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Abstract—Some real-world optimization problems involve mul-
tiple decision makers holding different positions, each of whom
has multiple conflicting objectives. These problems are de-
fined as multiparty multiobjective optimization problems (MP-
MOPs). Although evolutionary multiobjective optimization has
been widely studied for many years, little attention has been
paid to multiparty multiobjective optimization in the field of
evolutionary computation. In this paper, a class of MPMOPs,
that is, MPMOPs having common Pareto optimal solutions, is
addressed. A benchmark for MPMOPs, obtained by modifying
an existing dynamic multiobjective optimization benchmark, is
provided, and a multiparty multiobjective evolutionary algorithm
to find the common Pareto optimal set is proposed. The results
of experiments conducted using the benchmark show that the
proposed multiparty multiobjective evolutionary algorithm is
effective.

Index Terms—Multiobjective optimization, evolutionary com-
putation, multiparty multiobjective optimization

I. INTRODUCTION

A. Motivation

In business, scientific, and social political decision making,
multiple decision makers (DMs) holding different positions,
e.g., working in different departments/units, are frequently
involved, and each DM, having a specific perspective of the
same problem, may have multiple conflicting objectives. Such
problems are called multiparty multiobjective optimization
problems (MPMOPs).

In real life, the purchase of a family car, where a husband
and wife may consider different objectives, is a good example
of an MPMOP. One person (e.g., the husband) may consider
two objectives, (fH1 and fH2), where fH1 represents the
price and fH2 represents the acceleration performance. The
husband pays considerable attention to a lower price and better
acceleration performance but is not concerned about other
perspectives. At the same time, the second person (e.g., the
wife) considers two different main objectives (fW1 and fW2),
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where fW1 represents the aesthetic level and fW2 represents
the interior space. The wife wants the car to be beautiful and
the interior space of the car to be large. Therefore, we need
to find the cars that are Pareto optimal for both parties.

Another example related to MPMOPs is the problem of
scheduling reservoir water resources. This problem is fre-
quently decided by multiple departments, where each depart-
ment may consider the solutions from a different perspective,
e.g. the electricity sector and the water sector. Assume that x is
a decision variable, such as water storage or water release. The
electricity sector always considers reservoir scheduling from
the perspective of hydroelectric power generation, including
the objectives (fE1 and fE2) [1], where

(1) fE1 is hydropower generation, which should be maxi-
mized. The aim is to utilize hydropower fully to min-
imize the residual load after the hydropower output
deducted, which reduces the pollution caused by thermal
power generation.

(2) fE2 is the peak-to-valley difference of the residual load,
which should be minimized. Hydropower generation is
used to adjust the residual load. Thus, the fluctuation of
thermal power generation is not excessive.

The water sector considers mainly the safety factors of the
reservoir [2] and the demands for water supply. Thus, the
reservoir scheduling is considered from the viewpoint of two
objectives (fW1 and fW2), where

(1) fW1 is the safety goal, which should be maximized. It
requires that the water discharge from the reservoir be
increased; that is, a reduction in the water level of the
reservoir benefits dam safety and flood prevention safety.

(2) fW2 is the water supply goal, which should be maxi-
mized. It requires that the water discharge be reduced
and the reservoir storage be increased to help meet the
long-term water demands (such as the industrial water
supply, agricultural irrigation, and urban water supply).

As discussed above, the electricity sector considers the
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problem of reservoir water storage and discharge from the
perspective of hydropower generation, whereas the water sec-
tor controls the reservoir water storage capacity and water
discharge from the viewpoint of safety and water supply.
Certain conflicts exist between the two objectives for each
sector, and their scheduling schemes differ because of their
different perspectives.

Multiobjective evolutionary optimization has been studied
for many years [3], [4]. Thus far, many multiobjective evolu-
tionary algorithms (MOEAs) have been proposed, e.g., NSGA-
II [5], SPEA2 [6], PAES [7], MOEA/D [8], and NSGA-III [9].
However, few studies have been conducted on MPMOPs in the
field of evolutionary computation.

Existing MOEAs cannot be applied to MPMOPs directly.
A simple example is as follows. Suppose a problem in which
two DMs are involved, each of whom has two minimization
objectives. Given two solutions, x1 and x2, the objective
values of the first DM are F1(x1) = (1.0, 2.0) and F1(x2) =
(11, 21) of the second DM are F2(x1) = (3.1, 4.0) and
F2(x2) = (3.0, 4.1). If we consider these four objectives of
the two DMs together, we may have the objective values

(1.0, 2.0, 3.1, 4.0) for x1

and

(11, 21, 3.0, 4.1) for x2.

Evidently, if we consider these four objectives together, x1 and
x2 are equally good. However, for the first DM, x1 is better
than x2, whereas for the second, they are equally good. The
reason is that, whereas the solutions for four objectives do not
dominate each other, in the case of two objectives they may
have a dominance relationship. In fact, from the viewpoint of
multiparty multiobjective optimization (MPMO), x1 is better
than x2.

To the best of our knowledge, multiparty multiobjective
negotiations may be the issue that most closely resembles
MPMO. However, they differ from each other. A review of
multiparty multiobjective negotiations is presented in Section
II-C.

B. Contributions

In this paper, a class of MPMOPs, where the intersection
of the Pareto optimal sets (PSs) of each party is not empty, is
addressed. Thus, the objective is to find the set of the common
Pareto optimal solutions of the multiobjective optimization
problems (MOPs) of all DMs. Thereby, complex negotiations
are avoided, because all solutions in the common PS are non-
inferior solutions for all DMs.

In this paper, a set of MPMO benchmark, which is based on
the dynamic multiobjective optimization (DMO) benchmark
[10], is given. We propose an evolutionary-based algorithm to
solve MPMOPs. Our experimental results demonstrate that the
proposed algorithm is more effective than a baseline algorithm
straightforwardly modified from a typical MOEA.

C. Organization

The rest of this paper is organized as follows. Section II
introduces the definition of MOPs and a review of typical
MOEAs and multiparty multiobjective negotiations. Section
III describes the benchmark. The algorithm to solve MPMOPs
is presented in Section IV. Our experiments and results are
described in Section V. Finally, Section VI concludes this
paper.

II. REVIEW OF MULTIOBJECTIVE OPTIMIZATION

In this section, we first introduce the definition of MOPs.
Then, typical MOEAs and multiparty multiobjective negotia-
tions are reviewed.

A. Multiobjective Optimization

The procedure of solving an MOP consists of optimizing
more than one conflicting objective. Here, we take the mini-
mization objective as an example. It can be defined as [11]

Min F (x) = (f1(x), f2(x)..., fm(x)),

Subject to


gc(x) ≤ 0, c = 1, ..., cg,

hc(x) = 0, c = cg + 1, ..., cg + ch,

x ∈ [xmin, xmax]d,

(1)

where gc(x) represents the inequality constraints and hc(x)
represents the equality constraints; cg and ch are the numbers
of the inequality constraints and equality constraints, respec-
tively. x = (x1, x2, . . . , xd) is a d-dimensional vector, which
represents the decision variables, and xmin and xmax denote
the lower and upper bounds, respectively.

A decision vector x dominates a second decision vector y
under the following two conditions [12]. 1) For each objective
i ∈ {1, . . . ,m}, fi(x) ≤ fi(y). 2) There exists at least one
objective j ∈ {1, . . . ,m} that satisfies fj(x) < fj(y). In
general, that x dominates y is denoted by x ≺ y.

Based on the domination definition, a decision vector
x∗ ∈ Ω is Pareto optimal if and only if there exists no
decision vector x ∈ Ω that can dominate x∗. The PS is
defined as the collection of all Pareto optimal solutions; i.e.,
PS = {x∗ ∈ Ω| 6 ∃x ∈ Ω, x ≺ x∗}.

Meanwhile, the PS on the objective space constitutes
the Pareto optimal front (PF), which can be defined as
PF = {f = (f1(x∗), . . . , fm(x∗))|x∗ ∈ PS}.

B. Multiobjective Evolutionary Algorithms (MOEAs)

MOEAs can find an optimal solution set in a run. In the
last few decades, many MOEAs have been proposed to solve
MOPs [3], [4].

NSGA-II [5] is one of the representative MOEAs based
on Pareto dominance, and many variants of it have been
proposed. For example, RD-NSGA-II [13] uses the reference
direction to guide the search process of NSGA-II. NSGA-
III [9], adapted from NSGA-II, distributes the solutions more
widely and uniformly in many-objective optimization where
more than three objectives are involved.



MOEA/D [8] is an additional representative MOEA, which
decomposes an MOP into N scalar quantum subproblems
and simultaneously optimizes N subproblems by using the
solutions of adjacent subproblems. Further, a new version of
MOEA/D based on differential evolution, i.e., MOEA/D-DE,
was proposed in [14]. UMOEA/D, proposed by Tan et al.
[15], modifies the MOEA/D for many-objective optimization
problems, and MOEA/D-AWA by Qi et al. [16] adjusts the
weight vector to be effective in complex Pareto fronts. The
idea of cross-entropy has also been applied in MOEA/D [17].

In addition, Zhang et al. proposed a competitive mechanism
based multiobjective particle swarm optimizer (CMOPSO)
[18], which updates the swarm of solutions based on particle
pairwise competitions in each generation. Each particle learns
from the winner of the competitions. Based on a fuzzy
consistent matrix to guide global particle search, the evolution
weight and learning factor are adjusted adaptively in the
optimization process in adaptive multiobjective particle swarm
optimization (AMOPSO) [19]. Based on the strength Pareto
evolutionary algorithm (SPEA) [20], SPEA/R was proposed by
Jiang and Yang [21], who designed a reference direction-based
density estimator. In addition, the rotation grid-based evolu-
tionary algorithm (RGridEA) [22] uses rotary grids to split
the objective space to enhance the distribution performance,
and thus, it is suitable for many-objective problems. Pareto
dominance has been reconsidered in many-objective evolution-
ary algorithms, such as θ-dominance [23], generalized Pareto
optimality (GPO) [24], and the k-optimal algorithm [25].

C. Multiparty Multiobjective Negotiations

The objective interests of multiple DMs are frequently in
conflict. Multiparty negotiation is a process that helps multiple
parties reach an agreement after communication among the
parties or arbitration by a third party. Multiparty negotiation
is frequently used in resource allocation, for solving conflicts
of interest between buyers and sellers in the market, etc.

The arbitration of a third party is required to find the optimal
(or acceptable) solutions of some negotiation problems. In the
study in [26], reservoir flood control problems were inves-
tigated, where two parties, i.e., the Electrical Administrative
Bureau of Northeastern and the Committee of Songliao Basin,
which have different goals of concerning the reservoir’s water
levels, are requested to provide their solutions. The third
party (the arbitrator) makes the decision by choosing the
solution which is closest to the ideal state. Similarly, to
find a compromise solution for multiple parties, third-party
arbitration has been applied in the transfer of the water across
an inter-basin region [27] and in groundwater management
[28].

In some negotiation problems, each party has an objective
and the objectives of multiple parties are combined to form an
MOP. For example, in the study on the problem of resource al-
location presented in [29], each party has a different preference
concerning multiple resources and desires that the resources
allocated to it be close to the ideal state. The objective of each
party is constituted of the weighted sum of the differences

between the resources allocated in the actual and the ideal
state. All parties’ goals are combined as a final objective,
and a genetic algorithm (GA) with a new operation named
trade is adopted to find the optimal resource allocation states.
Rubenstein-Montano and Malaga [30] also linearly combined
these goals, alternately evolving resource allocation and weight
to generate the optimal allocation. In the study in [31], a GA
is used to generate negotiated solutions that meet the goals of
multiparties, which are greater than a predefined threshold.

Besides third-party arbitration, automatic learning is a
method applied in negotiations where a party needs to interact
with another party and the opponent’s preference message is
not clear. Negotiation is frequently applied in cases where
buyers and sellers may have opposite interests and each party
considers the price, negotiation period, and other information
as negotiated issues (attributes). None of the parties knows the
opponents preference. In the study in [32], each party, which
has its own population, takes its own maximum payoff as its
objective, and this goal comprises a linear combination of the
above issues. Before each negotiation round, a GA is used
to find an optimal solution to be the proposal that interacts
with the opponent party. In the process of the GA, so that the
proposal will be more easily accepted by the opponent, the
fitness of the solution is related to the previous proposal of
the opponent, which includes the preference message of the
opponent. Hence, the GA can learn the preference of the other
party. The best solution is selected as the offer and is sent to
the opponent in the negotiation round. As long as the offer’s
payoff calculated by the opponent is greater than or equal to
the offer which the opponent proposed previously, the offer
will be accepted, and the negotiation process ends. Similar
studies have been reported in [33], [34]. In the negotiation
process, each party can generate optimal strategies for inter-
action, as well as optimal proposals. Its own maximum payoff
is still the goal of each party in the negotiation, but the decision
variables consist mainly of the negotiation strategy rather than
other attributes. Gwak and Sim [35] proposed a co-evolution
mechanism that adopts estimation of distribution algorithms
(EDAs) with dynamic diversity control and local neighborhood
search to generate optimal negotiation strategies. Each co-
evolved population represents the individuals preferred by
one party. During the negotiation process, the individuals in
the two populations are randomly paired one-to-one to find
whether each individual is accepted by the opponent. The
fitness of an individual is based on the strategy and on whether
its conditions are accepted by the opponent. In the study in
[36], [37], a co-evolution mechanism that adopts a GA to
generate optimal negotiation strategies was investigated. The
learning of bargaining strategies for each party by a GA was
also reported in [38]. In [39], Sim and An considered unity,
success rate, and negotiation speed as the objectives; however,
they are merged into a single objective.

In addition, in some studies, although the opponent’s prefer-
ence message is known, each party may regard its own payoff
and the opponent’s payoff as multiple objectives. Typically,
for the methods in [40], [41], each party uses MOEAs to



generate the PS, where its payoff and the opponent’s payoff
are considered to be two objectives. Based on the principle that
each party should maximize its own benefit, only one solution
will be selected from the PS to negotiate with the opponent.
Moreover, complex negotiations are often needed to find the
final solution accepted by all parties.

Similarly to multiparty multiobjective negotiations, MPMO
handles problems involving multiple DMs. However, in con-
trast to multiparty multiobjective negotiations, MPMO con-
siders all the information of the objectives of all parties to be
available (or public), and thus, it does not need to consider
the complex negotiation process, as well as the negotiation
strategies, and its objective is to present the common PS of
all parties. In this study, we assumed that the intersection of
the PSs of each party is not empty. Again, it should be noted
that the obtained solutions are Pareto equivalent for all parties.

III. BENCHMARK

To the best of our knowledge, no public benchmark of
MPMOPs with common PSs exists. In this study, the bench-
mark MPMOPs were derived from the test functions of the
CEC’2018 Competition on Dynamic Multiobjective Optimiza-
tion [10].

In recent years, evolutionary DMO has attracted consider-
able research attention [42], [43]. DMO problems (DMOPs)
are a type of optimization problem where the objective
functions and/or constraints change with time, and then, the
PSs and PFs of the problems may also change dynamically
[44]. The objectives of a DMOP in each environment can be
regarded as the MOP of one party. Therefore, an MPMOP can
comprise a group of environments from a DMOP, correspond-
ing to a group of MOPs, and each MOP could be regarded as
the objectives of one party, respectively. Thus, the objective
of the corresponding MPMOP is to find the common PS of
the group of MOPs.

The benchmark is given in appendix. See Tables A-1 and
A-2 in appendix for details.

IV. PROPOSED ALGORITHM

To solve MPMOPs, we propose an evolutionary algorithm,
OptMPNDS, which is based on multiparty non-dominated
sorting (MPNDS). The pseudo-code of the optimizer is given
in Algorithm 1, which is described as follows.

First, the population P0 is initialized with size N . In
addition, t is set as 0 and Qt is initialized as ∅. At each
generation t, the individuals in Qt and Pt are merged and
stored in Rt. Second, for each DM i, non-dominated sorting
is selected to sort the individuals in Rt; the sorting results
are stored in Li. Here, the function non-dominated-sorting(...)
in Step 6 is the same as the non-dominated sorting method
proposed in [45]. Third, to find the solutions that are non-
dominated for multiple parties, MPNDS is used to obtain the
new sorting results. Fourth, individuals are ranked in order
according to the crowding distance in each front. Fifth, the
individuals in F1 to Fz−1 are stored in the next generation,
Pt+1. Evidently, the number of individuals in Pt+1 is no

greater than N . The remaining N − |Pt+1| individuals with
higher rankings are selected from Fz . Then, t is incremented
by 1, and the offspring Qt of Pt is created by both recombi-
nation and mutation operators. The above steps are executed
until the termination condition is satisfied. Finally, in the last
generation’s population Pt, the individuals that are multiparty
Pareto optimal are selected and saved in CPS. Here, CPS
means the set of the common Pareto optimal solutions.

The main steps of MPNDS are shown in Algorithm 2 and
explained as follows.

1) Each individual may be located on different Pareto levels
for different DMs. Each individual’s maximum level in
all DMs is denoted by j, and the individual is stored in
MaxLj . For example, individual x lies in the 1st level
for the first party and the 2nd level for two other parties.
Then, x ∈MaxL2.

2) To obtain the multiparty Pareto optimal individuals in
the population, the individuals in L1

j ∩ ... ∩ LM
j are

stored in Fz . These individuals show a good and balanced
performance for each party, and therefore, in general, they
are better than others in any Li

k (k > j, i ∈ {1, . . . ,M}).
3) If Fz is empty, the individuals of L1

j ∪ ... ∪ LM
j are

incorporated in S. Each party’s previous individuals that
do not intersect with other parties in the same layer have
more advantages than the following layer’s individuals,
and therefore, they are stored in S. Then, the value of j is
incremented by 1 and the current front Fz is recalculated
as the intersection of S and MaxLj . The individuals in
Fz are then deleted from S.

4) If Fz is not empty, z is incremented by 1 and the
individuals in Fz are deleted from Li

j (i ∈ {1, . . . ,M}).
5) Steps 2–4 are repeated until the termination condition is

satisfied.
The crowding distance is used to represent the density of

individuals. The method of calculating crowding distance is
provided in [5]. It is noteworthy that the crowding distance
is calculated in the objective space of all parties. Finally, it
is noted that the sorting results based on MPNDS and the
crowding distance are also used in the tournament selection.

V. EXPERIMENTS

A. Compared Algorithms

OptMPNDS was compared with one baseline algorithm,
which adopts an MOEA to optimize all the objectives from
all parties. For convenience, we call this baseline algorithm
OptAll.

The pseudo-code of OptAll is shown in Algorithm 3. In
this algorithm, first, the objective functions from F1 to FM

are combined and taken as evolutionary objectives. Then,
the population is initialized and an MOEA is selected to
optimize the combined objective functions, which is equivalent
to solving a general MOP with many objectives. In this
study, NSGA-II [5] was adopted. After it has consumed the
maximum allowed number of function evaluations, the PS
is obtained by the MOEA, and stored in CPS. Finally, the



Algorithm 1 OptMPNDS

Input: N , F (x) = (F1(x), ..., FM (x))
Output: CPS

1: Initialize population P0 with size N ;
2: t = 0, Qt = ∅;
3: while the terminated condition is not satisfied do
4: Rt = Pt ∪Qt;
5: for i ∈ {1, ...,M} do
6: Li = Non-Dominated-Sorting(Rt, Fi);
7: end for
8: F = MPNDS(N,L1, ...,LM )
9: Sort F by crowding distance for each level descent;

10: Pt+1 = ∅, z = 1;
11: repeat
12: Pt+1 = Pt+1

⋃
Fz;

13: z = z + 1;
14: until |Pt+1

⋃
Fz| > N

15: Pt+1 = Pt+1

⋃
Fz(1 : N − |Pt+1|);

16: t = t+ 1;
17: Create offspring Qt of Pt;
18: end while
19: CPS = multiparty Pareto optimal individuals in Pt;

Algorithm 2 Multiparty non-dominated sorting (MPNDS)

Input: N , L1, ...,LM

Output: F
1: j = 1, z = 1, Fz = ∅, S = ∅, MaxL = ∅;
2: for i ∈ {1, ..., N} do
3: Find max level j from (L1, ...,LM ) for individual xi;
4: Store xi in MaxLj ;
5: end for
6: while

∑k=z
k=1 |Fk| < N do

7: Fz = L1
j

⋂
...
⋂
LM
j ;

8: if Fz = ∅ then
9: S = S

⋃
L1
j

⋃
...
⋃
LM
j ;

10: j = j + 1;
11: Fz = S

⋂
MaxLj ;

12: S = S −Fz;
13: end if
14: if Fz 6= ∅ then
15: for i ∈ {1, ...,M} do
16: Li

j = Li
j −Fz;

17: end for
18: z = z + 1, Fz = ∅;
19: end if
20: end while

dominated solutions are removed from CPS according to
each party’s objectives. The individuals remaining in CPS
constitute the final output.

B. Experimental Settings

Details of the MPMOP test problems are shown in Tables
A-1 and A-2. The number of the decision variables of all the

Algorithm 3 OptAll

Input: N , F = (F1, ..., FM )
Output: CPS

1: Combine objective functions FALL = (F1; ...;FM );
2: Initialize population P0 with size N ;
3: CPS = MOEA(P0, FALL);
4: for i ∈ {1, ...,M} do
5: Filter dominated individuals in CPS by Fi;
6: end for

problems was set to 10, 30, and 50.
In OptMPNDS and OptAll, simulated binary crossover

(SBX) and polynomial mutation were used [46]. According
to [5], the distribution indexes of SBX and the polynomial
mutation were set as 20. The crossover probability was set as
1.0 and the mutation rate as 1/d, where d is the dimension
of decision variables. Code implementations of SBX and
polynomial mutation refer to “PlatEMO” [47].

The population size for both algorithms was set to 100. The
maximum allowed number of function evaluations was set to
1000∗d∗M for all problems, where d represents the dimension
of decision variables and M represents the number of parties.
All the algorithms were run 30 times independently for each
test problem.

C. Performance Metrics

We used the inverted generational distance (IGD) [48] and
generational distance (GD) [49] to evaluate the algorithms.
These two indicators consider the convergence, uniformity, and
spread performance of the solutions to evaluate the MOPs.

IGD is defined as

IGD(P ∗, P ) =

∑
v∈P∗ d(v, P )

|P ∗|
, (2)

where P ∗ represents the actual PF and P is the PF obtained
by the algorithms. d(v, P ) represents the minimum distance
between v from P ∗ and points from P .

GD is defined as

GD(P ∗, P ) =

√∑
v∈P d

2(v, P ∗)

|P |
, (3)

where the d(v, P ∗) represents the minimum distance between
v from P and points from P ∗.

Because there are M DMs, all DMs’ objectives should be
considered when d(v, S) is calculated. d(v, S) is defined as

d(v, S) = min
s∈S

(

i=M∑
i=1

√
(vi1 − si1)2 + · · ·+ (vim − sim)2),

(4)

where S represents P ∗ for IGD and P for GD, respectively,
(vi1, . . . , vim) means the m objectives of the i-th DM for
solution v, and (si1, . . . , sim) means the same for solution s.

Both indicators represent the distance between the actual
optimal solutions and the solutions obtained by the algorithms,



and therefore, the smaller their value, the better the perfor-
mance of the algorithm.

Besides IGD and GD, the number of solutions in the final
common PS obtained by the algorithms is also adopted for the
comparisons. This index is denoted by SN. The larger the SN
value, the better the performance of the algorithm.

D. Experimental Results

The results of MPMOP1 to MPMOP11 are shown in Tables
I, II, and III. The dimension of the decision space is set as 10,
30, and 50, respectively, in the three tables. For each table,
the mean and standard deviation values of IGD, GD, and SN
are reported. The best results of each problem solved by two
algorithms are shown in bold font. The number of best results
on all problems, named nbr, is shown at the bottom of each
table. The sign “—” means that an algorithm does not obtain
any common Pareto solution in one or more independent runs,
and no value is recorded for the IGD and GD measures.

As we can see in the three tables, OptMPNDS performs
better by modifying the non-dominated sorting. In Table I,
it can be seen that, according to the metrics IGD and GD,
the performance of OptMPNDS is the better on all problems.
In Table II, it is clear that the performance of OptMPNDS
is the better for 8 problems and that of OptAll is the better
for 3 problems in terms of IGD, whereas the performance of
OptMPNDS is the better for 10 problems in terms of GD. In
Table III, it can be seen that OptMPNDS outperforms OptAll
in 9 problems in terms of IGD and 10 problems in terms of
GD.

In terms of SN, compared with OptAll, OptMPNDS always
generates more solutions in the final common PS for all
problems.

In summary, OptMPNDS finds more multiparty common
optimal solutions on MPMOPs and produces more satisfactory
results.

VI. CONCLUSION AND FUTURE WORK

In this paper, MPMOPs with common PSs are addressed.
We propose an evolutionary algorithm named OptMPNDS
to solve MPMOPs, which is based on MPNDS, an algo-
rithm modified from the traditional Pareto dominance. Our
experimental results show that OptMPNDS achieves a good
convergence effect on MPMOPs.

In the future, we may consider applying our method in
dynamic MOPs. Considering some near future environments,
which are frequently predictable, we could determine the
common PS for the current environment and several upcoming
environments by using the proposed method. Meanwhile, in
this paper, we assumed the common PS is not empty. We
will consider the case where the common PS is empty in the
future. Finally, we will consider the MPMOPs with preference
in the future, where the preference could be expressed by ĝ-
donminance [50] or others.

APPENDIX

The benchmark is described in Tables A-1 and A-2, which
is based on the test functions of the CEC’2018 Competition
on Dynamic Multiobjective Optimization [10].

In Table A-1, F1 and F2, both of which have two or three
conflicting objectives, are two MOPs of two DMs, respectively.
In Table A-2, F1, F2, and F3, which are extended from Table
A-1, are three MOPs, i.e., three parties. All the objective
functions should be minimized.

The PSs for each party in MPMOPs are also listed in the
corresponding tables. The common PS of the MPMOP is the
intersection of the PSs of all involved MOPs. In this study,
we approximately calculated the common PS. First, we took a
series of discrete points for each party’s PS. Second, when the
distances between the points from different parties were less
than 10−4, we selected these points in one party and stored
them as the common PS.
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TABLE I: Mean and standard deviation of inverted generational distance (IGD), generational distance (GD), and the number
of solutions in the final common Pareto optimal set (SN) for d = 10

Problems IGD GD SN
OptMPNDS OptAll OptMPNDS OptAll OptMPNDS OptAll
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nbr 11 0 11 0 11 0
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TABLE A-1: Test problems with two decision makers

Problems Objective functions Variable bounds Pareto optimal set of each subproblem

MPMOP1

F1 = (g11(x, 1), g12(x, 1)), F2 = (g11(x, 2), g12(x, 2))

g11(x, t) = g3(x)(
1 + t

x1
), g12(x, t) = g3(x)(

x1

1 + t
)

g3(x) = 1 +
n∑
i=2

(
xi −

1

1 + eαt(x1−2.5)

)2
, αt = 5 cos(0.5πt)

x1 ∈ [1, 4]

xi ∈ [0, 1]

i = 2, . . . , d

1 ≤ x1 ≤ 4

xi =
1

1 + eαt(x1−2.5)

i = 2, . . . , d

MPMOP2

F1 = (g21(x, 0), g22(x, 0)), F2 = (g21(x, 3), g22(x, 3))

g21(x, t) = g3(x)(x1 + 0.1 sin(3πx1))

g22(x, t) = g3(x)(1− x1 + 0.1 sin(3πx1))
αt

g3(x) = 1 +

n∑
i=2

(
xi −

G(t) sin(4πxβt1 )

1 + |G(t)|

)2
αt = 2.25 + 2 cos(2πt), βt = 1, G(t) = sin(0.5πt)

x1 ∈ [0, 1]

xi ∈ [−1, 1]
i = 2, . . . , d

0 ≤ x1 ≤ 1

xi =
G(t) sin(4πxβt1 )

1 + |G(t)|
i = 2, . . . , d

MPMOP3

F1 = (g31(x, 0), g32(x, 0)), F2 = (g31(x, π/2), g32(x, π/2))

g31(x, t) = g3(x)(x1 + k(t)), g32(x, t) = g3(x)(1− x1 + k(t))

g3(x) = 1 +
n∑
i=2

(xi − cos(4t+ x1 + xi−1))
2

k(t) = max{0, (
1

2Nt
+ 0.1) sin(2Ntπx1)}, Nt = 1 + b10 ∗ | sin(0.5πt)|c

x1 ∈ [0, 1]

xi ∈ [−1, 1]
i = 2, . . . , d

x1 ∈
Nt⋃
i=1

[
2i− 1

2Nt
,
i

Nt
]
⋃
{0}

xi = cos(4t+ x1 + xi−1)

i = 2, . . . , d

MPMOP4

F1 = (g41(x, 0), g42(x, 0), g43(x, 0)), F2 = (g41(x, 1), g42(x, 1), g43(x, 1))

g41(x, t) = g4(x)[sin(0.5πx1)]
H(t)

g42(x, t) = g4(x)[sin(0.5πx2) cos(0.5πx1)]
H(t)

g43(x, t) = g4(x)[cos(0.5πx2) cos(0.5πx1)]
H(t)

g4(x) = 1 +
n∑
i=3

(xi −
sin(2π(x1 + x2))

1 + |G(t)|
)2

H(t) = 2.25 + 2 cos(0.5πt), G(t) = sin(0.5πt)

xi=1,2 ∈ [0, 1]

xi ∈ [−1, 1]
i = 3, . . . , d

0 ≤ xi=1,2 ≤ 1

xi =
sin(2π(x1 + x2))

1 + |G(t)|
i = 3, . . . , d

MPMOP5

F1 = (g51(x, 0), g52(x, 0), g53(x, 0))

F2 = (g51(x, 1.5), g52(x, 1.5), g53(x, 1.5))

g51(x, t) = g4(x) sin(y1), g52(x, t) = g4(x) sin(y2) cos(y1)

g53(x, t) = g4(x) cos(y2) cos(y1), yi=1,2 =
π

6
Gt + (

π

2
−
π

3
Gt)xi

g4(x) = 1 +
n∑
i=3

(xi − 0.5G(t)x1)
2, G(t) = | sin(0.5πt)|

xi ∈ [0, 1]

i = 1, . . . , d

0 ≤ xi=1,2 ≤ 1

xi = 0.5G(t)x1

i = 3, . . . , d

MPMOP6

F1 = (g61(x, 0), g62(x, 0), g63(x, 0)), F2 = (g61(x, 1), g62(x, 1), g63(x, 1))

g61(x, t) = g4(x) cos(0.5πx1) cos(0.5πx2)
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i=3
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2 +
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j=1

sin(bkt(2xj − r)c ∗ π/2)
∣∣∣

kt = b10sin(πt)c, r = 1−mod(kt, 2)

xi=1,2 ∈ [0, 1]

xi ∈ [−1, 1]
i = 3, . . . , d

{(x1, x2) ∈ [0, 1]2|
2∏
j=1

mod(|bkt(2xj − r)c|, 2) = 0}

xi = sin(tx1)

i = 3, . . . , d
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TABLE A-2: Test problems with three decision makers

Problems Objective functions Variable bounds Pareto optimal set of each subproblem

MPMOP7
F1 = (g11(x, 0), g12(x, 0))

F2 = (g11(x, 1), g12(x, 1))

F3 = (g11(x, 2), g12(x, 2))

x1 ∈ [1, 4]

xi ∈ [0, 1]

i = 2, . . . , d

1 ≤ x1 ≤ 4

xi =
1

1 + eαt(x1−2.5)
, i = 2, . . . , d

MPMOP8
F1 = (g21(x, 0), g22(x, 0))

F2 = (g21(x, 1), g22(x, 1))

F3 = (g21(x, 3), g22(x, 3))

x1 ∈ [0, 1]
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i = 2, . . . , d

0 ≤ x1 ≤ 1
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G(t) sin(4πxβt1 )

1 + |G(t)|
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1 + |G(t)|
, i = 3, . . . , d
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xi=1,2 ∈ [0, 1]
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