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Abstract— No-wait flowshop scheduling problem (NWFSP) is 

a well-known strongly NP-hard problem, where in-process waiting 

is not allowed between any two consecutive machines in such a way 

that once a job is started, subsequent processing must be carried 

out on all machines until completion. In this paper, we propose an 

energy-efficient NWFSP in order to investigate the trade-off 

between makespan and total energy consumption. The energy-

efficient NWFSP aims to seek to obtain Pareto solution sets to 

minimize the makespan and the total energy consumption 

conflicting with each other. Unlike the classical NWFSP, there are 

different speed levels for each job on machines and the processing 

times of jobs can differ according to the assigned speed levels. 

Therefore, we modify the formulation of NWFSP by introducing 

a speed scaling strategy in order to approximate Pareto solution 

sets, i.e., non-dominated solution sets. In this paper, we propose a 

mixed-integer linear programming model (MILP), an energy-

efficient variable block insertion heuristic (EE-VBIH), an energy-

efficient iterated greedy algorithm (IG) and an energy-efficient  & 

IG-ALL) to solve the energy-efficient NWFSP. Extensive 

computational analyses on Taillard’s benchmark suite show that 

the proposed algorithms are very effective for approximating 

Pareto solution sets. 

Keywords— no-wait flowshop scheduling problem, energy-

efficient scheduling, metaheuristics, multi-objective optimization 

I. INTRODUCTION 

Unlike the traditional permutation flowshop scheduling 

problem (PFSP),  its variant, so-called no-wait flowshop 

scheduling problem (NWFSP), is very common in many 

industries, such as the chemicals, plastics, metals, electronics, 

pharmaceuticals, and food-processing industries [1], [2]. Due 

to the technical reasons, in-process waiting is not allowed 

between any two consecutive machines in these industries in 

such a way that once a job is started on the first machine, 

processing of jobs without interruption must be continuously 

carried out on all machines until completion. The problem is 

strongly NP-hard for three or more machines [3]. For the 

NWFSP with the makespan criterion, an excellent paper is 

presented in [4] where they developed two mat-heuristics to 

solve almost all benchmark suites in the literature to optimality. 

In addition, a very detailed literature review on NWFSP with 

the makespan criterion can be found in [4]. In this study, we 

consider makespan together with a total energy consumption 

criterion for the energy-efficient NWFSP. In this paper, we 

develop an energy-efficient NWFSP in order to investigate the 

trade-off between the makespan and the total energy 

consumption. The proposed energy-efficient NWFSP seeks to 

obtain Pareto solutions sets by minimizing the makespan and 

the total energy consumption, simultaneously, which are 

conflicting with each other. Unlike the classical NWFSP, we 

employ speed scaling strategy, where there are different speed 

levels for each job on machines and processing time of a job 

can differ according to the assigned speed levels. Therefore, we 

modify the formulation of NWFSP by employing a job-based 

speed scaling strategy, in which machines can be operated at 

different speed levels, which correspond to different energy 

consumption levels. The trade-off between the processing time 

and the energy consumption emerges with a result of different 

speed levels, as higher speed levels consume higher energy 

while decreasing the processing times. On the contrary, lower 

speed levels consumes less energy while increasing the 

processing times.  

High-energy consumption is a vital problem for 
manufacturing companies because of the increase in fuel prices 
and negative environmental impacts such as global warming 
and CO2 emissions. For these reasons, industries seek energy-
efficient scheduling [5]. A comprehensive review of energy-
efficient scheduling was presented [6]. As a pioneering study, 
the turn-off strategy was suggested in [7] and they concluded 
that a substantial amount of energy can be saved when the 
machine is turned off during idle times. Later on, they applied 
the turn off strategy to the single machine scheduling problem 
in order to minimize the total energy consumption and the total 
tardiness in [8]. Turn off strategy was also applied for the 
flexible flowshop problem [9]. Even though the turn off 
strategy saves energy, it is not practical in some production 
environments as it might ruin the service life of some machines. 
Hence, a speed scaling strategy was developed for the energy-
efficient permutation flowshop scheduling problem (PFSP) by 
considering the operation speed as an independent variable that 
can vary to improve the energy efficiency in [5]. In addition, a 
mixed-integer programming formulation was proposed for the 
PFSP with makespan minimization with a constraint on peak 
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power consumption [10]. Speed scaling strategy was also 
proposed for the PFSP with the objectives of the total carbon 
emissions and makespan in [11]. They developed a modified 
multi-objective iterated greedy (IG) algorithm. Speed scaling 
strategy was also implemented on the two-machine sequence-
dependent PFSP in [12]. Later on, they extended their study to 
a genetic algorithm (GA) for the same problem in [13]. An 
energy-efficient evolutionary algorithm was proposed for the 
single machine scheduling problem by [14], while a 
backtracking algorithm was proposed for the energy-efficient 
PFSP by [15]. Furthermore, an energy-efficient job shop 
scheduling problem was presented in [16]. A multi-level 
approach was proposed in [17] while energy-efficient dynamic 
scheduling was presented in [18]. An energy-efficient genetic 
algorithm for the job shop scheduling problem was also 
developed in [19]. An energy-efficient green PFSP was 
presented in [20] whereas an energy-efficient single machine 
total weighted tardiness problem with sequence-dependent 
setup times was proposed in [21] More recently, a memetic 
differential evolution algorithm for energy-efficient parallel 
machine scheduling is proposed in [22]. Lastly, very recent 
studies on speed scaling strategy have been performed for 
NWFSPs to minimize the total tardiness and the total energy 
consumption in the study of [23] and for hybrid flow shops to 
minimize the makespan and the total energy consumption in the 
study of [24]. However, to the best of our knowledge, the 
aforementioned energy-efficient consideration has not been 
employed for NWFSPs in the literature to minimize the 
makespan and the total energy consumption simultaneously. 
Hence, in this study, we initially propose a novel mixed-integer 
linear programming model (MILP) to fill the gap in the 
literature. Resulting from the NP-hardness nature of the 
problem, an energy-efficient variable block insertion heuristic 
algorithm (EE-VBIH), an iterated greedy algorithm (EE-IG) 
and a variant of EE-IG, that is, an iterated greedy algorithm with 
a local search (EE-IGALL) for the energy-efficient NWFSP 
problem is proposed. Extensive computational analysis on 
Taillard’s benchmark suite show that EE-VBIH algorithm 
provide better approximations of the Pareto solution sets than 
the other algorithms from the point of cardinality, quality and 
diversity of the generated non-dominated solution sets. 

The rest of the paper is organized as follows. The energy-
efficient mixed-integer linear programming model and meta-
heuristic formulation of NWFSP are given in Section II. In 
Section III, the details of all meta-heuristic algorithms are 
presented. In Section IV, the computational results are reported 
for both mathematical models and algorithms. Finally, in 
Section V, concluding remarks are presented with possible 
future research extensions. 

II. PROBLEM FORMULATION 

In this paper, we study an energy-efficient NWFSP with two 

conflicting objectives of the makespan and the total energy 

consumption. The goal is to obtain Pareto solutions sets that 

optimize these two performance measures. Unlike the standard 

NWFSP, there is a finite and discrete set of 𝑙 processing speed 

levels 𝐿 =  {1, . . , 𝑙}  for each machine. Therefore, the 

processing time of a job may vary based on the assigned speed 

level. Due to the job-based speed-scaling structure, we assume 

that each job is processed with the same speed level through its 

route in the NWFSP. A similar total energy consumption (TEC) 

calculation from the two-machine PFSP model by [12] is 

employed. To solve the energy-efficient NWFSP, a mixed-

integer linear programming approach and three metaheuristic 

algorithms are employed. Hence, the problem notations needed 

for all proposed approaches are given below in Table I. 

TABLE I.  PARAMETERS AND DECISION VARIABLES 

Parameters 

𝑃𝑖𝑟 Processing time of job 𝑖 on machine 𝑟 

𝑠𝑙  Speed factor of processing speed level 𝑙 
𝜆𝑙  Conversion factor for processing speed level 𝑙  
𝜑𝑟 Conversion factor for idle time on machine 𝑟 

𝜏𝑟  Power of machine (kW) 𝑟 

𝑄 A very large number 

Decision Variables 
𝑦𝑖𝑟𝑙 1 if job 𝑖 is processed at speed 𝑙 on machine 𝑟, 0 

otherwise. 
𝐶𝑖𝑟 Completion time of job 𝑖 on machines 𝑟 
𝐷𝑖𝑘 1 if job 𝑖 is scheduled any time before job 𝑘, 0 otherwise 

(𝑖 < 𝑘) 
𝜃𝑟 Idle time on machine r 

𝐶𝑚𝑎𝑥 Maximum completion time (makespan) 
𝑇𝐸𝐶 Total energy consumption (kWh) 

The mixed-integer linear programming model for the 
energy-efficient NWFSP is provided below: 

Minimize 𝐶𝑚𝑎𝑥 (1), Minimize 𝑇𝐸𝐶 (2)    

Subject to;  

𝐶𝑖1 ≥  ∑
𝑃𝑖1∗𝑦𝑖1𝑙

𝑠𝑙
𝑙∈𝐿      ∀𝑖 ∈ 𝑁                                       (3) 

𝐶𝑖𝑟 − 𝐶𝑖,𝑟−1 ≥  ∑
𝑃𝑖𝑟∗𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿   ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2               (4) 

𝐶𝑖𝑟 − 𝐶𝑘𝑟 + 𝑄 ∗ 𝐷𝑖𝑘 ≥  ∑
𝑃𝑖𝑟 ∗ 𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿

 

 ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 

  (5) 

𝐶𝑖𝑟 − 𝐶𝑘𝑟 + 𝑄 ∗ 𝐷𝑖𝑘 ≤  𝑄 − ∑
𝑃𝑘𝑟 ∗ 𝑦𝑘𝑟𝑙

𝑠𝑙
𝑙∈𝐿

 

∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀     

  (6) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖𝑀                   ∀𝑖 ∈ 𝑁                                (7) 

𝐶𝑖𝑟 − 𝐶𝑖,𝑟−1 ≤ ∑
𝑃𝑖𝑟∗𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿    ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2            (8) 

∑ 𝑦𝑖𝑟𝑙 = 1𝑙∈𝐿    ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀   (9) 

𝑦𝑖𝑟𝑙 = 𝑦𝑖,𝑟+1,𝑙   ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀, ∀𝑙 ∈ 𝐿  (10) 

𝜃𝑟 = 𝐶𝑚𝑎𝑥 − ∑ ∑
𝑃𝑖𝑟∗𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿𝑖∈𝑁       ∀𝑟 ∈ 𝑀  (11) 

𝑇𝐸𝐶 = ∑ ∑ ∑
𝑃𝑖𝑟∗𝜏𝑟∗𝜆𝑙

60𝑠𝑙
𝑙∈𝐿𝑟∈𝑀𝑖∈𝑁 𝑦𝑖𝑟𝑙 +

∑
𝜑𝑟∗𝜏𝑟∗𝜃𝑟

60𝑟∈𝑀   

 (12) 

𝑦𝑖𝑟𝑙 ∈ {0,1}           ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀, ∀𝑙 ∈ 𝐿                        (13) 

𝐶𝑖𝑟                         ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀                                   (14) 

𝐷𝑖𝑘 ∈ {0,1}           ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖                                       (15) 

The makespan and the total energy consumption are 

minimized by the objective functions (1) and (2), respectively. 

The completion time of each job must be at least its processing 

time on machine 1 is provided by constraint (3). Constraint (4) 

provides that the difference between the completion time of a 



job on any consecutive machines is at least greater than or equal 

to the processing time of the job. The precedence relation of 

jobs is provided by constraints (5) and (6). The makespan that 

is the maximum of completion times is computed by constraint 

(7). The no-wait restriction is preserved by constraint (8) 

together with the constraint (4). In other words, the completion 

time of a job on any machine plus its processing time on the 

consecutive machine must be equal to the completion time of 

that job on the consecutive machine. One speed level selection 

for each job is provided by constraint (9) and then each job will 

possess the same speed level on each machine is procured by 

constraint (10). The idle times on all machines are computed by 

constraint (11). Lastly, the total energy consumption is 

computed in kilowatt-hour by constraint (12) as provided by 

[12]. The binary variables and the sign restrictions are given in 

constraints (13), (14), and (15). It is significant to mention that 

the provided model is an expansion of Manne’s PFSP model 

[25] with the addition of the no-wait restriction and the 

consideration of the total energy consumption in the objective 

function as the second objective. In other words, the energy 

efficiency idea incorporates the idle time and the total energy 

consumption computations as well as the speed level 

considerations as constraints. 

From the point of heuristic approaches, single objective 

NWFSP with makespan criterion can be defined as follows: A 

set 𝑁 =  {𝐽1, 𝐽2. . , 𝐽𝑛}  of 𝑛  jobs is to be processed on 𝑚 

machines, such that the same permutation will be used on all 

machines. All jobs and machines are available for processing at 

time zero. Each job  𝑖 (𝑖 = 1, 2, . . , 𝑛)  has a nonnegative 

processing time 𝑃𝑖𝑟  on machine 𝑟 (𝑟 = 1, 2, . . , 𝑚) . Each job 

can be processed at most by one machine, and every machine 

can process no more than one job at a time. No job queue is 

allowed at any machine, except for the first one. Once the 

processing of a job is started on the first machine, it must be 

processed continuously on all machines until completion. To 

satisfy the no-wait constraint, the processing time of the job on 

the first machine may be delayed to make sure that it does not 

need to wait for processing on subsequent machines. The aim 

is to find a feasible schedule 𝜋 =  {𝜋1, 𝜋2, . . , 𝜋𝑛}   for the 

𝑛 jobs such that the makespan is minimized, where 𝜋𝑘(𝑘 =
1,2, . . , 𝑛) denotes the job assigned to position 𝑘. Due to the no-

wait constraint, the difference between the completion times of 

two consecutive jobs depends entirely on those two consecutive 

jobs [26], [27], and independent of their positions in the 

sequence and the sequence of other jobs. For this reason, the 

delay matrix 𝐷(𝑛+1)𝑥𝑛  can be pre-calculated and provides all 

𝑑([𝜋𝑘−1, 𝜋𝑘]) values for any schedule 𝜋 as follows: 

𝑑([𝜋𝑘−1, 𝜋𝑘]) = 𝑃𝜋𝑘−1,1 + max {0, 𝑚𝑎𝑥
2≤𝑘≤𝑚

{∑ 𝑃𝜋𝑘−1,ℎ
𝑘
ℎ=2 −

∑ 𝑃𝜋𝑘,ℎ
𝑘−1
ℎ=1 }}        ∀𝑘 = 2, . . , N                                         (16) 

Thus, the makespan (𝐶𝑚𝑎𝑥) calculation can be easily done 

very rapidly as follows:  

𝐶𝑚𝑎𝑥(𝜋) = ∑ 𝑑𝜋𝑘−1,𝜋𝑘
𝑁
𝑘=2 + ∑ 𝑃𝜋𝑁,𝑟

𝑀
𝑟=1                     (17) 

To convert the single objective NWFSP with makespan into 

an energy-efficient bi-objective NWFSP, speed levels should 

be considered in equations (16) and (17) as follows: 

𝑑([𝜋𝑘−1, 𝜋𝑘][𝑙𝜋𝑘−1
, 𝑙𝜋𝑘

]) 

=
𝑃𝜋𝑘−1,1

𝑠𝑙𝜋𝑘−1

+ max {0, max
2≤𝑘≤𝑚

{∑
𝑃𝜋𝑘−1,ℎ

𝑠𝑙𝜋𝑘−1

𝑘

ℎ=2

− ∑
𝑃𝜋𝑘,ℎ

𝑠𝑙𝜋𝑘

𝑘−1

ℎ=1

} } 

∀𝑘 = 2, … , 𝑁, ∀𝑙 ∈ {1,2,3}                                               (18) 

𝐶𝑚𝑎𝑥(𝜋) = ∑ 𝑑([𝜋𝑘−1, 𝜋𝑘][𝑙𝑘−1, 𝑙𝑘])𝑁
𝑘=2 + ∑

𝑃𝜋𝑁,𝑟

𝑠𝑙𝜋𝑘

𝑀
𝑟=1      (19) 

The idle time on each machine 𝑖 can be calculated as follow: 

𝜃𝑟 = 𝐶𝑚𝑎𝑥(𝜋) − ∑
𝑃𝜋𝑘,𝑟

𝑠𝑙𝜋𝑘

𝑁
𝑘=1                ∀𝑟 = 1, … , 𝑀             (20) 

Finally, the total energy consumption can be calculated as 

follows: 

𝑇𝐸𝐶 = ∑ ∑
𝑃𝜋𝑘,𝑟∗𝜏𝑟∗𝜆𝑙𝜋𝑘

60𝑠𝑙𝜋𝑘

𝑀
𝑟=1

𝑁
𝑘=1 + ∑

𝜗𝑟∗𝜏𝑟∗𝜃𝑟

60

𝑀
𝑟=1                  (21) 

Now, the problem becomes an energy-efficient NWFSP 

with minimization of both the makespan and the total energy 

consumption, simultaneously in order to approximate a Pareto 

front solution set (i.e., non-dominated solution set). In multi-

objective minimization problems, three main concepts are used 

to define relations between different solutions to the problem. 

• Dominance relation: A feasible solution 𝑟 dominates 

another feasible solution 𝑡 if the two following conditions are 

satisfied (denoted as 𝑟 ≻ 𝑡): 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑟 ) ≤ 𝑓𝑝(𝑡) 

o ∃𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑟) < 𝑓𝑝(𝑡) 

A feasible solution 𝑟  weakly dominates another feasible 

solution 𝑡 (denoted as 𝑟 ≽ 𝑡) if: 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑟 ) ≤ 𝑓𝑝(𝑡) 

• Non-dominated set (𝑿∗): Amongst a set of solutions (𝑋), the 

non-dominated set of solutions (𝑋∗) are the solutions that are 

not dominated by any element of set 𝑋. 

• Pareto-optimal set: The non-dominated (Pareto-optimal) 

solution set of the entire feasible search space is called as the 

Pareto-optimal set.  

III. META-HEURISTIC APPROACHES 

Due to the computational difficulty of the mathematical 
model, energy-efficient metaheuristics, namely, an energy-
efficient variable block insertion heuristic algorithm (EE-
VBIH), an energy-efficient iterated greedy algorithm (EE-IG) 
and an energy-efficient iterated greedy algorithm with 
optimization of partial solutions (EE-IGALL) are presented for 
the NWFSP where the makespan and the total energy 
consumption criteria are the objectives. In the literature, EE-
VBIH, EE-IG, and EE-IGALL are employed on the energy-
efficient single machine scheduling problem by the studies 
provided by [21] and [26] and on the permutation flowshop 
scheduling problem by the study of [27]. To the best of our 
knowledge, there is no any study regarding the metaheuristic 
applications on NWFSPs with the makespan and the total energy 
consumption consideration. Hence, the concept of energy-



efficient meta-heuristics, which are provided in the literature for 
different scheduling problems, are redesigned for the NWFSPs 
and employed in this study. In addition, we did not employ the 
NSGA-II algorithm for this problem since its underperformance 
compared with other algorithms has explicitly shown in [23]. 

A. Solution Representation and Initial Population 

 In this study, we propose a job-based speed-scaling strategy 

for the energy-efficient NWFSP. Therefore, a multi-

chromosome structure is developed, which includes a 

permutation of 𝑛  jobs and a speed vector of three levels 

corresponding to fast, normal, and slow speed levels, 

respectively. The solution representation for an individual 𝑥𝑖 is 

given in Fig. 1. 

 

𝑥𝑖(𝜋, 𝑙) 

𝜋 3 2 1 4 5 … 𝑛 

𝑣  1 3 2 1 2 … 3 

Fig. 1. Individual Solution Representation 

In Fig. 1, the individual 𝑥𝑖(𝜋𝑖,𝑘, 𝑙𝑖,𝑘) represents a solution 

where job 𝜋𝑖,1 = 3 has a fast speed level (𝑙𝑖,1 = 1); job 𝜋𝑖,2 =

2 has a slow speed level (𝑙𝑖,2 = 3) and so on. Note that the same 

speed vector is used in all machines. In all proposed algorithms, 

the initial population with size 𝑁𝑃 is constructed as follows. 

Firstly, an initial solution 𝜋0  is constructed by the 𝐹𝑅𝐵5 

heuristic [30] in Fig. 2, which is an extension of well-known 

NEH heuristic [31]. In the first phase, the sum of the processing 

times on all machines is calculated for each job. Then, the jobs 

are sorted in decreasing order to obtain 𝛿. In the second phase, 

the first job in 𝛿 is selected to establish a partial solution. The 

remaining jobs in 𝛿 are inserted in the partial solution one by 

one. After each iteration, a local search is applied to the partial 

solution. Insertion local search is applied as long as the partial 

solution is improved. After having inserted all jobs, a complete 

solution 𝜋0  is obtained. 

𝛿 = 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟(∑ 𝑃𝑖𝑟
𝑚
𝑟=1 )  

𝜋1 = 𝛿1  

𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛 𝑑𝑜  

    𝜋0  = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋𝑖 , 𝛿𝑖)  

    𝜋0  = 𝐴𝑝𝑝𝑙𝑦𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜋0 , 𝑓(𝜋i)) ,    

𝑒𝑛𝑑 𝑓𝑜𝑟  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋0  𝑤𝑖𝑡ℎ 𝑛 𝑗𝑜𝑏𝑠   

Fig. 2. FRB5 Constructive Heuristic 

To obtain a diversified initial population, we fix the 
population size to 𝑁𝑃 = 1  with the initial solution 𝜋0  and 
devote the 25% of the total CPU time to EE-VBIH, EE-IG, and 
EE-IGALL algorithms by fixing all speed levels to 𝑙𝑖 = 2, where 
𝑖 ∈ {1, . . , 𝑛}. We run algorithms with normal speed level for 
each job and obtain an individual 𝜋𝑏𝑒𝑠𝑡 . Then, we fix the 
population size to 𝑁𝑃 = 100. The first three individuals are 
generated by assigning fast, normal and slow speed levels to 
each job in the π𝑏𝑒𝑠𝑡 . Then, the rest of the population is 
constructed by assigning random speed levels to each job in 
π𝑏𝑒𝑠𝑡 . Note that with the same permutation, a different solution 
can be obtained by changing the speed level of any job in the 
permutation. The archive set 𝜙  is initially empty and will be 
updated with non-dominated solutions from the initial 
population. 

B. Energy-Efficient Variable Block Insertion Heuristic 

Algorithm (EE-VBIH) 

Variable block insertion heuristic algorithms are recently 

presented in the literature by [21], [32]–[34]. In this paper, we 

propose an energy-efficient VBIH (EE-VBIH) algorithm as 

follows. EE-VBIH algorithm establishes the initial population 

as mentioned in the previous section. As seen in Fig. 3, EE-

VBIH randomly removes a block 𝑏𝑆 of jobs with their speed 

levels from individual 𝑥𝑖  and they are stored in 𝑥𝑖,𝐵 . The 

remaining jobs and the speed levels are also stored in 𝑥𝑖,𝐷 . 

Then, an insertion local search as presented in Fig. 4 is applied 

to the partial solution 𝑥𝑖,𝐷 . Before block insertion moves, 

random speed levels are assigned to jobs in 𝑥𝑖,𝐵 by 𝑥𝑖,𝐵(𝑙𝑖,𝐵) =
𝑟𝑎𝑛𝑑()%3 . Then, it carries out 𝑛 − 𝑏𝑠 + 1  block insertion 

moves. In other words, the block 𝑥𝑖,𝐵 is inserted in the partial 

solution 𝑥𝑖,𝐷 , sequentially. Again, it should be noted that 

dominance rule (≻) in multi-objective optimization will be used 

when two solutions are compared. A complete solution is 

obtained by selecting the non-dominated solution among 𝑛 −
𝑏𝑆 + 1 solutions after the block is inserted into last position of 

partial solution 𝑥𝑖,𝐷 . Finally, and the identical insertion local 

search is again applied to the complete solution obtained after 

block insertion moves. If the new solution 𝑥∗  dominates the 

individual 𝑥𝑖 , it is replaced by 𝑥∗  and the archive set 𝜙  is 

updated. Then, the block size is incremented by one. Above 

process is repeated until it reaches maximum block size 𝑏𝑆𝑚𝑎𝑥.  

𝑆𝑒𝑡 𝑁𝑃 = 100; 𝑏𝑆𝑚𝑎𝑥 = 8  

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑃  

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑖𝑗   

𝑊ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜  

     𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

          𝑏𝑆 = 2  

            𝑑𝑜 
                    𝑥𝑖,𝐵(𝜋𝑖,𝐵, 𝑙𝑖,𝐵) = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑎 𝑏𝑙𝑜𝑐𝑘 𝑥𝑖,𝐵  𝑓𝑟𝑜𝑚 𝑥𝑖 

                  𝑥𝑖,𝐵(𝑙𝑖,𝐵) = 𝑟𝑎𝑛𝑑()%3  

    𝑥𝑖,𝐷(𝜋𝑖,𝐷 , 𝑙𝑖,𝐷) = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥𝑖,𝐷)       

                  𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 𝑥𝑖,𝐵 𝑖𝑛 𝑥𝑖,𝐷   

   𝑥∗(𝜋∗, 𝑙∗) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥∗(𝜋∗, 𝑙∗))     

                   𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜  
                     𝑥𝑖 = 𝑥∗,  

                               U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑒𝑡 𝜙 𝑤𝑖𝑡ℎ 𝑥∗ 

                   𝑒𝑛𝑑𝑖𝑓  

                    𝑏𝑆 = 𝑏𝑆 + 1  

          𝑤ℎ𝑖𝑙𝑒 (𝑏𝑆 ≤ 𝑏𝑆𝑚𝑎𝑥),  

      𝑒𝑛𝑑𝑓𝑜𝑟  

      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

           𝑥∗(𝜋∗, 𝑙∗) = Crossover(𝑙𝑖 , 𝑙𝑘) 

            𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖)  𝑡ℎ𝑒𝑛 𝑑𝑜  
                          𝑥𝑖 = 𝑥∗,  

                          U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑒𝑡 𝜙 𝑤𝑖𝑡ℎ 𝑥∗ 

                 𝑒𝑛𝑑𝑖𝑓  

       𝑒𝑛𝑑𝑓𝑜𝑟  

       𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

             𝑥𝑖(𝜋𝑖 , 𝑙𝑖) = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑙𝑖) 

       𝑒𝑛𝑑𝑓𝑜𝑟  

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒,  

𝑟𝑒𝑡𝑢𝑟𝑛  𝜙  



𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Fig. 3. EE-VBIH Algorithm 

Regarding local search, we employ a very effective 

insertion local search in all algorithms proposed, which is given 

in Fig. 4. For each position 𝑗, we remove 𝑗𝑡ℎ job and its speed 

level as (𝜋∗, 𝑙∗) from solution 𝑥𝑖  and assign a random speed 

level to 𝑗𝑡ℎ  job. Then, we insert (𝜋∗, 𝑙∗)  into 𝑛  positions. A 

non-dominated solution 𝑥∗(𝜋∗, 𝑙∗) from 𝑛 insertion is obtained. 

If it dominates individual 𝑥𝑖, it is replaced by 𝑥∗. 

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜  

         (𝜋∗, 𝑙∗) = 𝑅𝑒𝑚𝑜𝑣𝑒  𝑗𝑜𝑏 𝑎𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥𝑖  𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 

         𝑙∗ = 𝑟𝑎𝑛𝑑()%3  

         𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥𝑖 , (𝜋∗, 𝑙∗))  

         𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖)  𝑡ℎ𝑒𝑛 𝑑𝑜 

                    𝑥𝑖 = 𝑥∗} 

        𝑒𝑛𝑑𝑖𝑓  

𝑒𝑛𝑑𝑓𝑜𝑟  

 𝑟𝑒𝑡𝑢𝑟𝑛  𝑥𝑖  

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Fig. 4. Insertion Local Search 

The EE-VBIH algorithm is extremely effective for 

makespan minimization. However, more energy-efficient 

schedules can be generated by employing a uniform crossover 

operator by using only the speed levels. The same permutation 

is kept for each individual, and a uniform crossover is 

performed only on the speed levels as follows: For each 

individual 𝑥𝑖  in the population, another individual is selected 

from population randomly, say 𝑥𝑘, A new solution is generated 

either by taking the speed level from either 𝑥𝑖 or 𝑥𝑘, depending 

on the crossover probability. We generate a new solution by 

making a uniform crossover as follows: 

𝑥∗(𝜋∗, 𝑙∗) = {
𝑙𝑖,𝑗 𝑖𝑓 𝑟𝑖,𝑗 ≤ 𝐶𝑅[𝑖] 

𝑙𝑘,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   𝑗 ∈ 1, . , 𝑛                      (22)  

where 𝑟𝑖,𝑗  is a uniform random number in 𝑈(0,1). 𝐶𝑅[𝑖] is the 

crossover probability, drawn from the unit normal distribution 

𝑁(0.5,0.1) , with mean 0.5 and standard deviation 0.1. If 

𝑥∗(𝜋∗, 𝑙∗) dominates 𝑥𝑖  (𝑥∗ ≻ 𝑥𝑖), 𝑥𝑖  is replaced by 𝑥∗  and the 

archive set 𝜙 is updated. This is repeated for all individuals in 

the population. After crossover local search, we also mutate the 

speed levels of jobs in individuals in the population with a small 

mutation probability as follows: 

𝑥𝑖(𝜋𝑖𝑗 , 𝑙𝑖𝑗) = {
𝑙𝑖𝑗 = rand()%3 𝑖𝑓 𝑟𝑖𝑗 ≤ 𝑀𝑅[𝑖] 

𝑙𝑖𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑗 ∈ 1, . . , 𝑛 (23) 

where 𝑟𝑖,𝑗 is a uniform random number in 𝑈(0,1). 𝑀𝑅[𝑖] is the 

mutation probability, drawn from unit normal distribution 

𝑁(0.05,0.01) with mean 0.05 and a standard deviation of 0.01. 

C. EE-IG and EE_IGALL Algorithms 

Iterated greedy (IG) algorithms have mainly four 

components, namely, initial solution, destruction and 

construction procedure, local search, and acceptance criterion 

[35]. Recently, a new IGALL algorithm is presented [36] with 

excellent results for the PFSP with makespan minimization. 

The difference between IGALL and traditional IG is that IGALL 

applies an additional local search to partial solutions after 

destruction, which substantially enhances solution quality.  

In the EE_IG variants, 𝑑𝑆 jobs with their speed levels are 

removed from an individual 𝑥𝑖  and stored in 𝑥𝑖,𝑅 . The 

remaining jobs are also stored in 𝑥𝑖,𝐷. In the EE_IG, Each job 

in 𝑥𝑖,𝑅  is inserted into 𝑥𝑖,𝐷  for the construction of the final 

solution. However, in the EE_IGALL, an insertion local search 

in Fig. 4 is applied to the partial solution 𝑥𝑖,𝐷 . Before 

construction, random speed levels are assigned to jobs in 𝑥𝑖,𝑅 

by 𝑥𝑖,𝑅(𝑙𝑖,𝑅) = 𝑟𝑎𝑛𝑑()%3. Regarding construction, each job 

and speed level in 𝑥𝑖,𝑅 is inserted into 𝑥𝑖,𝐷. As the problem is 

multi-objective one, the dominance rule (≻) is used when two 

solutions are compared. Note that, partial solutions are assessed 

based on the partial dominance rule. Finally, a complete 

solution is obtained by selecting the non-dominated solution 

among 𝑛 solutions after the last removed job and speed level is 

inserted for 𝑛 positions. Finally, the insertion of the local search 

in Fig. 4 is again applied to the complete solution obtained after 

construction. If the new solution 𝑥∗  dominates the individual 

𝑥𝑖 , it is replaced by 𝑥∗  and the archive set 𝜙 is updated.  In 

addition, uniform crossover and mutation applied to the 

population as in the EE-VBIH algorithm. The EE_IG and 

EE_IGALL algorithms are given in Fig. 5 and 6. Again, note 

that the local search application to partial solutions which 

differentiates IGALL from IG is illustrated in bold in the 

pseudocode as presented in Fig. 6. 

𝑆𝑒𝑡 𝑑𝑆 = 4; 𝑁𝑃 = 100  

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑃  

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑖𝑗   

𝑊ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜  

     𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

           𝑥𝑖,𝑅(𝜋𝑖,𝑅 , 𝑙𝑖,𝑅) = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖  ) 

          𝑥𝑖,𝑅(𝑙𝑖,𝑅) = 𝑟𝑎𝑛𝑑()%3  

           𝑥∗(𝜋∗, 𝑙∗) = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖,𝑅)  

          𝑥∗(𝜋∗, 𝑙∗) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥∗(𝜋∗, 𝑙∗))   

           𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖)  𝑡ℎ𝑒𝑛 𝑑𝑜   
                     𝑥𝑖 = 𝑥∗,  
                    U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗  
           𝑒𝑛𝑑𝑖𝑓   

      𝑒𝑛𝑑𝑓𝑜𝑟 

      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

           𝑥∗(𝜋∗, 𝑙∗) = Crossover(𝑙𝑖 , 𝑙𝑘) 

                   𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖)  𝑡ℎ𝑒𝑛 𝑑𝑜  
                         𝑥𝑖 = 𝑥∗, 
                         𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗     

                   𝑒𝑛𝑑𝑖𝑓  

      𝑒𝑛𝑑𝑓𝑜𝑟  

      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜   

             𝑥𝑖(𝜋𝑖 , 𝑙𝑖) = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑣𝑖) 

      𝑒𝑛𝑑𝑓𝑜𝑟  

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒  

𝑟𝑒𝑡𝑢𝑟𝑛  𝜙  

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Fig. 5. EE-IG Algorithm 



 

𝑆𝑒𝑡 𝑑𝑆 = 4; 𝑁𝑃 = 100  

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑃  

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑖𝑗   

𝑊ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜  

     𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

           𝑥𝑖,𝑅(𝜋𝑖,𝑅 , 𝑙𝑖,𝑅) = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖  ) 

          𝑥𝑖,𝑅(𝑙𝑖,𝑅) = 𝑟𝑎𝑛𝑑()%3  

           𝒙𝒊,𝑫(𝝅𝒊,𝑫, 𝒍𝒊,𝑫) = 𝑷𝒂𝒓𝒕𝒊𝒂𝒍𝑳𝒐𝒄𝒂𝒍𝑺𝒆𝒂𝒓𝒄𝒉(𝒙𝒊,𝑫)    

           𝑥∗(𝜋∗, 𝑙∗) = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖,𝑅)  

          𝑥∗(𝜋∗, 𝑙∗) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥∗(𝜋∗, 𝑙∗))   

           𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖)  𝑡ℎ𝑒𝑛 𝑑𝑜   
                     𝑥𝑖 = 𝑥∗,  
                    U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗  
           𝑒𝑛𝑑𝑖𝑓   

      𝑒𝑛𝑑𝑓𝑜𝑟 

      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

           𝑥∗(𝜋∗, 𝑙∗) = Crossover(𝑙𝑖 , 𝑙𝑘) 

                   𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖)  𝑡ℎ𝑒𝑛 𝑑𝑜  
                         𝑥𝑖 = 𝑥∗, 
                         𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗     

                   𝑒𝑛𝑑𝑖𝑓  

      𝑒𝑛𝑑𝑓𝑜𝑟  

      𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜   
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Fig. 6. EE-IGALL Algorithm 

D. The Archive Set 

In the EE-VBIH, EE-IG, and EE-IGALL algorithms, we use 

an archive set 𝜙 to store non-dominated solutions. When a new 

non-dominated solution is obtained, it is added to the archive 

set 𝜙 and any member dominated by the new non-dominated 

solution is removed.  

IV. COMPUTATIONAL RESULTS 

To evaluate the performance of the proposed algorithms, the 

benchmark suite of Taillard [37] is employed, where it 

originally includes 12 groups of problems (10 instances in each 

group) with changing sizes from 20 jobs and 5 machines, to 500 

jobs and 20 machines. Since solving these instances are 

computationally hard, 30 small instances are generated where 

it contains 5x5, 5x10, and 5x20 set of instances. These instances 

are generated by cropping the first 5 jobs of 20x5, 20x10, and 

20x20 set of instances. The energy-related parameters used in 

TEC calculation are taken as  𝐿 = {1 (fast), 2 (normal), 3 

(slow)}, 𝑣𝑙 ={1.2,1,0.8}, 𝜆𝑙 ={1.5,1,0.6}, 𝜑𝑗 =0.05, and τ𝑗 =60 

kW, which are taken from [12]. The augmented ε-constraint 

method [38] is employed on the mixed-integer linear 

programming model where the epsilon value is reserved as 

10−2. Then, the small instances are run in IBM ILOG CPLEX 

Optimization Studio (version 12.8) on a Core i7, 2.60 GHz, 8 

GB RAM computer. The all energy-efficient algorithms were 

coded in C++ on Microsoft Visual Studio 2013, and all 

instances were solved on a Core i5, 3.20 GHz, 8 GB RAM 

computer. 30 replications were made for each instance. In each 

replication, the algorithms were run for 25nm milliseconds for 

small instances and 50𝑛𝑚 milliseconds for large instances.  To 

show the conflict between the total energy consumption and the 

makespan, an example of Pareto optimal set is represented by 

addressing the 5x5_01 instance in Fig. 7. 

 

Fig. 7. The Pareto Optimal Set of 5x5_01 Instance 

We have used the following performance metrics to 

evaluate the solution quality of the EE-VBIH, EE-IG, and EE-

IGALL algorithms comparing with the optimal solutions 

obtained by the augmented ε-constraint method. 
• Ratio of the Pareto-optimal solutions found: 

RpZ
= |Z ∩ P|/|P|,  

• Inverted generational distance [39]: 

IGDZ = ∑ d(v, Z)/|P|,v∈P   where the minimum Euclidean 
distance between two solutions is denoted as d(v, Z)  

• Distribution Spacing [40]: 

DSZ = [
1

|Z|
∑ (di − d̅)

2
i∈Z ]

1
2⁄

d̅⁄ , where �̅� = ∑ 𝑑𝑖𝑖∈𝑍 |𝑍|⁄  and 

𝑑𝑖 indicates the minimum Euclidean distance between solution 
𝑖 and its closest neighbor in 𝑍. The solutions in 𝑍 are said to be 
uniformly dispersed whenever the low spacing values are being 
encountered.  

It is a fact that Z relates to the non-dominated solution set of 

the heuristic algorithms and therewithal K, L, and M  are 

redefined for the non-dominated solution set of the EE-VBIH, 

EE-IG and EE-IGALL algorithms, respectively, to differentiate 

the heuristic algorithms. The performance metrics of 

comparison for all algorithms on small instances are reported in 

Table II. 

TABLE II.  COMPUTATIONAL RESULTS OF ALGORITHMS ON SMALL 

INSTANCES IN TERMS OF RATIO OF PARETO OPTIMAL SOLUTIONS FOUND, 
INVERTED GENERAL DISTANCE AND DISTIBUTION SPACING 

Instance  

Set 

Rp IGD DS 

K L M K L M K L M 

5x5 1.000 0.000 0.623 

5x10 1.000 0.000 0.817 

5x20 1.000 0.000 0.835 

Average 1.000 0.000 0.758 

As seen from Table II, all the algorithms reach the optimal 

solutions found by the mathematical model at a 100% level. 

Also, the 0 IGD values mean that exactly the same Pareto 



optimal solution is obtained by all metaheuristics. Furthermore, 

the low spacing value (0.758) indicates that the points in the 

Pareto optimal set are uniformly dispersed Then, due to the 

computational complexity of the multi-objective problem, we 

used only the first 60 instances of Taillard’s instances [37] as 

large instances, namely, 20x5, 20x10, 20x20, 50x5, 50x10 and 

50x20. We used the distribution spacing performance metric for 

large instances, as well, whereas the following performance 

measures are additively considered to evaluate the solution 

quality of the EE-VBIH, EE-IG, and EE-IGALL algorithms. 

Once again, Z refers to the non-dominated solution set of the 

heuristic algorithms (EE-VBIH, EE-IG, or EE-IGALL).  

• Cardinality:  
Number of non-dominated solutions found: 𝑅𝑝 = |𝑍|. 

• Coverage of Two Sets [35] : 
𝐶(𝑍, 𝑇)  =  |{𝑡 ∈ 𝑇; ∃𝑧 ∈ 𝑍: 𝑧 ≽ 𝑡}|/|𝑇| , where 𝐶(𝑍, 𝑇) 
equals 1 if some solutions of Z weakly dominate all solutions 
of T. 

Table III summarizes the results for the heuristic algorithms 

on large instances (20x5, 20x10, 20x20, 50x5, 50x10, and 

50x20) in terms of cardinality, distribution spacing, and 

coverage metrics.  As shown in Table III, the EE-VBIH 

algorithm outperforms on the EE-IG and EE-IGALL algorithms 

in terms of the cardinality of the non-dominated solutions. EE-

VBIH, EE-IG, and EE-IGALL algorithms can find 83.00, 58.10, 

63.10 number of non-dominated solutions on average overall 

instances, respectively. Hence, the EE-VBIH algorithm can 

find 1.42 times more non-dominated solutions than EE-IG and 

1.31 times more non-dominated solutions than EE-IGALL. 

Regarding the distribution spacing metric, the EE-VBIH again 

surpasses both remaining algorithms. The distribution spacing 

values of the EE-VBIH, EE-IG, and EE-IGALL algorithms are 

1.067, 1.223, and 1.621, respectively. These values indicate that 

all algorithms are good at finding the uniformly distributed non-

dominated set of solutions. However, the solutions in EE-VBIH 

are distributed more uniformly than the solutions of the EE-IG 

and EE-IGALL algorithm due to lower DS value. In terms of 

coverage measure, 58.4% of the solutions of EE-IG are weakly 

dominated by some solutions of EE-VBIH; 64.2% of the 

solutions of EE-IGALL are weakly dominated by some 

solutions of EE-VBIH, as seen from Table III. Hence, the set of 

solutions obtained by the EE-VBIH algorithm can dominate 

58.4% and 64.2% of the solutions obtained by EE-IG and EE-

IGALL, respectively. To conclude, the EE-VBIH algorithm 

outperforms on the other two algorithms concerning 

cardinality, dispersion, and coverage metrics. 

V. CONCLUSION 

In this paper, we propose an energy-efficient NWFSP in 

order to investigate a trade-off between the makespan and the 

total energy consumption. The purpose of the energy-efficient 

NWFSP is to obtain Pareto solution sets to minimize the make-

TABLE III.  COMPUTATIONAL RESULTS OF ALGORITHMS ON LARGER INSTANCES IN TERMS OF CARDINALITY, DISTIBUTION SPACING AND COVERAGE 

Instance |K| |L| |M| DSK DSL DSM C(K,L) C(L,K) C(K,M) C(M,K) C(L,M) C(M,L) 

20x5 82.30 102.30 76.80 0.785 0.859 0.846 0.122 0.851 0.272 0.676 0.850 0.211 

20x10 62.40 65.20 63.60 0.873 0.834 0.855 0.401 0.533 0.478 0.512 0.577 0.432 

20x20 54.60 48.80 54.40 0.876 1.048 1.050 0.505 0.458 0.462 0.514 0.492 0.503 

50x5 125.80 60.70 81.20 1.324 1.067 2.067 0.721 0.154 0.827 0.096 0.612 0.313 

50x10 99.20 45.80 67.00 1.554 1.595 2.580 0.840 0.080 0.869 0.099 0.330 0.517 

50x20 73.90 26.70 35.50 0.992 1.932 2.325 0.916 0.062 0.946 0.054 0.272 0.379 

Average 83.00 58.30 63.10 1.067 1.223 1.621 0.584 0.356 0.642 0.325 0.522 0.393 

span and total energy consumption. Unlike the traditional 

NWFSP, we introduce different speed levels for each job on 

machines, and processing times of jobs can be different 

according to assigned speed levels. Therefore, a mixed-integer 

linear programming model formulation is proposed and the 

heuristic formulation of NWFSP is modified by introducing a 

speed scaling strategy in order to approximate non-dominated 

solution sets. Due to the NP-hardness nature of the problem, 

three metaheuristics are proposed (EE-VBIH, EE-IG, and EE-

IGALL). Extensive computational analyses on Taillard’s 

benchmark suite show that proposed algorithms are very 

effective for approximating Pareto solution sets. Among three 

algorithms, EE-VBIH outperforms than the EE-IG and EE-

IGALL in terms of both cardinality and quality. For future work, 

various multi-objective algorithms such as a multi-objective 

genetic algorithm with non-dominating sorting and crowded 

distance can be developed to compare and assess the 

performance of both algorithms. Several objective functions 

can be analyzed within the energy-efficiency scope or this 

scope can be implemented on other scheduling problems such 

as blocking-flowshop or no-idle flowshop scheduling 

problems. 
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