

Metaheuristics for Energy-Efficient No-Wait

Flowshops: A Trade-off Between Makespan and Total

Energy Consumption

Damla Yüksel

Department of Industrial

Engineering

Yasar University

Izmir, Turkey

damla.yuksel@yasar.edu.tr

Mehmet Fatih Taşgetiren

Department of International

Logistics Management

Yasar University

Izmir, Turkey

fatih.tasgetiren@yasar.edu.tr

Levent Kandiller

Department of Industrial

Engineering

Yasar University

Izmir, Turkey

levent.kandiller@yasar.edu.tr

Quan-Ke Pan

School of Mechatronic

Engineering and Automation

Shanghai University

Shanghai, China

panquanke@shu.edu.cn

Abstract— No-wait flowshop scheduling problem (NWFSP) is

a well-known strongly NP-hard problem, where in-process waiting

is not allowed between any two consecutive machines in such a way

that once a job is started, subsequent processing must be carried

out on all machines until completion. In this paper, we propose an

energy-efficient NWFSP in order to investigate the trade-off

between makespan and total energy consumption. The energy-

efficient NWFSP aims to seek to obtain Pareto solution sets to

minimize the makespan and the total energy consumption

conflicting with each other. Unlike the classical NWFSP, there are

different speed levels for each job on machines and the processing

times of jobs can differ according to the assigned speed levels.

Therefore, we modify the formulation of NWFSP by introducing

a speed scaling strategy in order to approximate Pareto solution

sets, i.e., non-dominated solution sets. In this paper, we propose a

mixed-integer linear programming model (MILP), an energy-

efficient variable block insertion heuristic (EE-VBIH), an energy-

efficient iterated greedy algorithm (IG) and an energy-efficient &

IG-ALL) to solve the energy-efficient NWFSP. Extensive

computational analyses on Taillard’s benchmark suite show that

the proposed algorithms are very effective for approximating

Pareto solution sets.

Keywords— no-wait flowshop scheduling problem, energy-

efficient scheduling, metaheuristics, multi-objective optimization

I. INTRODUCTION

Unlike the traditional permutation flowshop scheduling

problem (PFSP), its variant, so-called no-wait flowshop

scheduling problem (NWFSP), is very common in many

industries, such as the chemicals, plastics, metals, electronics,

pharmaceuticals, and food-processing industries [1], [2]. Due

to the technical reasons, in-process waiting is not allowed

between any two consecutive machines in these industries in

such a way that once a job is started on the first machine,

processing of jobs without interruption must be continuously

carried out on all machines until completion. The problem is

strongly NP-hard for three or more machines [3]. For the

NWFSP with the makespan criterion, an excellent paper is

presented in [4] where they developed two mat-heuristics to

solve almost all benchmark suites in the literature to optimality.

In addition, a very detailed literature review on NWFSP with

the makespan criterion can be found in [4]. In this study, we

consider makespan together with a total energy consumption

criterion for the energy-efficient NWFSP. In this paper, we

develop an energy-efficient NWFSP in order to investigate the

trade-off between the makespan and the total energy

consumption. The proposed energy-efficient NWFSP seeks to

obtain Pareto solutions sets by minimizing the makespan and

the total energy consumption, simultaneously, which are

conflicting with each other. Unlike the classical NWFSP, we

employ speed scaling strategy, where there are different speed

levels for each job on machines and processing time of a job

can differ according to the assigned speed levels. Therefore, we

modify the formulation of NWFSP by employing a job-based

speed scaling strategy, in which machines can be operated at

different speed levels, which correspond to different energy

consumption levels. The trade-off between the processing time

and the energy consumption emerges with a result of different

speed levels, as higher speed levels consume higher energy

while decreasing the processing times. On the contrary, lower

speed levels consumes less energy while increasing the

processing times.

High-energy consumption is a vital problem for
manufacturing companies because of the increase in fuel prices
and negative environmental impacts such as global warming
and CO2 emissions. For these reasons, industries seek energy-
efficient scheduling [5]. A comprehensive review of energy-
efficient scheduling was presented [6]. As a pioneering study,
the turn-off strategy was suggested in [7] and they concluded
that a substantial amount of energy can be saved when the
machine is turned off during idle times. Later on, they applied
the turn off strategy to the single machine scheduling problem
in order to minimize the total energy consumption and the total
tardiness in [8]. Turn off strategy was also applied for the
flexible flowshop problem [9]. Even though the turn off
strategy saves energy, it is not practical in some production
environments as it might ruin the service life of some machines.
Hence, a speed scaling strategy was developed for the energy-
efficient permutation flowshop scheduling problem (PFSP) by
considering the operation speed as an independent variable that
can vary to improve the energy efficiency in [5]. In addition, a
mixed-integer programming formulation was proposed for the
PFSP with makespan minimization with a constraint on peak

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

mailto:panquanke@shu.edu.cn

power consumption [10]. Speed scaling strategy was also
proposed for the PFSP with the objectives of the total carbon
emissions and makespan in [11]. They developed a modified
multi-objective iterated greedy (IG) algorithm. Speed scaling
strategy was also implemented on the two-machine sequence-
dependent PFSP in [12]. Later on, they extended their study to
a genetic algorithm (GA) for the same problem in [13]. An
energy-efficient evolutionary algorithm was proposed for the
single machine scheduling problem by [14], while a
backtracking algorithm was proposed for the energy-efficient
PFSP by [15]. Furthermore, an energy-efficient job shop
scheduling problem was presented in [16]. A multi-level
approach was proposed in [17] while energy-efficient dynamic
scheduling was presented in [18]. An energy-efficient genetic
algorithm for the job shop scheduling problem was also
developed in [19]. An energy-efficient green PFSP was
presented in [20] whereas an energy-efficient single machine
total weighted tardiness problem with sequence-dependent
setup times was proposed in [21] More recently, a memetic
differential evolution algorithm for energy-efficient parallel
machine scheduling is proposed in [22]. Lastly, very recent
studies on speed scaling strategy have been performed for
NWFSPs to minimize the total tardiness and the total energy
consumption in the study of [23] and for hybrid flow shops to
minimize the makespan and the total energy consumption in the
study of [24]. However, to the best of our knowledge, the
aforementioned energy-efficient consideration has not been
employed for NWFSPs in the literature to minimize the
makespan and the total energy consumption simultaneously.
Hence, in this study, we initially propose a novel mixed-integer
linear programming model (MILP) to fill the gap in the
literature. Resulting from the NP-hardness nature of the
problem, an energy-efficient variable block insertion heuristic
algorithm (EE-VBIH), an iterated greedy algorithm (EE-IG)
and a variant of EE-IG, that is, an iterated greedy algorithm with
a local search (EE-IGALL) for the energy-efficient NWFSP
problem is proposed. Extensive computational analysis on
Taillard’s benchmark suite show that EE-VBIH algorithm
provide better approximations of the Pareto solution sets than
the other algorithms from the point of cardinality, quality and
diversity of the generated non-dominated solution sets.

The rest of the paper is organized as follows. The energy-
efficient mixed-integer linear programming model and meta-
heuristic formulation of NWFSP are given in Section II. In
Section III, the details of all meta-heuristic algorithms are
presented. In Section IV, the computational results are reported
for both mathematical models and algorithms. Finally, in
Section V, concluding remarks are presented with possible
future research extensions.

II. PROBLEM FORMULATION

In this paper, we study an energy-efficient NWFSP with two

conflicting objectives of the makespan and the total energy

consumption. The goal is to obtain Pareto solutions sets that

optimize these two performance measures. Unlike the standard

NWFSP, there is a finite and discrete set of 𝑙 processing speed

levels 𝐿 = {1, . . , 𝑙} for each machine. Therefore, the

processing time of a job may vary based on the assigned speed

level. Due to the job-based speed-scaling structure, we assume

that each job is processed with the same speed level through its

route in the NWFSP. A similar total energy consumption (TEC)

calculation from the two-machine PFSP model by [12] is

employed. To solve the energy-efficient NWFSP, a mixed-

integer linear programming approach and three metaheuristic

algorithms are employed. Hence, the problem notations needed

for all proposed approaches are given below in Table I.

TABLE I. PARAMETERS AND DECISION VARIABLES

Parameters

𝑃𝑖𝑟 Processing time of job 𝑖 on machine 𝑟

𝑠𝑙 Speed factor of processing speed level 𝑙
𝜆𝑙 Conversion factor for processing speed level 𝑙
𝜑𝑟 Conversion factor for idle time on machine 𝑟

𝜏𝑟 Power of machine (kW) 𝑟

𝑄 A very large number

Decision Variables
𝑦𝑖𝑟𝑙 1 if job 𝑖 is processed at speed 𝑙 on machine 𝑟, 0

otherwise.
𝐶𝑖𝑟 Completion time of job 𝑖 on machines 𝑟
𝐷𝑖𝑘 1 if job 𝑖 is scheduled any time before job 𝑘, 0 otherwise

(𝑖 < 𝑘)
𝜃𝑟 Idle time on machine r

𝐶𝑚𝑎𝑥 Maximum completion time (makespan)
𝑇𝐸𝐶 Total energy consumption (kWh)

The mixed-integer linear programming model for the
energy-efficient NWFSP is provided below:

Minimize 𝐶𝑚𝑎𝑥 (1), Minimize 𝑇𝐸𝐶 (2)

Subject to;

𝐶𝑖1 ≥ ∑
𝑃𝑖1∗𝑦𝑖1𝑙

𝑠𝑙
𝑙∈𝐿 ∀𝑖 ∈ 𝑁 (3)

𝐶𝑖𝑟 − 𝐶𝑖,𝑟−1 ≥ ∑
𝑃𝑖𝑟∗𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (4)

𝐶𝑖𝑟 − 𝐶𝑘𝑟 + 𝑄 ∗ 𝐷𝑖𝑘 ≥ ∑
𝑃𝑖𝑟 ∗ 𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿

 ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀

 (5)

𝐶𝑖𝑟 − 𝐶𝑘𝑟 + 𝑄 ∗ 𝐷𝑖𝑘 ≤ 𝑄 − ∑
𝑃𝑘𝑟 ∗ 𝑦𝑘𝑟𝑙

𝑠𝑙
𝑙∈𝐿

∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀

 (6)

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖𝑀 ∀𝑖 ∈ 𝑁 (7)

𝐶𝑖𝑟 − 𝐶𝑖,𝑟−1 ≤ ∑
𝑃𝑖𝑟∗𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (8)

∑ 𝑦𝑖𝑟𝑙 = 1𝑙∈𝐿 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (9)

𝑦𝑖𝑟𝑙 = 𝑦𝑖,𝑟+1,𝑙 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 (10)

𝜃𝑟 = 𝐶𝑚𝑎𝑥 − ∑ ∑
𝑃𝑖𝑟∗𝑦𝑖𝑟𝑙

𝑠𝑙
𝑙∈𝐿𝑖∈𝑁 ∀𝑟 ∈ 𝑀 (11)

𝑇𝐸𝐶 = ∑ ∑ ∑
𝑃𝑖𝑟∗𝜏𝑟∗𝜆𝑙

60𝑠𝑙
𝑙∈𝐿𝑟∈𝑀𝑖∈𝑁 𝑦𝑖𝑟𝑙 +

∑
𝜑𝑟∗𝜏𝑟∗𝜃𝑟

60𝑟∈𝑀

 (12)

𝑦𝑖𝑟𝑙 ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀, ∀𝑙 ∈ 𝐿 (13)

𝐶𝑖𝑟 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (14)

𝐷𝑖𝑘 ∈ {0,1} ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖 (15)

The makespan and the total energy consumption are

minimized by the objective functions (1) and (2), respectively.

The completion time of each job must be at least its processing

time on machine 1 is provided by constraint (3). Constraint (4)

provides that the difference between the completion time of a

job on any consecutive machines is at least greater than or equal

to the processing time of the job. The precedence relation of

jobs is provided by constraints (5) and (6). The makespan that

is the maximum of completion times is computed by constraint

(7). The no-wait restriction is preserved by constraint (8)

together with the constraint (4). In other words, the completion

time of a job on any machine plus its processing time on the

consecutive machine must be equal to the completion time of

that job on the consecutive machine. One speed level selection

for each job is provided by constraint (9) and then each job will

possess the same speed level on each machine is procured by

constraint (10). The idle times on all machines are computed by

constraint (11). Lastly, the total energy consumption is

computed in kilowatt-hour by constraint (12) as provided by

[12]. The binary variables and the sign restrictions are given in

constraints (13), (14), and (15). It is significant to mention that

the provided model is an expansion of Manne’s PFSP model

[25] with the addition of the no-wait restriction and the

consideration of the total energy consumption in the objective

function as the second objective. In other words, the energy

efficiency idea incorporates the idle time and the total energy

consumption computations as well as the speed level

considerations as constraints.

From the point of heuristic approaches, single objective

NWFSP with makespan criterion can be defined as follows: A

set 𝑁 = {𝐽1, 𝐽2. . , 𝐽𝑛} of 𝑛 jobs is to be processed on 𝑚

machines, such that the same permutation will be used on all

machines. All jobs and machines are available for processing at

time zero. Each job 𝑖 (𝑖 = 1, 2, . . , 𝑛) has a nonnegative

processing time 𝑃𝑖𝑟 on machine 𝑟 (𝑟 = 1, 2, . . , 𝑚) . Each job

can be processed at most by one machine, and every machine

can process no more than one job at a time. No job queue is

allowed at any machine, except for the first one. Once the

processing of a job is started on the first machine, it must be

processed continuously on all machines until completion. To

satisfy the no-wait constraint, the processing time of the job on

the first machine may be delayed to make sure that it does not

need to wait for processing on subsequent machines. The aim

is to find a feasible schedule 𝜋 = {𝜋1, 𝜋2, . . , 𝜋𝑛} for the

𝑛 jobs such that the makespan is minimized, where 𝜋𝑘(𝑘 =
1,2, . . , 𝑛) denotes the job assigned to position 𝑘. Due to the no-

wait constraint, the difference between the completion times of

two consecutive jobs depends entirely on those two consecutive

jobs [26], [27], and independent of their positions in the

sequence and the sequence of other jobs. For this reason, the

delay matrix 𝐷(𝑛+1)𝑥𝑛 can be pre-calculated and provides all

𝑑([𝜋𝑘−1, 𝜋𝑘]) values for any schedule 𝜋 as follows:

𝑑([𝜋𝑘−1, 𝜋𝑘]) = 𝑃𝜋𝑘−1,1 + max {0, 𝑚𝑎𝑥
2≤𝑘≤𝑚

{∑ 𝑃𝜋𝑘−1,ℎ
𝑘
ℎ=2 −

∑ 𝑃𝜋𝑘,ℎ
𝑘−1
ℎ=1 }} ∀𝑘 = 2, . . , N (16)

Thus, the makespan (𝐶𝑚𝑎𝑥) calculation can be easily done

very rapidly as follows:

𝐶𝑚𝑎𝑥(𝜋) = ∑ 𝑑𝜋𝑘−1,𝜋𝑘
𝑁
𝑘=2 + ∑ 𝑃𝜋𝑁,𝑟

𝑀
𝑟=1 (17)

To convert the single objective NWFSP with makespan into

an energy-efficient bi-objective NWFSP, speed levels should

be considered in equations (16) and (17) as follows:

𝑑([𝜋𝑘−1, 𝜋𝑘][𝑙𝜋𝑘−1
, 𝑙𝜋𝑘

])

=
𝑃𝜋𝑘−1,1

𝑠𝑙𝜋𝑘−1

+ max {0, max
2≤𝑘≤𝑚

{∑
𝑃𝜋𝑘−1,ℎ

𝑠𝑙𝜋𝑘−1

𝑘

ℎ=2

− ∑
𝑃𝜋𝑘,ℎ

𝑠𝑙𝜋𝑘

𝑘−1

ℎ=1

} }

∀𝑘 = 2, … , 𝑁, ∀𝑙 ∈ {1,2,3} (18)

𝐶𝑚𝑎𝑥(𝜋) = ∑ 𝑑([𝜋𝑘−1, 𝜋𝑘][𝑙𝑘−1, 𝑙𝑘])𝑁
𝑘=2 + ∑

𝑃𝜋𝑁,𝑟

𝑠𝑙𝜋𝑘

𝑀
𝑟=1 (19)

The idle time on each machine 𝑖 can be calculated as follow:

𝜃𝑟 = 𝐶𝑚𝑎𝑥(𝜋) − ∑
𝑃𝜋𝑘,𝑟

𝑠𝑙𝜋𝑘

𝑁
𝑘=1 ∀𝑟 = 1, … , 𝑀 (20)

Finally, the total energy consumption can be calculated as

follows:

𝑇𝐸𝐶 = ∑ ∑
𝑃𝜋𝑘,𝑟∗𝜏𝑟∗𝜆𝑙𝜋𝑘

60𝑠𝑙𝜋𝑘

𝑀
𝑟=1

𝑁
𝑘=1 + ∑

𝜗𝑟∗𝜏𝑟∗𝜃𝑟

60

𝑀
𝑟=1 (21)

Now, the problem becomes an energy-efficient NWFSP

with minimization of both the makespan and the total energy

consumption, simultaneously in order to approximate a Pareto

front solution set (i.e., non-dominated solution set). In multi-

objective minimization problems, three main concepts are used

to define relations between different solutions to the problem.

• Dominance relation: A feasible solution 𝑟 dominates

another feasible solution 𝑡 if the two following conditions are

satisfied (denoted as 𝑟 ≻ 𝑡):

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑟) ≤ 𝑓𝑝(𝑡)

o ∃𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑟) < 𝑓𝑝(𝑡)

A feasible solution 𝑟 weakly dominates another feasible

solution 𝑡 (denoted as 𝑟 ≽ 𝑡) if:

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑟) ≤ 𝑓𝑝(𝑡)

• Non-dominated set (𝑿∗): Amongst a set of solutions (𝑋), the

non-dominated set of solutions (𝑋∗) are the solutions that are

not dominated by any element of set 𝑋.

• Pareto-optimal set: The non-dominated (Pareto-optimal)

solution set of the entire feasible search space is called as the

Pareto-optimal set.

III. META-HEURISTIC APPROACHES

Due to the computational difficulty of the mathematical
model, energy-efficient metaheuristics, namely, an energy-
efficient variable block insertion heuristic algorithm (EE-
VBIH), an energy-efficient iterated greedy algorithm (EE-IG)
and an energy-efficient iterated greedy algorithm with
optimization of partial solutions (EE-IGALL) are presented for
the NWFSP where the makespan and the total energy
consumption criteria are the objectives. In the literature, EE-
VBIH, EE-IG, and EE-IGALL are employed on the energy-
efficient single machine scheduling problem by the studies
provided by [21] and [26] and on the permutation flowshop
scheduling problem by the study of [27]. To the best of our
knowledge, there is no any study regarding the metaheuristic
applications on NWFSPs with the makespan and the total energy
consumption consideration. Hence, the concept of energy-

efficient meta-heuristics, which are provided in the literature for
different scheduling problems, are redesigned for the NWFSPs
and employed in this study. In addition, we did not employ the
NSGA-II algorithm for this problem since its underperformance
compared with other algorithms has explicitly shown in [23].

A. Solution Representation and Initial Population

 In this study, we propose a job-based speed-scaling strategy

for the energy-efficient NWFSP. Therefore, a multi-

chromosome structure is developed, which includes a

permutation of 𝑛 jobs and a speed vector of three levels

corresponding to fast, normal, and slow speed levels,

respectively. The solution representation for an individual 𝑥𝑖 is

given in Fig. 1.

𝑥𝑖(𝜋, 𝑙)

𝜋 3 2 1 4 5 … 𝑛

𝑣 1 3 2 1 2 … 3

Fig. 1. Individual Solution Representation

In Fig. 1, the individual 𝑥𝑖(𝜋𝑖,𝑘, 𝑙𝑖,𝑘) represents a solution

where job 𝜋𝑖,1 = 3 has a fast speed level (𝑙𝑖,1 = 1); job 𝜋𝑖,2 =

2 has a slow speed level (𝑙𝑖,2 = 3) and so on. Note that the same

speed vector is used in all machines. In all proposed algorithms,

the initial population with size 𝑁𝑃 is constructed as follows.

Firstly, an initial solution 𝜋0 is constructed by the 𝐹𝑅𝐵5

heuristic [30] in Fig. 2, which is an extension of well-known

NEH heuristic [31]. In the first phase, the sum of the processing

times on all machines is calculated for each job. Then, the jobs

are sorted in decreasing order to obtain 𝛿. In the second phase,

the first job in 𝛿 is selected to establish a partial solution. The

remaining jobs in 𝛿 are inserted in the partial solution one by

one. After each iteration, a local search is applied to the partial

solution. Insertion local search is applied as long as the partial

solution is improved. After having inserted all jobs, a complete

solution 𝜋0 is obtained.

𝛿 = 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟(∑ 𝑃𝑖𝑟
𝑚
𝑟=1)

𝜋1 = 𝛿1

𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛 𝑑𝑜

 𝜋0 = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋𝑖 , 𝛿𝑖)

 𝜋0 = 𝐴𝑝𝑝𝑙𝑦𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜋0 , 𝑓(𝜋i)) ,

𝑒𝑛𝑑 𝑓𝑜𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋0 𝑤𝑖𝑡ℎ 𝑛 𝑗𝑜𝑏𝑠

Fig. 2. FRB5 Constructive Heuristic

To obtain a diversified initial population, we fix the
population size to 𝑁𝑃 = 1 with the initial solution 𝜋0 and
devote the 25% of the total CPU time to EE-VBIH, EE-IG, and
EE-IGALL algorithms by fixing all speed levels to 𝑙𝑖 = 2, where
𝑖 ∈ {1, . . , 𝑛}. We run algorithms with normal speed level for
each job and obtain an individual 𝜋𝑏𝑒𝑠𝑡 . Then, we fix the
population size to 𝑁𝑃 = 100. The first three individuals are
generated by assigning fast, normal and slow speed levels to
each job in the π𝑏𝑒𝑠𝑡 . Then, the rest of the population is
constructed by assigning random speed levels to each job in
π𝑏𝑒𝑠𝑡 . Note that with the same permutation, a different solution
can be obtained by changing the speed level of any job in the
permutation. The archive set 𝜙 is initially empty and will be
updated with non-dominated solutions from the initial
population.

B. Energy-Efficient Variable Block Insertion Heuristic

Algorithm (EE-VBIH)

Variable block insertion heuristic algorithms are recently

presented in the literature by [21], [32]–[34]. In this paper, we

propose an energy-efficient VBIH (EE-VBIH) algorithm as

follows. EE-VBIH algorithm establishes the initial population

as mentioned in the previous section. As seen in Fig. 3, EE-

VBIH randomly removes a block 𝑏𝑆 of jobs with their speed

levels from individual 𝑥𝑖 and they are stored in 𝑥𝑖,𝐵 . The

remaining jobs and the speed levels are also stored in 𝑥𝑖,𝐷 .

Then, an insertion local search as presented in Fig. 4 is applied

to the partial solution 𝑥𝑖,𝐷 . Before block insertion moves,

random speed levels are assigned to jobs in 𝑥𝑖,𝐵 by 𝑥𝑖,𝐵(𝑙𝑖,𝐵) =
𝑟𝑎𝑛𝑑()%3 . Then, it carries out 𝑛 − 𝑏𝑠 + 1 block insertion

moves. In other words, the block 𝑥𝑖,𝐵 is inserted in the partial

solution 𝑥𝑖,𝐷 , sequentially. Again, it should be noted that

dominance rule (≻) in multi-objective optimization will be used

when two solutions are compared. A complete solution is

obtained by selecting the non-dominated solution among 𝑛 −
𝑏𝑆 + 1 solutions after the block is inserted into last position of

partial solution 𝑥𝑖,𝐷 . Finally, and the identical insertion local

search is again applied to the complete solution obtained after

block insertion moves. If the new solution 𝑥∗ dominates the

individual 𝑥𝑖 , it is replaced by 𝑥∗ and the archive set 𝜙 is

updated. Then, the block size is incremented by one. Above

process is repeated until it reaches maximum block size 𝑏𝑆𝑚𝑎𝑥.

𝑆𝑒𝑡 𝑁𝑃 = 100; 𝑏𝑆𝑚𝑎𝑥 = 8

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑃

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑖𝑗

𝑊ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑏𝑆 = 2

 𝑑𝑜
 𝑥𝑖,𝐵(𝜋𝑖,𝐵, 𝑙𝑖,𝐵) = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑎 𝑏𝑙𝑜𝑐𝑘 𝑥𝑖,𝐵 𝑓𝑟𝑜𝑚 𝑥𝑖

 𝑥𝑖,𝐵(𝑙𝑖,𝐵) = 𝑟𝑎𝑛𝑑()%3

 𝑥𝑖,𝐷(𝜋𝑖,𝐷 , 𝑙𝑖,𝐷) = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥𝑖,𝐷)

 𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡 𝑏𝑙𝑜𝑐𝑘 𝑥𝑖,𝐵 𝑖𝑛 𝑥𝑖,𝐷

 𝑥∗(𝜋∗, 𝑙∗) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥∗(𝜋∗, 𝑙∗))

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝑥𝑖 = 𝑥∗,

 U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑒𝑡 𝜙 𝑤𝑖𝑡ℎ 𝑥∗

 𝑒𝑛𝑑𝑖𝑓

 𝑏𝑆 = 𝑏𝑆 + 1

 𝑤ℎ𝑖𝑙𝑒 (𝑏𝑆 ≤ 𝑏𝑆𝑚𝑎𝑥),

 𝑒𝑛𝑑𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥∗(𝜋∗, 𝑙∗) = Crossover(𝑙𝑖 , 𝑙𝑘)

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝑥𝑖 = 𝑥∗,

 U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑒𝑡 𝜙 𝑤𝑖𝑡ℎ 𝑥∗

 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑛𝑑𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥𝑖(𝜋𝑖 , 𝑙𝑖) = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑙𝑖)

 𝑒𝑛𝑑𝑓𝑜𝑟

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒,

𝑟𝑒𝑡𝑢𝑟𝑛 𝜙

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Fig. 3. EE-VBIH Algorithm

Regarding local search, we employ a very effective

insertion local search in all algorithms proposed, which is given

in Fig. 4. For each position 𝑗, we remove 𝑗𝑡ℎ job and its speed

level as (𝜋∗, 𝑙∗) from solution 𝑥𝑖 and assign a random speed

level to 𝑗𝑡ℎ job. Then, we insert (𝜋∗, 𝑙∗) into 𝑛 positions. A

non-dominated solution 𝑥∗(𝜋∗, 𝑙∗) from 𝑛 insertion is obtained.

If it dominates individual 𝑥𝑖, it is replaced by 𝑥∗.

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

 (𝜋∗, 𝑙∗) = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑗𝑜𝑏 𝑎𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥𝑖 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗

 𝑙∗ = 𝑟𝑎𝑛𝑑()%3

 𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥𝑖 , (𝜋∗, 𝑙∗))

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜

 𝑥𝑖 = 𝑥∗}

 𝑒𝑛𝑑𝑖𝑓

𝑒𝑛𝑑𝑓𝑜𝑟

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑖

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Fig. 4. Insertion Local Search

The EE-VBIH algorithm is extremely effective for

makespan minimization. However, more energy-efficient

schedules can be generated by employing a uniform crossover

operator by using only the speed levels. The same permutation

is kept for each individual, and a uniform crossover is

performed only on the speed levels as follows: For each

individual 𝑥𝑖 in the population, another individual is selected

from population randomly, say 𝑥𝑘, A new solution is generated

either by taking the speed level from either 𝑥𝑖 or 𝑥𝑘, depending

on the crossover probability. We generate a new solution by

making a uniform crossover as follows:

𝑥∗(𝜋∗, 𝑙∗) = {
𝑙𝑖,𝑗 𝑖𝑓 𝑟𝑖,𝑗 ≤ 𝐶𝑅[𝑖]

𝑙𝑘,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑗 ∈ 1, . , 𝑛 (22)

where 𝑟𝑖,𝑗 is a uniform random number in 𝑈(0,1). 𝐶𝑅[𝑖] is the

crossover probability, drawn from the unit normal distribution

𝑁(0.5,0.1) , with mean 0.5 and standard deviation 0.1. If

𝑥∗(𝜋∗, 𝑙∗) dominates 𝑥𝑖 (𝑥∗ ≻ 𝑥𝑖), 𝑥𝑖 is replaced by 𝑥∗ and the

archive set 𝜙 is updated. This is repeated for all individuals in

the population. After crossover local search, we also mutate the

speed levels of jobs in individuals in the population with a small

mutation probability as follows:

𝑥𝑖(𝜋𝑖𝑗 , 𝑙𝑖𝑗) = {
𝑙𝑖𝑗 = rand()%3 𝑖𝑓 𝑟𝑖𝑗 ≤ 𝑀𝑅[𝑖]

𝑙𝑖𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑗 ∈ 1, . . , 𝑛 (23)

where 𝑟𝑖,𝑗 is a uniform random number in 𝑈(0,1). 𝑀𝑅[𝑖] is the

mutation probability, drawn from unit normal distribution

𝑁(0.05,0.01) with mean 0.05 and a standard deviation of 0.01.

C. EE-IG and EE_IGALL Algorithms

Iterated greedy (IG) algorithms have mainly four

components, namely, initial solution, destruction and

construction procedure, local search, and acceptance criterion

[35]. Recently, a new IGALL algorithm is presented [36] with

excellent results for the PFSP with makespan minimization.

The difference between IGALL and traditional IG is that IGALL

applies an additional local search to partial solutions after

destruction, which substantially enhances solution quality.

In the EE_IG variants, 𝑑𝑆 jobs with their speed levels are

removed from an individual 𝑥𝑖 and stored in 𝑥𝑖,𝑅 . The

remaining jobs are also stored in 𝑥𝑖,𝐷. In the EE_IG, Each job

in 𝑥𝑖,𝑅 is inserted into 𝑥𝑖,𝐷 for the construction of the final

solution. However, in the EE_IGALL, an insertion local search

in Fig. 4 is applied to the partial solution 𝑥𝑖,𝐷 . Before

construction, random speed levels are assigned to jobs in 𝑥𝑖,𝑅

by 𝑥𝑖,𝑅(𝑙𝑖,𝑅) = 𝑟𝑎𝑛𝑑()%3. Regarding construction, each job

and speed level in 𝑥𝑖,𝑅 is inserted into 𝑥𝑖,𝐷. As the problem is

multi-objective one, the dominance rule (≻) is used when two

solutions are compared. Note that, partial solutions are assessed

based on the partial dominance rule. Finally, a complete

solution is obtained by selecting the non-dominated solution

among 𝑛 solutions after the last removed job and speed level is

inserted for 𝑛 positions. Finally, the insertion of the local search

in Fig. 4 is again applied to the complete solution obtained after

construction. If the new solution 𝑥∗ dominates the individual

𝑥𝑖 , it is replaced by 𝑥∗ and the archive set 𝜙 is updated. In

addition, uniform crossover and mutation applied to the

population as in the EE-VBIH algorithm. The EE_IG and

EE_IGALL algorithms are given in Fig. 5 and 6. Again, note

that the local search application to partial solutions which

differentiates IGALL from IG is illustrated in bold in the

pseudocode as presented in Fig. 6.

𝑆𝑒𝑡 𝑑𝑆 = 4; 𝑁𝑃 = 100

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑃

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑖𝑗

𝑊ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥𝑖,𝑅(𝜋𝑖,𝑅 , 𝑙𝑖,𝑅) = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖)

 𝑥𝑖,𝑅(𝑙𝑖,𝑅) = 𝑟𝑎𝑛𝑑()%3

 𝑥∗(𝜋∗, 𝑙∗) = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖,𝑅)

 𝑥∗(𝜋∗, 𝑙∗) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥∗(𝜋∗, 𝑙∗))

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝑥𝑖 = 𝑥∗,
 U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗
 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑛𝑑𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥∗(𝜋∗, 𝑙∗) = Crossover(𝑙𝑖 , 𝑙𝑘)

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝑥𝑖 = 𝑥∗,
 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗

 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑛𝑑𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥𝑖(𝜋𝑖 , 𝑙𝑖) = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑣𝑖)

 𝑒𝑛𝑑𝑓𝑜𝑟

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 𝜙

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Fig. 5. EE-IG Algorithm

𝑆𝑒𝑡 𝑑𝑆 = 4; 𝑁𝑃 = 100

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑁𝑃

𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑙𝑎𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑖𝑗

𝑊ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥𝑖,𝑅(𝜋𝑖,𝑅 , 𝑙𝑖,𝑅) = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖)

 𝑥𝑖,𝑅(𝑙𝑖,𝑅) = 𝑟𝑎𝑛𝑑()%3

 𝒙𝒊,𝑫(𝝅𝒊,𝑫, 𝒍𝒊,𝑫) = 𝑷𝒂𝒓𝒕𝒊𝒂𝒍𝑳𝒐𝒄𝒂𝒍𝑺𝒆𝒂𝒓𝒄𝒉(𝒙𝒊,𝑫)

 𝑥∗(𝜋∗, 𝑙∗) = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑥𝑖,𝑅)

 𝑥∗(𝜋∗, 𝑙∗) = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥∗(𝜋∗, 𝑙∗))

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝑥𝑖 = 𝑥∗,
 U𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗
 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑛𝑑𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥∗(𝜋∗, 𝑙∗) = Crossover(𝑙𝑖 , 𝑙𝑘)

 𝑖𝑓 (𝑥∗ ≻ 𝑥𝑖) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝑥𝑖 = 𝑥∗,
 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝜙 𝑤𝑖𝑡ℎ 𝑥∗

 𝑒𝑛𝑑𝑖𝑓

 𝑒𝑛𝑑𝑓𝑜𝑟

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜

 𝑥𝑖(𝜋𝑖 , 𝑙𝑖) = 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑣𝑖)

 𝑒𝑛𝑑𝑓𝑜𝑟

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 𝜙

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Fig. 6. EE-IGALL Algorithm

D. The Archive Set

In the EE-VBIH, EE-IG, and EE-IGALL algorithms, we use

an archive set 𝜙 to store non-dominated solutions. When a new

non-dominated solution is obtained, it is added to the archive

set 𝜙 and any member dominated by the new non-dominated

solution is removed.

IV. COMPUTATIONAL RESULTS

To evaluate the performance of the proposed algorithms, the

benchmark suite of Taillard [37] is employed, where it

originally includes 12 groups of problems (10 instances in each

group) with changing sizes from 20 jobs and 5 machines, to 500

jobs and 20 machines. Since solving these instances are

computationally hard, 30 small instances are generated where

it contains 5x5, 5x10, and 5x20 set of instances. These instances

are generated by cropping the first 5 jobs of 20x5, 20x10, and

20x20 set of instances. The energy-related parameters used in

TEC calculation are taken as 𝐿 = {1 (fast), 2 (normal), 3

(slow)}, 𝑣𝑙 ={1.2,1,0.8}, 𝜆𝑙 ={1.5,1,0.6}, 𝜑𝑗 =0.05, and τ𝑗 =60

kW, which are taken from [12]. The augmented ε-constraint

method [38] is employed on the mixed-integer linear

programming model where the epsilon value is reserved as

10−2. Then, the small instances are run in IBM ILOG CPLEX

Optimization Studio (version 12.8) on a Core i7, 2.60 GHz, 8

GB RAM computer. The all energy-efficient algorithms were

coded in C++ on Microsoft Visual Studio 2013, and all

instances were solved on a Core i5, 3.20 GHz, 8 GB RAM

computer. 30 replications were made for each instance. In each

replication, the algorithms were run for 25nm milliseconds for

small instances and 50𝑛𝑚 milliseconds for large instances. To

show the conflict between the total energy consumption and the

makespan, an example of Pareto optimal set is represented by

addressing the 5x5_01 instance in Fig. 7.

Fig. 7. The Pareto Optimal Set of 5x5_01 Instance

We have used the following performance metrics to

evaluate the solution quality of the EE-VBIH, EE-IG, and EE-

IGALL algorithms comparing with the optimal solutions

obtained by the augmented ε-constraint method.
• Ratio of the Pareto-optimal solutions found:

RpZ
= |Z ∩ P|/|P|,

• Inverted generational distance [39]:

IGDZ = ∑ d(v, Z)/|P|,v∈P where the minimum Euclidean
distance between two solutions is denoted as d(v, Z)

• Distribution Spacing [40]:

DSZ = [
1

|Z|
∑ (di − d̅)

2
i∈Z]

1
2⁄

d̅⁄ , where �̅� = ∑ 𝑑𝑖𝑖∈𝑍 |𝑍|⁄ and

𝑑𝑖 indicates the minimum Euclidean distance between solution
𝑖 and its closest neighbor in 𝑍. The solutions in 𝑍 are said to be
uniformly dispersed whenever the low spacing values are being
encountered.

It is a fact that Z relates to the non-dominated solution set of

the heuristic algorithms and therewithal K, L, and M are

redefined for the non-dominated solution set of the EE-VBIH,

EE-IG and EE-IGALL algorithms, respectively, to differentiate

the heuristic algorithms. The performance metrics of

comparison for all algorithms on small instances are reported in

Table II.

TABLE II. COMPUTATIONAL RESULTS OF ALGORITHMS ON SMALL

INSTANCES IN TERMS OF RATIO OF PARETO OPTIMAL SOLUTIONS FOUND,
INVERTED GENERAL DISTANCE AND DISTIBUTION SPACING

Instance

Set

Rp IGD DS

K L M K L M K L M

5x5 1.000 0.000 0.623

5x10 1.000 0.000 0.817

5x20 1.000 0.000 0.835

Average 1.000 0.000 0.758

As seen from Table II, all the algorithms reach the optimal

solutions found by the mathematical model at a 100% level.

Also, the 0 IGD values mean that exactly the same Pareto

optimal solution is obtained by all metaheuristics. Furthermore,

the low spacing value (0.758) indicates that the points in the

Pareto optimal set are uniformly dispersed Then, due to the

computational complexity of the multi-objective problem, we

used only the first 60 instances of Taillard’s instances [37] as

large instances, namely, 20x5, 20x10, 20x20, 50x5, 50x10 and

50x20. We used the distribution spacing performance metric for

large instances, as well, whereas the following performance

measures are additively considered to evaluate the solution

quality of the EE-VBIH, EE-IG, and EE-IGALL algorithms.

Once again, Z refers to the non-dominated solution set of the

heuristic algorithms (EE-VBIH, EE-IG, or EE-IGALL).

• Cardinality:
Number of non-dominated solutions found: 𝑅𝑝 = |𝑍|.

• Coverage of Two Sets [35] :
𝐶(𝑍, 𝑇) = |{𝑡 ∈ 𝑇; ∃𝑧 ∈ 𝑍: 𝑧 ≽ 𝑡}|/|𝑇| , where 𝐶(𝑍, 𝑇)
equals 1 if some solutions of Z weakly dominate all solutions
of T.

Table III summarizes the results for the heuristic algorithms

on large instances (20x5, 20x10, 20x20, 50x5, 50x10, and

50x20) in terms of cardinality, distribution spacing, and

coverage metrics. As shown in Table III, the EE-VBIH

algorithm outperforms on the EE-IG and EE-IGALL algorithms

in terms of the cardinality of the non-dominated solutions. EE-

VBIH, EE-IG, and EE-IGALL algorithms can find 83.00, 58.10,

63.10 number of non-dominated solutions on average overall

instances, respectively. Hence, the EE-VBIH algorithm can

find 1.42 times more non-dominated solutions than EE-IG and

1.31 times more non-dominated solutions than EE-IGALL.

Regarding the distribution spacing metric, the EE-VBIH again

surpasses both remaining algorithms. The distribution spacing

values of the EE-VBIH, EE-IG, and EE-IGALL algorithms are

1.067, 1.223, and 1.621, respectively. These values indicate that

all algorithms are good at finding the uniformly distributed non-

dominated set of solutions. However, the solutions in EE-VBIH

are distributed more uniformly than the solutions of the EE-IG

and EE-IGALL algorithm due to lower DS value. In terms of

coverage measure, 58.4% of the solutions of EE-IG are weakly

dominated by some solutions of EE-VBIH; 64.2% of the

solutions of EE-IGALL are weakly dominated by some

solutions of EE-VBIH, as seen from Table III. Hence, the set of

solutions obtained by the EE-VBIH algorithm can dominate

58.4% and 64.2% of the solutions obtained by EE-IG and EE-

IGALL, respectively. To conclude, the EE-VBIH algorithm

outperforms on the other two algorithms concerning

cardinality, dispersion, and coverage metrics.

V. CONCLUSION

In this paper, we propose an energy-efficient NWFSP in

order to investigate a trade-off between the makespan and the

total energy consumption. The purpose of the energy-efficient

NWFSP is to obtain Pareto solution sets to minimize the make-

TABLE III. COMPUTATIONAL RESULTS OF ALGORITHMS ON LARGER INSTANCES IN TERMS OF CARDINALITY, DISTIBUTION SPACING AND COVERAGE

Instance |K| |L| |M| DSK DSL DSM C(K,L) C(L,K) C(K,M) C(M,K) C(L,M) C(M,L)

20x5 82.30 102.30 76.80 0.785 0.859 0.846 0.122 0.851 0.272 0.676 0.850 0.211

20x10 62.40 65.20 63.60 0.873 0.834 0.855 0.401 0.533 0.478 0.512 0.577 0.432

20x20 54.60 48.80 54.40 0.876 1.048 1.050 0.505 0.458 0.462 0.514 0.492 0.503

50x5 125.80 60.70 81.20 1.324 1.067 2.067 0.721 0.154 0.827 0.096 0.612 0.313

50x10 99.20 45.80 67.00 1.554 1.595 2.580 0.840 0.080 0.869 0.099 0.330 0.517

50x20 73.90 26.70 35.50 0.992 1.932 2.325 0.916 0.062 0.946 0.054 0.272 0.379

Average 83.00 58.30 63.10 1.067 1.223 1.621 0.584 0.356 0.642 0.325 0.522 0.393

span and total energy consumption. Unlike the traditional

NWFSP, we introduce different speed levels for each job on

machines, and processing times of jobs can be different

according to assigned speed levels. Therefore, a mixed-integer

linear programming model formulation is proposed and the

heuristic formulation of NWFSP is modified by introducing a

speed scaling strategy in order to approximate non-dominated

solution sets. Due to the NP-hardness nature of the problem,

three metaheuristics are proposed (EE-VBIH, EE-IG, and EE-

IGALL). Extensive computational analyses on Taillard’s

benchmark suite show that proposed algorithms are very

effective for approximating Pareto solution sets. Among three

algorithms, EE-VBIH outperforms than the EE-IG and EE-

IGALL in terms of both cardinality and quality. For future work,

various multi-objective algorithms such as a multi-objective

genetic algorithm with non-dominating sorting and crowded

distance can be developed to compare and assess the

performance of both algorithms. Several objective functions

can be analyzed within the energy-efficiency scope or this

scope can be implemented on other scheduling problems such

as blocking-flowshop or no-idle flowshop scheduling

problems.

REFERENCES

[1] T. Aldowaisan and A. Allahverdi, “New heuristics for m-machine no-
wait flowshop to minimize total completion time,” Omega, vol. 32, no.

5, pp. 345–352, Oct. 2004.

[2] S. U. Sapkal and D. Laha, “A heuristic for no-wait flow shop
scheduling,” Int. J. Adv. Manuf. Technol., vol. 68, no. 5–8, pp. 1327–

1338, Sep. 2013.

[3] H. Röck and Hans, “The Three-Machine No-Wait Flow Shop is NP-
Complete,” J. ACM, vol. 31, no. 2, pp. 336–345, Mar. 1984.

[4] S.-W. Lin and K.-C. Ying, “Optimization of makespan for no-wait

flowshop scheduling problems using efficient matheuristics,” Omega,
vol. 64, pp. 115–125, Oct. 2016.

[5] K. Fang, N. Uhan, F. Zhao, and J. W. Sutherland, “A new approach to

scheduling in manufacturing for power consumption and carbon
footprint reduction,” J. Manuf. Syst., vol. 30, no. 4, pp. 234–240, Oct.

2011.

[6] C. Gahm, F. Denz, M. Dirr, and A. Tuma, “Energy-efficient
scheduling in manufacturing companies: A review and research

framework,” Eur. J. Oper. Res., vol. 248, no. 3, pp. 744–757, Feb.
2016.

[7] G. Mouzon, M. B. Yildirim, and J. Twomey, “Operational methods for

minimization of energy consumption of manufacturing equipment,”
Int. J. Prod. Res., vol. 45, no. 18–19, pp. 4247–4271, Sep. 2007.

[8] G. Mouzon and M. B. Yildirim, “A framework to minimise total

energy consumption and total tardiness on a single machine,” Int. J.
Sustain. Eng., vol. 1, no. 2, pp. 105–116, Jun. 2008.

[9] M. Dai, D. Tang, A. Giret Boggino, M. Salido Gregorio, and W. Li,

“Energy-efficient scheduling for a flexible flow-shop using improved
genetic-simulated annealing algorithm,” Robot. Comput. Integr.

Manuf., no. 29, pp. 418–429, 2013.

[10] K. Fang, N. A. Uhan, F. Zhao, and J. W. Sutherland, “Flow shop
scheduling with peak power consumption constraints,” Ann. Oper.

Res., vol. 206, no. 1, pp. 115–145, Jul. 2013.

[11] J. Y. Ding, S. Song, and C. Wu, “Carbon-efficient scheduling of flow
shops by multi-objective optimization,” Eur. J. Oper. Res., vol. 248,

no. 3, pp. 758–771, Feb. 2016.

[12] S. A. Mansouri, E. Aktas, and U. Besikci, “Green scheduling of a two-
machine flowshop: Trade-off between makespan and energy

consumption,” Eur. J. Oper. Res., vol. 248, no. 3, pp. 772–788, Feb.

2016.
[13] S. A. Mansouri and E. Aktas, “Minimizing Energy consumption and

makespan in a two-machine flowshop scheduling problem,” J. Oper.

Res. Soc., vol. 67, no. 11, pp. 1382–1394, 2016.
[14] L. Yin, X. Li, C. Lu, and L. Gao, “Energy-Efficient Scheduling

Problem Using an Effective Hybrid Multi-Objective Evolutionary
Algorithm,” Sustainability, vol. 8, no. 12, p. 1268, Dec. 2016.

[15] C. Lu, L. Gao, X. Li, Q. Pan, and Q. Wang, “Energy-efficient

permutation flow shop scheduling problem using a hybrid multi-
objective backtracking search algorithm,” J. Clean. Prod., vol. 144,

no. 144, pp. 228–238, Feb. 2017.

[16] R. Zhang and R. Chiong, “Solving the energy-efficient job shop
scheduling problem: A multi-objective genetic algorithm with

enhanced local search for minimizing the total weighted tardiness and

total energy consumption,” J. Clean. Prod., vol. 112, pp. 3361–3375,
2016.

[17] J. Yan, L. Li, F. Zhao, F. Zhang, and Q. Zhao, “A multi-level

optimization approach for energy-efficient flexible flow shop
scheduling,” J. Clean. Prod., vol. 137, pp. 1543–1552, Nov. 2016.

[18] D. Tang, M. Dai, M. A. Salido, and A. Giret, “Energy-efficient

dynamic scheduling for a flexible flow shop using an improved
particle swarm optimization,” Comput. Ind., vol. 81, pp. 82–95, Sep.

2016.

[19] M. A. Salido, J. Escamilla, A. Giret, and F. Barber, “A genetic
algorithm for energy-efficiency in job-shop scheduling,” Int. J. Adv.

Manuf. Technol., vol. 85, no. 5–8, pp. 1303–1314, Jul. 2016.

[20] H. Öztop, M. Fatih Tasgetiren, D. Türsel Eliiyi, and Q.-K. Pan, “Green
Permutation Flowshop Scheduling: A Trade-off- Between Energy

Consumption and Total Flow Time,” in Huang DS., Gromiha M., Han

K., Hussain A. (eds) Intelligent Computing Methodologies. ICIC 2018.
Lecture Notes in Computer Science, vol 10956., Springer, Cham, 2018,

pp. 753–759.

[21] M. F. Tasgetiren, H. Öztop, U. Eliiyi, D. T. Eliiyi, and Q. K. Pan,
“Energy-efficient single machine total weighted tardiness problem

with sequence-dependent setup times,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2018, vol. 10954 LNCS, pp.

746–758.

[22] X. Wu and A. Che, “A memetic differential evolution algorithm for
energy-efficient parallel machine scheduling,” Omega (United

Kingdom), vol. 82, pp. 155–165, Jan. 2019.

[23] D. Yüksel, M. F. Tasgetiren, L. Kandiller, and L. Gao, “An Energy-
Efficient Bi-Objective No-Wait Permutation Flowshop Scheduling

Problem To Minimize Total Tardiness And Total Energy
Consumption,” Comput. Ind. Eng., vol. in Press, 2020.

[24] H. Öztop, M. F. Tasgetiren, L. Kandiller, D. T. Eliiyi, and L. Gao,

“Ensemble of metaheuristics for energy-efficient hybrid flowshops:
Makespan versus total energy consumption,” Swarm Evol. Comput.,

vol. 54, p. 100660, May 2020.

[25] A. S. Manne, “On the Job-Shop Scheduling Problem,” Oper. Res., vol.
8, no. 2, pp. 219–223, Apr. 1960.

[26] D. A. Wismer, “Solution of the Flowshop-Scheduling Problem with

No Intermediate Queues,” Oper. Res., vol. 20, no. 3, pp. 689–697, Jun.
1972.

[27] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A discrete particle

swarm optimization algorithm for the no-wait flowshop scheduling
problem,” Comput. Oper. Res., vol. 35, no. 9, pp. 2807–2839, Sep.

2008.

[28] M. F. Tasgetiren, U. Eliiyi, H. Öztop, D. Kizilay, and Q. K. Pan, “An
energy-efficient single machine scheduling with release dates and

sequence-dependent setup times,” in GECCO 2018 Companion -

Proceedings of the 2018 Genetic and Evolutionary Computation
Conference Companion, 2018, pp. 145–146.

[29] H. Öztop, M. F. Tasgetiren, D. T. Eliiyi, and Q. K. Pan, “Green

Permutation Flowshop Scheduling: A Trade- off- Between Energy
Consumption and Total Flow Time,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2018, vol. 10956 LNAI, pp.
753–759.

[30] S. Farahmand Rad, R. Ruiz, and N. Boroojerdian, “New High
Performing Heuristics for Minimizing Makespan in Permutation

Flowshops,” Omega, pp. 37(2):331–45, 2009.

[31] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem,” Omega, vol. 11,

no. 1, pp. 91–95, Jan. 1983.

[32] M. F. Tasgetiren, Q. K. Pan, Y. Ozturkoglu, and A. H. L. Chen, “A
memetic algorithm with a variable block insertion heuristic for single

machine total weighted tardiness problem with sequence dependent

setup times,” in 2016 IEEE Congress on Evolutionary Computation,
CEC 2016, 2016, pp. 2911–2918.

[33] M. Tasgetiren, Q.-K. Pan, D. Kizilay, and K. Gao, “A Variable Block

Insertion Heuristic for the Blocking Flowshop Scheduling Problem
with Total Flowtime Criterion,” Algorithms, vol. 9, no. 4, p. 71, Oct.

2016.

[34] M. F. Tasgetiren, Q. K. Pan, D. Kizilay, and M. C. Velez-Gallego, “A
variable block insertion heuristic for permutation flowshops with

makespan criterion,” in 2017 IEEE Congress on Evolutionary

Computation, CEC 2017 - Proceedings, 2017, pp. 726–733.
[35] R. Ruben and T. Stützle, A simple and effective iterated greedy

algorithm for the permutation flowshop scheduling problem. Ithaca:

Shaker., 2007.
[36] J. Dubois-Lacoste, F. Pagnozzi, and T. Stützle, “An iterated greedy

algorithm with optimization of partial solutions for the makespan

permutation flowshop problem,” Comput. Oper. Res., vol. 81, pp.
160–166, May 2017.

[37] E. Taillard, “Benchmarks for basic scheduling problems,” Eur. J.

Oper. Res., vol. 64, no. 2, pp. 278–285, Jan. 1993.
[38] G. Mavrotas, “Effective implementation of the ε-constraint method in

Multi-Objective Mathematical Programming problems,” Appl. Math.

Comput., vol. 213, no. 2, pp. 455–465, Jul. 2009.
[39] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen,

Evolutionary Algorithms for Solving Multi-Objective Problems (Vol.

5, pp. 79-104), 2nd Ed. New York: Springer, 2002.
[40] K. C. Tan, C. K. Goh, Y. J. Yang, and T. H. Lee, Evolving Better

Population Distribution and Exploration in Evolutionary Multi-

Objective Optimization, vol. 171, no. 2. North-Holland, 2006.

