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Abstract— This paper proposes a fault detection method 
for refrigerated showcase by Pasting based Artificial 
Neural Networks (PANNs) using Parallel Multi-population 
Modified Brain Storm Optimization (PMP-MBSO) and 
Correntropy. PMP-MBSO is an evolutionary computation 
technique and Correntropy is one of loss functions (LFs) for 
ANN. At present, in Japan, the number of convenience 
stores is about 50,000, and refrigerated showcases placed in 
each store have various characteristics. Since it is difficult 
to adjust fault detection methods for all different 
refrigerated showcases, an automatic parameter 
adjustment method for refrigerated showcase systems is 
required. The proposed PANNs using PMP-MBSO and 
Correntropy can realize the automatic adjustment. Using 
actual operation data of showcases, detection accuracy of 
the proposed method is verified to be higher than those of 
the ANNs using least square error (LSE) and stochastic 
gradient descent (SGD), and the ANNs using Correntropy 
and MBSO. Effectiveness of the proposed method is verified 
by applying Friedman test. It is verified to speed up the 
proposed method as well. 

Keywords— fault Detection, refrigerated showcase, artificial 
neural network, correntropy, parallel multi-population modified 
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I. INTRODUCTION  

In refrigerated showcases placed in convenience stores and 
supermarkets, fans send cool air down to the bottom of the 
showcases in order to create air curtains. The air curtains prevent 
intrusions of outside air, and keep perishable products and 
beverages at constant temperatures. However, in rare cases, 
temperatures inside refrigerated showcases may not be 
maintained properly due to faults of the showcases such as frost 
formations or refrigerant leakage. This may cause negative 
impacts on customers. For this reason, accurate fault detection 
as early as possible is essential in order to maintain customer 
service. 

In an early stage of researches, to the best of authors’ 
knowledge, there are no researches especially on fault detection 
for refrigerated showcases. Since same refrigeration cycles are 
utilized in refrigerated showcases and air conditioners, the 
similar fault detection methods must be developed for both 
systems. As fault detection methods for air conditioners, various 
methods using classical artificial intelligence and an integrated 
method of multiple techniques have been proposed. Classical 
artificial intelligence have utilized in rule-based approaches [1-
3]. As an integration method, a method combining principal 
component analysis and support vector machine has been 
proposed [4]. At present, in Japan, the number of convenience 
stores is about 50,000, and refrigerated showcases installed in 
each store have various characteristics [5]. Classical artificial 
intelligence and the integration method require to adjust rules 
and parameters of the methods for each store. Therefore, it is 
difficult for experts to adjust the methods for all showcase 
systems with different characteristics in practical situations. 

Machine learning techniques are able to create rules and 
models with only data automatically without using expert 
knowledge and understanding of specialized techniques. 
Therefore, machine learning based methods have been proposed 
as fault detection methods for refrigerated showcases. A. 
Santana proposed fault detection methods using unsupervised 
learning and supervised learning [6-7]. In the papers, comparing 
various techniques, effectiveness of one of the machine learning 
techniques, namely ANN based methods for fault detections of 
refrigerated showcases has been confirmed [6-7]. However, 
these methods have a problem that these ANN are trained using 
only correctly measured data. Namely, it assumed that 
measurement systems are correctly operated. 

In practical situations, incorrectly measured data may exist 
in measurement data from various sensors including missing 
values due to various factors. LSE utilized as a LF of ANN is 
known to be affected by such data [8]. Therefore, Using LSE, 
there is a possibility that accuracy of fault detection for test data 
may be deteriorated. Therefore, in practical situations, it is 
necessary for engineers to remove incorrectly measured data 
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from training data in advance. It is time-consuming for 
engineers and causes operation cost rise of fault detection 
systems. Correntropy has been confirmed to solve this challenge 
[8-13]. When Correntropy is utilized as a LF,  training is not 
affected by incorrectly measured data. In addition, parameter 
adjustment of ANN has been realized by SGD conventionally. 
However, due to optimization only using a single point, SGD 
may not be able to escape from local minima practically. It has 
been confirmed that evolutionary computation techniques based 
on multipoint search can escape from local minima for 
parameter adjustment of ANN [14]. MBSO is one of new 
evolutionary computation techniques improving BSO algorithm 
[15]. Effectiveness of MBSO has been confirmed for application 
of various fields [16-18]. Considering above points of view, 
authors have been confirmed that application of Correntropy and 
MBSO enables high-precision training that is not affected by 
incorrectly measured data [10]. However, there is a possibility 
that accuracy of fault detection may be improved. In addition, in 
a practical situation, fault detection of refrigerated showcases is 
realized by a cloud service in data centers. The service has to 
treat huge numbers of refrigerated showcases in stores and huge 
number of ANNs have to be trained. Therefore, it is necessary 
to speed up training time in practical systems. 

Pasting is one of the methods for improving accuracy of fault 
detection [19]. Effectiveness of Pasting has been verified in 
various problems using machine learning [20, 21]. Moreover, 
Parallel Multi-population (PMP) is one of the methods for 
improving solution quality and computation time for 
evolutionary computation methods. Therefore, Applying PMP 
to MBSO, namely PMP-MBSO may be one of the way to 
improve accuracy of fault detection and speed up training time 
of ANNs. PMP-MBSO has been proposed in [22] and 
effectiveness of PMP-MBSO has been verified in a practical 
optimization problem [22]. 

This paper proposes a fault detection method for refrigerated 
showcases by PANNs using PMP-MBSO and Correntropy. 
Contributions of this paper can be summarized as follows: 
- Proposal of a novel fault detection method for fault detection 
of refrigerated showcases using Pasting based ANNs using 
PMP-MBSO and correntropy. 
- Verification of effectiveness of the proposed method by 
comparing with the conventional ANNs with SGD and LSE [7] 
and ANNs with MBSO and Correntropy [10] using actual 
operation data of refrigerated showcases. 

II. REFRIGERATED SHOWCASE FAULT DETECTION 

To maintain constant temperatures of refrigerated showcases, 
a large amount of refrigerated showcase data including a flow 
rate of refrigerant is measured in the refrigerated showcases. 
Showcase data can be applied to fault detection as ANN’s 
training data. For example, as shown in Fig. 1, measured 
showcase data are collected in data center through Internet. 
Therefore, in the data center, various showcase fault detection 
models can be created offline. Showcase states can be detected 
online using a fault detection model, and the model can be used 
to detect online data. If the system is implemented, abnormal 
status of showcases can be detected through Internet as soon as 
the abnormal status appear. In such cases, service engineers need 
to go to the stores immediately and inspect the showcases. Even 

if normal status are incorrectly judged as abnormal status in 
particular store’s showcases, service engineers have to go to the 
store and inspect the showcase every time. These are waste of 
actions and increase operating costs. If abnormal status are 
incorrectly judged as normal status in particular store’s 
showcases, and if store clerks are unable to detect the abnormal 
status, perishables may be degraded and customers may lose 
their trust in the store. 

III. CONVENTIONAL PARAMETER ADJUSTMENT 

METHODS OF ANN 

Figure 2 shows a typical structure of a three-layered ANN. 
As shown in the figure, The ANN Outputs (𝑜௣௞) are calculated 
using forward propagation. In forward propagation, summations 
of input values multiplied by ANN parameters (𝑤௜௝ , 𝑤௝௞ ) are 
input to an activation function and an output value is calculated 
using the following equations [23]: 

𝑢௡ = ෍ 𝑤௠௡𝑎௠

ெ

௠ୀ଴

                                  (1) 

𝑏௡ =
1

1 + 𝑒ି௨೙
                                     (2) 

where 𝑢௡  is an internal value of the 𝑛 th unit, 𝑀  is the 
number of units at the target layer, 𝑤௠௡  is a parameter 
between the 𝑚th and 𝑛th units between two layers, 𝑎௠ is an 
input value of the 𝑚th unit, 𝑏௡ is an output value of the 𝑛th 
unit. 

 
Fig.2 A typical structure of a three-layered ANN. 

 
Fig.1 An example of a fault detection system of refrigerated 
showcases through Internet. 
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 Conventionally, SGD with LSE has been applied to adjust 
ANN parameters (𝑤௜௝ , 𝑤௝௞) . A LF using LSE is shown below: 

𝐿௣ =
1

2
෍൫𝑡௣௞ − 𝑜௣௞൯

ଶ
௄

௞ୀଵ

   (𝑝 = 1, ⋯ , 𝑃)                 (3) 

where 𝐿௣ is the 𝑝th LF, 𝑡௣௞  is the 𝑝th target data of the 𝑘th 
output unit, 𝑜௣௞ is the 𝑝th output of the 𝑘th output unit, 𝑃 is 
the number of training data. 

If LSE is utilized as the LF for ANN, loss function values 
(LFVs) using errors between outputs and target data of ANN are 
shown in Fig. 3. As shown in the figure, LFVs increase 
significantly when the error becomes large using LSE. The ANN 
using LSE solves a minimization problem. Usually, using 
correctly measured data, the ANN parameters are gradually 
adjusted to appropriate values. However, in practical situations, 
incorrectly measured data may exist in measurement data from 
various sensors including missing values due to various factors. 
When incorrectly measured data are utilized as training data, 
adjustment of parameters is greatly impacted from the 
incorrectly measured data. Consequently, an inappropriate 
model may be created for test data. In other words, a trained 
model may be incorrect because the model is adjusted to fit the 
incorrectly measured data. An impact on a fault detection 
problem with incorrectly measured data using LSE is shown 
below. Figure 4 shows two stages for the fault detection problem 
by an ANN using LSE. Using LSE, a decision boundary is 
affected by the incorrectly measured data as shown in Fig. 4(a). 
Thus, as shown in Fig. 4(b), test data are incorrectly classified 

using the bent decision boundary at a test stage. Treatment of 
incorrectly measure data is the first challenge for fault detection 
in practical situations. Correntropy has been confirmed to solve 
this challenge [8-13]. 

Following equation is utilized for update of ANN parameters 
using SGD: 

∆𝑤௠௡(𝑡) = −
𝜕𝐿௣(𝑡)

𝜕𝑤௠௡(𝑡)
  (𝑡 = 1, ⋯ , 𝑇)                          (4) 

𝑤௠௡(𝑡 + 1) = 𝑤௠௡ + 𝜂∆𝑤௠௡                                    (5) 

where 𝑤௠௡(𝑡) is a parameter between the 𝑚th unit and 𝑛th 
unit at epoch 𝑡 ,  T  is the maximum number of epochs, 
∆𝑤௠௡(𝑡) is a gradient of 𝑤௠௡(𝑡) at epoch 𝑡, 𝜂 is a learning 
rate. 

In parameter adjustment using SGD, Equ. (4) is calculated 
by a partial derivative using a different LF for each pattern in 
Equ. (3). Therefore, ANN parameters can avoid local minimum 
solutions. However, practically, ANN training may be trapped 
in local minimum solutions because SGD utilizes a single 
searching point. For this reason, researches using evolutionary 
computation techniques with multiple searching points have 
been conducted to improve detection accuracy [14]. In order to 
tackle the two challenges, the new method is proposed and 
shown in the next section. 

IV. THE PROPOSED FAULT DETECTION METHOD FOR 

REFRIGERATED SHOWCASE BY A CORRENTROPY BASED PANNS 

USING PMP-MBSO 

A. Overview of Correntropy for a loss function of ANN 

As observed in section 3, when errors between target values 
and outputs increase, LFVs using LSE increase significantly. 
Therefore, test evaluation is affected to fit incorrectly measured 
data. Consequently, ANN parameters have to be adjusted using 
only correctly measured training data. In order to tackle the 
problem, Correntropy has been developed by W. Liu, et al. in 
2006 [24]. Even if incorrectly measured data exist in training 
data, ANN parameters are correctly adjusted using a LF with 
Correntropy regardless of the incorrectly measured data. 
Following equation is applied to a LF of ANN using 
Correntropy: 

 
Fig.3. LFVs using errors between target values and outputs of ANN 
when LSE is applied to the LF.    

 
(a) A training stage using LSE.                                                           (b) A test stage using LSE. 

Fig. 4. Inappropriate training at the stage and incorrect detection at the test stage using LSE. 
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where σ is a kernel size. 

LFVs using Correntropy are maximized by errors between 
target values and outputs of ANN because normal distribution 
formula is utilized for Correntropy. 

When Correntropy is applied to the LF, LFVs using errors 
between target values and outputs are shown in Fig. 5. The ANN 
using Correntropy solves a maximization problem. As observed 
in Fig. 5, LFVs become small significantly as the errors increase. 
Hence, training is not impacted by the huge errors even if 
incorrectly measured data exist in training data. Namely, 
training is not impacted by the incorrectly measured data even if 
incorrectly measured data exist in training data.  

An impact on fault detection problems including incorrectly 
measured data by the ANN using Correntropy is shown below. 
Figure 6 shows test and training stages for a fault detection 
problem by the ANN using Correntropy. Using Correntropy, 
incorrectly measured data does not affect the decision boundary 
in Fig. 6(a). Namely, ANN can be properly trained. Thus, 
incorrect detection may be prevented by the uncomplex decision 
boundary in Fig. 6(b). For load forecasting of power systems,  
effectiveness of the Correntropy based ANN using training data 
including incorrectly measured data has been confirmed [13]. 

A kernel size (σ) in Equ. (6) is a hyper parameter that decides 
a tolerance of the errors. In other words, the impact of 

incorrectly measured data is highly dependent on the kernel size. 
Consequently, the kernel size should be decided according to a 
target issue. 

B. Overview of Pasting 

Pasting is an ensemble learning method using subsets 
created from original data and it has been proposed by L. 
Breiman in 1999 [19]. Typical ensemble learning methods using 
subsets created from original data are Bagging and Pasting. 
Bagging is a method using subsets created from original data 
with duplication, while Pasting is a method using subsets created 
from original data without duplication. An appropriate method 
for a certain problem depends on the problem. An algorithm of 
Pasting is shown below. As observed in Fig. 7, firstly, a plurality 
of independent subsets is created from original data without 
duplication. Then, classifiers are created for each subset using a 
same learning algorithm. In test stage, output values of each 
ANN are calculated using test data. Then, a final result is 
calculated with output values of each ANN using a certain 
ensemble rule such as decision by majority. Comparing various 
rules, this paper utilizes decision by majority as the ensemble 
rule. 

C. Overview of PMP-MBSO 

1) Overview of MBSO 

MBSO is a new evolutionary computation technique 
improving BSO algorithm [15, 25]. Main processes utilized in 
MBSO have the following four steps. 

- Step 1 Individuals are initially generated randomly within 
constraints. 

 
Fig.5. LFVs using errors between target values and outputs of ANN 
when Correntropy is applied to the LF.  
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(a) A training stage using Correntropy.                                                           (b) A test stage using Correntropy. 

Fig. 6. Appropriate training at the stage and correct detection at the test stage using Correntropy. 

 
Fig.7 A training stage using PANN. 



- Step 2  Several clusters are created by dividing whole 
individuals using simple grouping method (SGM). In a practical 
situation of fault detection of refrigerated showcases, a cloud 
service is performed in data centers.  The service has to treat 
huge numbers of refrigerated showcases in stores and huge 
number of ANNs have to be trained. Therefore, saving 
computation time is really important in practical systems. In new 
individuals’ generation, sharing each best individual’s 
information is important. Consequently, new individuals’ 
generation is not influenced from accuracy of clustering. 
Therefore, decline of solution quality may be prevent using 
SGM and MBSO can speed up computation time for practical 
applications. 

- Step 3 Using the following equations, newly individuals are 
updated:  

𝑦௜௝
௜௧௘௥ = ቊ

𝑟𝑎𝑛𝑑൫𝐿௝ , 𝐻௝ ൯                     𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) < 𝑝௥     (7)

𝑥௜௝
௜௧௘௥ + 𝑟𝑎𝑛𝑑(0,1) × ൫𝑥௔௝

௜௧௘௥ − 𝑥௕௝
௜௧௘௥൯ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

 

                          (𝑖 = 1, ⋯ , 𝑁ூ, 𝑗 = 1, ⋯ , 𝑁஽௏) 

where 𝑦௜௝
௜௧௘௥  is a value of decision variable 𝑗 of updated new 

individual 𝑖 at iteration 𝑖𝑡𝑒𝑟, 𝐿௝  and 𝐻௝  are the lower and 
upper bounds of decision variable 𝑗 , 𝑥௜௝

௜௧௘௥  is a value of 
decision variable 𝑗 of current individual 𝑖 at iteration 𝑖𝑡𝑒𝑟 , 
𝑝௥  is a parameter for controlling diversification and 
intensification, 𝑥௔௝

௜௧௘௥  and 𝑥௕௝
௜௧௘௥  are values of decision 

variable 𝑗 of selected current individuals 𝑎 and 𝑏 at iteration 
𝑖𝑡𝑒𝑟  ( 1 ≤ 𝑎 ≠ 𝑏 ≤ N ), 𝑁ூ  is the number of individuals, 
𝑁஽௏  is the number of decision variables 𝑥௜௝

௜௧௘௥ , 𝑟𝑎𝑛𝑑(0,1) is 
an uniform random number in the range (0,1). 

When two clusters are utilized for update, a new individual 
is updated using the following equation: 

𝑥௜௝
𝑖𝑡𝑒𝑟 = 𝑟𝑎𝑛𝑑(0,1) × 𝑥௜௝ଵ

𝑖𝑡𝑒𝑟 + ൫1 − 𝑟𝑎𝑛𝑑(0,1)൯ × 𝑥௜௝ଶ
𝑖𝑡𝑒𝑟 

(𝑖 = 1, ⋯ , 𝑁ூ, 𝑗 = 1, ⋯ , 𝑁஽௏)                   (9) 

where 𝑥௜௝ଵ
௜௧௘௥, 𝑎𝑛𝑑 𝑥௜௝ଶ

௜௧௘௥  are selected current decision variable 
𝑗 of individual 𝑖 at iteration 𝑖𝑡𝑒𝑟 at each cluster. 

- Step 4 The current individual is replaced with the newly 
generated individual when the newly generated individual is 
superior to the current one.  

2) Overview of PMP-MBSO 

Using PMP, several sub-populations are created from one 
whole population. A process is allocated to each sub-population 
and optimization procedures in each sub-population are 
calculated in parallel. Figure 8 shows an example of PMP-
MBSO with four sub-populations. Each sub-population 
independently performs MBSO procedures using individuals in 
each sub-population [22]. When iteration number reaches a 
certain number, individuals are replaced among connected sub-
populations. This action is called migration. Hyper parameters 
of PMP are migration policy, sub-population network topology, 

 
Fig. 8. An example of PMP-MBSO with four sub-populations. 
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Fig.9. An algorithm of PMP-MBSO.  



migration interval, and the number of sub-populations. In the 
simulation, migration policy and migration interval are 
determined by pre-simulation. Various numbers of sub-
populations and sub-population topologies are investigated in 
simulation. An algorithm of PMP-MBSO can be summarized in 
Fig. 9.  

D. The proposed refrigerated showcase fault detection 
method by PANNs using PMP-MBSO and Correntropy 

A conception of parameter training of PANNs using PMP-
MBSO and Correntropy for the proposed fault detection 
method for refrigerated showcases is shown in Fig. 10. The 
algorithm of proposed fault detection is explained below.  
Step 1  𝑀  independent training subsets are created from 

sensor data of refrigerated showcases. 𝑀  Classifiers 
are created for 𝑀 training subset. 

Step 2  For all training subsets, ANN parameters of all 
individuals are initially generated within constraints. 

Step 3  Using forward propagation, for all individuals, outputs 
of the ANN are calculated using each training subsets. 
Using Correntropy, a summation of LFVs is calculated 
using errors between target values and outputs of ANN. 
A summation of LFVs using Correntropy is applied to 
evaluate the ANN parameters of all individuals for all 
training subsets. 

Step 4  For 𝑚th classifier, 𝑆 sub-populations are created from 
one whole population of initial individuals. 𝑖𝑡𝑒𝑟 is set 
to 1. 

Step 5  𝑆 sub-populations are calculated using 𝑆 processes for 
speed-up of training time. MBSO procedures 
including clustering and new individual generation are 
performed in each process for the 𝑚th training subset 
in parallel. 

Step 6  Using newly generated ANN parameters, LFVs of 
individuals using Correntropy are calculated. The 
current individual is replaced with the newly generated 
individual in each sub-population for the mth training 
subset when the newly generated individual’s LFV is 
superior to the current individual’s LFV in each 
individual. 

Step 7 Migration is performed at each sub-population by 
transferring individuals among sub-populations when 
iteration number reaches a certain number. 

Step 8  If 𝑖𝑡𝑒𝑟  reaches preset 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , go to Step 9. 
Otherwise, 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 and go back to Step 5. 

Step 9  Training procedures can be stopped and go to Step10 
if all classifiers have been trained. Otherwise, 𝑚 =
𝑚 + 1 and move back to Step 4. 

Step10 For all classifiers, using test data, output values are 
calculated using forward propagation. Final results are 
calculated with output values of each classifier using 
decision by majority. 

V. SIMULATION 

A. Simulation conditions 

Using actual operation data of refrigerated showcase, the 
proposed PANNs with PMP-MBSO and Correntropy, 
conventional ANNs with SGD and LSE [7], and ANNs with 
MBSO and Correntropy [10] for fault detection of refrigerated 
showcase are compared. Table 1 shows general simulation 
conditions. 

Table 2 shows common parameters of ANN using 
evolutionary computation techniques and Correntropy, and 
various parameters of each method. The best individual among 
all the best individuals sent by the sending sub-populations is 
utilized for replacement of the worst individual in the receiving 
sub-population using the W-B policy. 

B. Simulation results 

Table 3 shows average detection accuracy rates using two 
abnormal rates for test data by the ANN with SGD and LSE [7], 
the ANN with MBSO and Correntropy [10], and the proposed 
PANNs with PMP-MBSO and Correntropy. Using the 
proposed methods, especially using the trigonal pyramid 
topology, "Fault" rates are higher than those of the conventional 
methods in both cases of 0% and 10% of abnormal rates (bold 

 
Fig. 10. A conception of parameter training of PANNs using PMP-MBSO 
and Correntropy for the proposed fault detection method for refrigerated 
showcases.   

TABLE I. GENERAL SIMULATION CONDITIONS 

 



numbers). Consequently, even if incorrectly measured data 
exist in training data, abnormal status can be detected more 
precisely by the proposed method than the ANN with SGD and 
LSE, and the ANN with MBSO and Correntropy. Namely, 
deterioration of perishable products’ quality can be prevented 
using the proposed methods the most among all methods. 

Mean ranks and results of Friedman test using the ANN 
with SGD and LSE, the ANN with MBSO, and the proposed 
PANNs with PMP-MBSO and Correntropy through 30 trials 
are shown in Table 4. Using D’Agostino-Pearson and 
Anderson-Darling tests, since the results are verified to lack for 
regularity, Friedman test is applied. As observed in table 4, 
average ranks of the proposed PANNs with PMP-MBSO and 
Correntropy are superior to those of the conventional ANN with 
SGD and LSE, and ANN with MBSO and Correntropy. 
Therefore, superiority of the proposed method is verified with 
0.05 significant level. 

Figure 11 shows average calculation time by the proposed 
PANNs using PMP-MBSO and Correntropy using 1, 2, 4, and 
8 processes though 30 trials. As observed in fig. 11, the 
proposed PANNs using PMP-MBSO and Correntropy using 8 
processes is about 2.5 times faster than those using one process. 

TABLE III. AVERAGE DETECTION ACCURACY RATES USING VARIOUS ABNORMAL RATES FOR TEST DATA BY THE 

CONVENTIONAL ANN WITH SGD AND LSE, THE CONVENTIONAL ANN WITH MBSO AND CORRENTROPY, AND THE 

PROPOSED PANNS WITH PMP-MBSO AND CORRENTROPY 
 

Method Evaluation 
item 

Average detection accuracy rates [%] 
0 [%] Abnormal 

rates 
10 [%] Abnormal 

rates 
 

ANN using SGD and LSE [7] 
Total  96.361 94.117 

Normal 97.752 94.675 
Fault 95.531 92.651 

 
ANN using MBSO and Correntropy [10] 

Total 96.518 95.787 
Normal 96.198 96.130 

Fault 97.358 94.888 

The proposed 
PANNs using 
PMP-MBSO 

and 
Correntropy 

Num. of sub-population: 1 
Total 96.198 95.858 

Normal 95.048 94.544 
Fault 99.215 99.307 

Num. of sub-population: 2 
Total  96.401 95.975 

Normal 95.286 94.706 
Fault 99.329 99.307 

Num. of sub-population: 4 
Topology: Ring 

Total  96.661 96.296 
Normal 95.661 95.141 

Fault 99.284 99.329 
Num. of sub-population: 4 
Topology: Trigonal 

pyramid 

Total  96.210 95.784 
Normal 95.021 94.433 

Fault 99.329 99.329 

Num. of sub-population: 8 
Topology: Ring 

Total  96.556 96.444 
Normal 95.533 95.354 

Fault 99.239 99.307 

Num. of sub-population: 8 
Topology: Cube 

Total  96.463 95.994 
Normal 95.379 94.723 

Fault 99.306 99.329 

 TABLE IV. MEAN RANKS AND RESULTS OF FRIEDMAN TEST THROUGH 30 TRIALS USING THE ANN 

WITH SGD AND LSE, THE ANN WITH MBSO AND CORRENTROPY, AND THE PROPOSED PANNS 

WITH PMP-MBSO AND CORRENTROPY 

Abnormal rates 
ANN using SGD 

and LSE 

ANN using 
MBSO and 

Correntropy 

The proposed 
PANNs using 
PMP-MBSO 

P_value 

0% 2.67 2.33 1 7.35E-11 

10% 2.97 2.03 1 2.46E-13 

 

TABLE II. COMMON PARAMETERS OF ANN USING CORRENTROPY 

AND EVOLUTIONARY COMPUTATION TECHNIQUES, AND PARAMETERS 

OF EACH METHOD 

 



Consequently, the proposed method can be verified to reduce 
training time. 

VI. CONCLUSIONS 

This paper proposes a refrigerated showcases fault detection 
method by Pasting based Artificial Neural Networks (PANNs) 
using Parallel Multi-population Modified Brain Storm 
Optimization (PMP-MBSO) and Correntropy. Verification of 
effectiveness of the proposed method is performed by 
comparison with the conventional ANN with SGD and LSE, 
and the conventional ANN with MBSO and Correntropy using 
actual operation data of refrigerated showcases. Even if 
incorrectly measured data exist in training data, abnormal status 
can be detected more precisely by the proposed method 
comparing with the ANN with SGD and LSE, and the ANN 
with MBSO and Correntropy. Furthermore, the proposed 
method can be verified to reduce training time. The 
characteristics of the proposed method are suitable for practical 
application. 

To improve accuracy of fault detection and reduce training 
time, applications of novel training techniques for ANN 
parameters and other ensemble learning techniques will be 
investigated as future works.  
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Fig. 11 Average calculation time by the proposed PANNs using PMP-
MBSO and Correntropy using 1, 2, 4, and 8 processes though 30 trials. 
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