
sufficient to capture the differences and similarities of the
evolved heterogeneous topologies. Moreover, the definition of
the topological distance metric is based on the assumption that
similar genotypes correspond to similar phenotypes. However,
a mutation operation in the genome that may affect only a little
this distance metric can have a huge impact on the network’s
output, i.e. on the network’s functionality. For example, re-
moving a connection gene only slightly changes the genotype,
but the impact on the phenotype can be huge as a network’s
output can change completely, e.g., a whole part of a network
could become disconnected from the output. In this paper
we propose a speciation mechanism for assigning individuals
into species based on their ‘behavior’. Since we are focusing
on classification tasks, we define as a network’s behavior the
predicted output for a given input. Speciation is now performed
in the behavioral space rather than the topological space and
this type of speciation is called ‘behavior-based speciation’.
The proposed speciation scheme is tested on both NEAT
and HA-NEAT and it is compared with the original speciation
scheme of both NEAT and HA-NEAT. The four resulting algo-
rithms are evaluated on artificial datasets of high complexity
in two aspects; their classification ability in terms of accuracy
and their efficiency, measured by the number of generations
required until the stopping criterion is met and the size of the
evolved networks (number of hidden nodes and connections).

II. METHODS
A. NEAT

NEAT [2] is a successful neuroevolutionary method that
allows the simultaneous optimization of the connectivity and
the topology of ANNs. NEAT uses direct encoding of the
networks with a set of node genes and a set of connection
genes that undergo crossover and mutation operations. Two
types of mutations are allowed structural and weight muta-
tions. Structural mutations enable the addition of new nodes



and connections, while weight mutations perturb the weights
of existing connections.

NEAT introduces three main innovations. First of all, it
enables the alignment of matching genes during crossover
by historical markings, more precisely by assigning an in-
novation number that is incremented each time a new gene
is added to the genome thus functioning as a chronological
parameter. The innovation number is then inherited by the
offspring and maintained throughout evolution. Furthermore,
NEAT performs speciation by dividing the population into
groups based on their topological similarity. In this way, a new
individual can compete within its own niche and it is given
time to be optimized, instead of having to compete with other
already evolved networks in the population. Finally, NEAT
starts the evolution with a population of minimal structures, i.e.
a population of networks with only fully connected input and
output layers. Gradually, it evolves more complex networks
by introducing new nodes and connections that survive only if
they increase the performance, measured by a fitness function,
which means that NEAT tends to discover networks without
unnecessary structure.

B. HA-NEAT

HA-NEAT [3] is an extension of the NEAT algorithm that
allows the evolution of ANNs with mixed activation functions.
Hagg et al. [3] showed, that in order to approximate a function,
more nodes of the same activation function are required com-
pared to when using nodes of different activation functions. As
a result, when heterogeneous networks are evolved, they are
supposed to be smaller, having fewer parameters to optimize
so being less prone to overfitting. In HA-NEAT, NEAT’s
‘add-node’ mutation operator is altered to introduce a new
node in the genome with a random activation function from a
predefined list of possible functions. This set can contain the
step function, the Rectifier Linear Unit function (RELU), the
sigmoid and the Gaussian functions. Moreover, a new mutation
operator is introduced, called ‘mutate activation function’. This
operator selects a random node of the genome and changes
its activation function by choosing a new function from the
previously described predefined set of possible functions.

III. SPECIATION

Speciation in nature is the darwinian phenomenon of an
evolving population consisting of different subgroups whose
individuals share a characteristic that is different from the one
of individuals of other subgroups [6]. Speciation or niching
in Genetic Algorithms and NE is inspired by speciation in
nature. It is a mechanism for protecting innovation, as new
structures can be isolated in their own species and get time
to optimize their structure before competing with the whole
population [2].

A. Speciation in NEAT and HA-NEAT

In NEAT and HA-NEAT individuals are assigned into
species based on a compatibility/similarity distance between

the individual and a representative of each species. If the dis-
tance is smaller than a compatibility threshold, the individual
belongs to that species, otherwise a new species is created. The
definition of this distance metric is based on the assumption
that the more evolutionary history two genomes share, the
more compatible they are [2]. This is evaluated with the help
of the historical markings that facilitate the aligning of the
connection genes of two individuals. The non matching genes
between the two individuals that are located in the middle of
the genomes are called disjoint genes, while the non matching
genes in the end of the genomes are called excess genes. The
compatibility distance, defined in equation 1, is calculated
based on the number of excess and disjoint genes and the
average weight difference between matching genes.
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with E, the number of excess genes, D the number of disjoint
genes, W the average weight difference between matching
genes and cq, ¢, c3 coefficients that determine the importance
of each factor.

B. Proposed Behavioral Speciation

However, in the case of HA-NEAT that evolves networks
whose nodes have different activation functions, a distance
metric evaluated only on matching/mismatching connection
genes is not sufficient to capture the similarity of two net-
works. In addition, a speciation metric evaluating the similarity
of genotypes is based on the assumption that similarity at the
level of genotypes corresponds to similarity at the level of
phenotypes. Nevertheless, a mutation operation that can have
a small impact on a metric evaluated on the distance between
genotypes can have a big influence in the resulting phenotype
and hence in the functionality of the network. Therefore,
evaluating the similarity of networks at the level of genotypes
cannot capture how similar the networks function.

In this paper we propose a speciation mechanism based
on the functional behavior of the ANNs rather than their
genomes’ similarities. Since we are focusing on classifica-
tion tasks we define as a network’s behavior the predicted
output for a given input. In our approach, the compatibility
distance/similarity metric between two individuals, defined in
equation 2, is given by the sum of the absolute difference of
their outputs.

Vi, j € population
Sp(inj) =Y loutput(i) — output(j)| @

Vsamples

with 0,(, 7) the behavioral distance between two individuals
i and j and output(i), output(j) their corresponding output
vectors.

The individuals are then assigned into species by k-means
clustering using a squared Euclidean distance metric and k-
means++ algorithm [7] to initialize the clusters’ centers.

In this paper we apply behavioral speciation both on HA-
NEAT and NEAT and we call these algorithms Behavioral-
based Speciation-HA-NEAT (BS-HA-NEAT) and Behavioral-



based Speciation-NEAT (BS-NEAT) respectively. In [8], we
experimentally proved that using the Gaussian activation func-
tion in the output layer of FD-NEAT [9] (another extension of
NEAT), rather than the traditionally used sigmoid functions,
results in better performance (accuracy, number of generations
and size of the evolved networks). We follow this approach
here so that (BS)-NEAT and (BS)-HA-NEAT evolve ANNs
with Gaussian activation functions in the output layer.

The concept of ‘behavioral speciation’ has been encountered
in NEAT-based [6], [10] and HyperNEAT-based [11] methods
before, however behavior was defined differently [6], [10] or
it was employed in a different algorithmic context [11].

IV. EXPERIMENTAL SETUP
A. Datasets

The first step towards evaluating the performance of a
new method is to test it on artificial data whose expected
behaviour is known, as they allow the true assessment of
the method’s performance compared to real-world scenarios
whose true solution is often unknown [12]. XOR is a well-
known, non-linearly separable problem and one of the first
datasets researchers would consider to verify the success
of their approach [2], [9], [13]. Since original XOR of 4
samples and 2 inputs can be solved by an ANN with one
hidden layer, we build much more complex datasets with
many irrelevant inputs, named 2 out of k datasets (referred
to as 2/k), where k is the total number of features, following
an approach described in [8]. The 2 inputs are assigned to
the relevant features and the remaining & — 2 inputs are
assigned to irrelevant binaries. In this paper we choose the
total number of features to be equal to £ = 100. To include
these irrelevant features we increase the number of samples
to reduce the probability that an underlying correlation exists
between the randomly generated data and the output. In this
way we create datasets of increasing complexity with 700,
500, 300, and 100 samples of 100 inputs to which we refer
as 2/100 — Ny, (N, € {700,500, 300, 100}). The smaller the
proportion between dataset’s size and number of features is,
the more difficult the problem becomes.

Simpler versions of these datasets have been used as bench-
mark problems in feature selection tasks [8] as the datasets
are constructed such that each of the individual attributes is
equally informative for predicting the output. The datasets
constructed in this paper are even more complex and more
difficult to be learnt as we have both significantly increased
the number of irrelevant features and decreased the number of
samples.

Spiral plots constitute another family of artificial datasets,
versions of which have been used to benchmark FD-NEAT [9].
We construct datasets of 1000 samples and two inputs that are
characterized by a highly-non-linear decision boundary, as the
one depicted in Figure 1.

We repeat the dataset construction five times and divide the
resulting 2/100 — N; XOR and spiral datasets into training
and test sets by 10 fold cross validation.
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Fig. 1: Example of a spiral plots dataset

Performing 10 fold cross validation on the 2/100—100 XOR
results in training sets of 90 samples and 100 features which
are very difficult to learn, as there are not enough samples
to capture the underlying relationship between features and
classes.

B. Genetic Algorithm Settings

The fitness function used in the (BS)-NEAT and (BS)-HA-
NEAT algorithms is defined by the error between the output
of the ANN and the real label of the training sample. In this
way the fitness function is defined as in equation 3.

1 1 1
fitness = = = .3
N,
error 1 —accuracy 1— N

with N.. the number of samples that are classified correctly
and Ny, the number of training samples.

The stopping criterion of evolution is defined when the fit-
ness value becomes greater than 1/0.01 i.e. when the training
error is smaller than 0.01 or when the maximum number of
allowed generations is reached.

NEAT and HA-NEAT with the two different speciation
mechanisms run with the same parameter configurations (Table
I) for all the 2/100 — Ny XOR and spiral plots datasets.

C. Implementation

The proposed speciation scheme as well as HA-NEAT and
NEAT are implemented in MATLAB based on a MATLAB
implementation of HA-NEAT [14].

D. Evaluation Measures

The 2/100 — N, XOR datasets and the spiral datasets are
divided into training and test sets by 10 fold cross validation
and the experiments are repeated 5 times, resulting in 50
runs of each of the four algorithms (NEAT, BS-NEAT, HA-
NEAT and BS-HA-NEAT). The performance of the algorithms
is evaluated on two aspects; their classification ability and
their efficiency. The classification ability is evaluated using



TABLE I: Parameter Setting of (BS)-NEAT and (BS)-HA-
NEAT for the 2/100 — Ny XOR and Spiral Plots Tasks

TABLE II: Performance Analysis of HA-NEAT with Original
Speciation and HA-NEAT with Behavioral Speciation (BS-
HA-NEAT) on the 2/100 — N, XOR Datasets

the accuracy on the test set, while their efficiency is based on
the number of generations required until the stopping criterion
is met and the size of the evolved topologies, in terms of the
number of evolved nodes and connections.

For each of these metrics we calculate and present the
median values and the inter quartile range (IQR) over the
50 runs. We chose to calculate the median values instead of
the average because the presence of outliers can influence the
interpretation of the results.

E. Analysis of the Results

We perform statistical tests to compare the performance of
NEAT and HA-NEAT with the two speciation mechanisms us-
ing Kruskal-Wallis hypothesis tests with Bonferonni correction
(p < 0.01). The hypothesis tests are applied on the different
performance metrics mentioned in the previous section; clas-
sification accuracy, number of generations, number of nodes
and number of connections.

V. RESULTS

Tables II-III present the median values of the investigated
performance metrics and the corresponding IQR calculated
over 50 runs on the different 2/100 — Ny XOR problems
with sample size Ny € {700, 500, 300, 100}. For details of the
distribution of the results we present Figures 2 and 3 that show
the performance of all the algorithms on all the 2/100 — N
XOR datasets. Each of the plots presents the values of a
performance metric (y axis) for the HA-NEAT (Figure 2) and
NEAT (Figure 3) for the two different speciation mechanisms
tested across the different datasets (x axis). Moreover, the p
values of the hypothesis tests are presented in Tables V, VI,
VII and VIII for each of the 2/100 — N, XOR datasets. Each
row and column includes the methods whose performance
metrics are tested, i.e. NEAT, BS-NEAT, HA-NEAT and BS-
HA-NEAT. For illustrating purposes, we present the results
that are statistically different on a grey background. The results

Parameter Value | Meaning
Population Size 350 The number of individuals in the population -Dataset’s difficulty increases to the right —
Max generations 1000 | The maximum number of generations al- Metri 2/100 — Ns XOR datasets with Ng= beyond feasible
lowed ete 700 500 300 | 100
P.-(crossover) 0.8 The probability of performing crossover HA-NEAT Original Speciation
P, (add node) 0.4 The probability of adding a new node Accuracy 0.53 (0.13) 0.52 (0.08) 0.5 (0.07) 0.5 (0.20)
P,-(add connection) 0.05 The probability of adding a new connection G?nerations 1000 (0) 1000 (0) 1000 (0) 1000 (0)
P, (mutate weight) 0.1 The probability of changing the weight of a Hidden NOdes 775 (58) 42.5 (70 52 (78) 35 (54)
connection Connections 234 (168) 136.5 (122)  170.5 (136) 123 (72)
P, (mutate activation function) 0.2 The probability of changing the activation HA-NEAT Behavioral Speciation (BS-HA-NEAT)
function of a node (in HA-NEAT) Accuracy 0.99 (0.03)  0.98 (0.10) 0.88 (0.47) 0.5 (0.20)
P,.(enable connection) 0.005 The probability of re-enabling a disabled Generations 643 (301) 726 (441) 1000 (317) 1000 (0)
connection Hidden Nodes 46 (12) 49.5 (14) 47.5 (16) 56 (23)
P,-(disable connection) 0.005 | The probability of disabling an enabled con- Connections 125.5 (32) 136.5 (48) 136.5 (36) 163 (50)
nection
Coefficient 1 I | Compatibility coefficient of excess genes TABLE III: Performance Analysis of NEAT with Original
goigc?e"ti 014 E"mpa?:ﬂ:y m:gcfent °£ disjoint gen,esm Speciation and NEAT with Behavioral Speciation (BS-NEAT)
oefficien . ompatibility coefficient of average weig
difference on the 2/100 — N; XOR Datasets

-Dataset’s difficulty increases to the right —
2/100 — Ns XOR datasets with Ng= beyond feasible

Metric 700 500 300 | 100
NEAT Original Speciation
Accuracy 0.50 (0.07)  0.52 (0.06) 0.5 (0.07) 0.5 (0.07)
Generations 1000 (0) 1000 (0) 1000 (0) 1000 (0)
Hidden Nodes 49.5 (94) 40 (69) 475 (71) 49.5 (94)
Connections 159.5 (175) 147.5 (98) 153 (110) 159.5 (175)
NEAT Behavioral Speciation (BS-NEAT)

Accuracy 0.98 (0.29)  0.81 (0.48) 0.60 (0.47) 0.5 (0.2)
Generations 842.5 (338) 1000 (211) 1000 (114) 1000 (0)
Hidden Nodes 50 (21) 60 (23) 49.5 (19) 50.5 (21)
Connections 137.5 (44) 161.5 (48) 145 (44) 151 (44)

TABLE 1IV: Performance Comparison of NEAT and HA-
NEAT with Original and Behavioral Speciation on the Spiral
Plots Datasets

Metric NEAT HA-NEAT
Original Behavioral Original Behavioral
Accuracy 0.67 (0.08) 0.77 (0.1) 0.66 (0.08) 0.7 (0.08)
Generations 1000 (0) 1000 (0) 1000 (0) 1000 (0)
Hidden Nodes 100 (43) 64.5 (25) 76 (41) 55.5(22)
Connections 237.5 (115)  151.5(49)  176.5 (104)  132.5 (66)

concerning the spiral plots problems can be found in Tables
IV and IX.

We observe that both NEAT and HA-NEAT are unable
to solve any of the 2/100 — Ny XOR problems (N, €
{700,500, 300}) reaching an accuracy of median value around
0.5, which means that the algorithms predict the output ran-
domly. On the other hand, the proposed speciation mechanism
applied on both HA-NEAT and NEAT results in significantly
different performance (p < 0.01) than the original speciation.
BS-NEAT and BS-HA-NEAT solve the three problems with
significantly higher accuracy in significantly less generations
than NEAT and HA-NEAT with original speciation respec-
tively. From the results obtained for the 2/100 — 100 XOR
problem we can also verify our initial hypothesis that the
constructed problem is no longer feasible to be solved, as all
the methods reach a median accuracy of 0.5.

Concerning the spiral plots problem, the accuracy obtained
by BS-HA-NEAT and BS-NEAT is significantly higher than
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Fig. 2: Accuracy on the test set, Generations, Number of Evolved Nodes and Connections for HA-NEAT and BS-HA-NEAT

on the different 2/100 — Ny, XOR datasets.

HA-NEAT’s (p = 0.04) and NEAT’s (p = 0) respectively.
However, none of the algorithms solves the problem within the
predefined number of allowed generations. This might be the
result of using the same parameter settings (Table 1) for both
the 2/100— Ny XOR and spiral plots tasks without optimizing
the values for each problem separately.

Moreover, the networks evolved by BS-HA-NEAT and BS-
NEAT are smaller than the networks evolved by HA-NEAT
and NEAT. This difference is statistically different in the case
of spiral plots but not in the case of the 2/100 — N, XOR
problems, except for some cases in the 2/100 — 700 XOR
problem as can be observed in Table V.

In addition, on the 2/100 — Ny XOR problems (N, €
{700, 500, 300}), we observe that the accuracy of both BS-
NEAT and BS-HA-NEAT decreases as the number of samples
N decreases, while the number of generations required to find
the solution increases. This is an expected behavior, because
the smaller the number of samples a dataset has, the more

difficult the dataset becomes and more generations are required
to find the solution.

Comparing the performance of BS-HA-NEAT with BS-
NEAT there is no clear conclusion as far as the accuracy
is concerned. On the 2/100 — N, XOR problems (Ns €
{700,500, 300}) it looks as the former performs better than
the latter, but no significant difference exists, whereas on the
spiral plots BS-NEAT performs significantly better than BS-
HA-NEAT. Finally, regarding their efficiency, in some cases
BS-HA-NEAT is more efficient than BS-NEAT as it requires
significantly less generations (e.g. for the 2/100 — 700 XOR
(p = 0.012) and the 2/100 — 500 XOR (p < 0.01)), but no
significant difference exists regarding the size of the networks.

VI. CONCLUSION

In this paper we proposed a neuroevolutionary speciation
mechanism based on individuals’ behavior. We tested this
behavioral speciation mechanism both for NEAT and HA-
NEAT on highly-non-linear classification tasks and we showed
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Fig. 3: Accuracy on the test set, Generations, Number of Evolved Nodes and Connections for NEAT and BS-NEAT on the
different 2/100 — Ny XOR datasets.

TABLE V: P value of Kruskal Wallis hypothesis tests with
Bonferonni Correction for the 2/100-700 XOR Dataset

TABLE VI: P value of Kruskal Wallis hypothesis tests with
Bonferonni Correction for the 2/100-500 XOR Dataset

Metric NEAT BS-NEAT HA-NEAT BS-HA-NEAT Metric NEAT BS-NEAT HA-NEAT BS-HA-NEAT

accuracy - 0 0.42 0 accuracy - 0 1 0
E generations - 0 1 0 E generations - 0 1 0
B hidden nodes - 1 0.14 0.72 % hidden nodes - 0.03 1 1

connections - 0.41 0.19 0 connections - 1 1 1
z accuracy 0 - 0 1 z accuracy 0 - 0 0.48
m  generations 0 - 0 0.012 o generations 0 - 0 0
% hidden nodes 1 - 0.10 0.94 % hidden nodes | 0.03 - 0.10 0.27
M  connections 0.41 - 0 0.35 M  connections 1 - 1 0.08
Q accuracy 0.42 0 - 0 Q accuracy 1 0 - 0
0 generations 1 0 - 0 W generations 1 0 - 0
% hidden nodes | 0.14 0.10 - 0 % hidden nodes | 1 0.10 - 1
T  connections 0.19 0 - 0 T  connections 1 1 - 0.88
£ accuracy 0 1 0 - £ accuracy 0 0.48 0 -
L:g generations 0 0.012 0 - L:g generations 0 0 0 -
P hidden nodes 0.72 0.94 0 P hidden nodes 1 0.27 1 -
T connections 0 0.35 0 - T connections 1 0.08 0.88 -
%) %)
m m



TABLE VII: P value of Kruskal Wallis hypothesis tests with
Bonferonni Correction for the 2/100-300 XOR Dataset

TABLE IX: P value of Kruskal Wallis hypothesis tests with
Bonferonni Correction for the Spiral Plots Dataset

Metric NEAT BS-NEAT HA-NEAT BS-HA-NEAT Metric NEAT BS-NEAT HA-NEAT BS-HA-NEAT

accuracy - 0 1 0 accuracy - 0 1 0.82
& generations - 0 1 0 & generations - 1 1 1
[IJZJ hidden nodes - 1 1 1 ‘:'TZJ hidden nodes - 0 0.07 0

connections - 1 1 1 connections - 0 0.15 0
z accuracy 0 - 0 0.74 Q accuracy 0 - 0 0
@  generations 0 - 0 0.21 m  generations 1 - 1 1
i hidden nodes 1 - 1 1 (:,Z.) hidden nodes 0 - 0.03 0.8
M  connections 1 - 1 1 @ connections 0 - 0.07 0.59
E accuracy 1 0 - 0 E accuracy 1 0 - 0.04
W generations 1 0 - 0 W generations 1 1 - 1
% hidden nodes | 1 1 - 1 % hidden nodes | 0.07 0.03 - 0
é connections 1 1 - 0.18 é connections 0.15 0.07 - 0
£ accuracy 0 0.74 0 & accuracy 0.82 0 0.04 -
% generations 0 0.21 0 - l:JZJ generations 1 1 1 -
= hidden nodes 1 1 1 - = hidden nodes 0 0.8 0 -
T connections 1 1 0.18 - T connections 0 0.59 0 -
2 2

[an]
TABLE VIII: P value of Kruskal Wallis hypothesis tests with
Bonferonni Correction for the 2/100-100 XOR Dataset

Metric NEAT BS-NEAT HA- NEAT BS-HA-NEAT

accuracy - 1 1 1
& generations - 1 1 1
% hidden nodes - 1 0.20 0.26

connections - 1 0.33 1
z accuracy 1 - 1 1
@ generations 1 - 0.61 1
% hidden nodes 1 - 0.06 0.71
M connections 1 - 0.63 1
g accuracy 1 1 - 1
W generations 1 0.61 - 1
i hidden nodes | 0.20 0.06 . 0
T  connections 0.33 0.63 - 0.03
£ accuracy 1 1 1 -
B generations 1 1 1 -
% hidden nodes | 0.26 0.71 0 -
T connections 1 1 0.03 -
a

that the extended algorithms BS-NEAT and BS-HA-NEAT are
able to solve problems that were not solvable before. Although
the inspiration for this behavioral speciation mechanism came
from HA-NEAT, its successful application also on NEAT
shows the potential to other NEAT-based algorithms as well.

In future work we are going to extend these experiments
by testing behavioral speciation on other extensions of NEAT
e.g. on FD-NEAT [9] and investigate the influence of the
k-means algorithm used for clustering the individuals into
species. Finally, we are going to test the proposed behavioral
speciation mechanism on a real world problem of lung nodule
classification as the one presented in [15].
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