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Abstract—Solving dynamic multi-objective optimization prob-
lem (DMOP) requires optimizing multiple conflicting objectives
simultaneously. When a dynamic is detected in the changing
environment, most of existing prediction-based strategies predict
the trajectory of changing Pareto-optimal solutions (POS), based
on the historical solutions obtained in the solution space. In this
paper, we present a new prediction method to track the moving
optima for solving DMOP. In contrast to existing approaches,
we propose to build the prediction model in the objective space.
As the evaluation for solving a DMOP is based on the Pareto-
optimal front (POF), to predict directly in the objective space
could provide more useful information than the prediction in the
solution space. In particular, to efficiently capture the complex
relationships among POFs found along the evolutionary search,
here we build a prediction model in Reproducing Kernel Hilbert
Space, which holds a closed-form solution. To evaluate the
performance of the proposed method, empirical studies have been
conducted by comparing against three state-of-the-art prediction-
based strategies on fourteen commonly used DMOP benchmarks.
The results obtained by using different optimization solvers
confirmed the superiority of the proposed method for solving
DMOP in terms of both solution quality and time efficiency.

Index Terms—Evolutionary Optimization, Dynamic Multi-
objective Optimization Problem, Prediction in Objective Space

I. INTRODUCTION

Multi-objective optimization problem (MOP) generally in-
volves at least two conflicting objectives to be optimized
simultaneously [1]. Unlike single objective optimization, no
single solution can satisfy a given MOP, thus the optima of
MOP are a set of solutions in the decision space, namely
Pareto-optimal solutions (POS) [2]. The objective values of the
POS in the objective space are known as the Pareto-optimal
front (POF).

In the literature, a large number of multi-objective evo-
lutionary algorithms (MOEAs) have been proposed to solve
MOP, which are capable of approximating the POS or POF
efficiently in the static environment [3], [4], [5]. However, the
MOPs in real-world applications are usually dynamic, which
possess POS and POF changing over time. Particular instances
of dynamic multi-objective optimization problems (DMOPs)

can be found in applications in control [6], dynamic scheduling
[7], resource management [8], and routing [9], [10], etc. Static
MOPs are commonly optimized in a given time budget with
static problem properties, while the optimization of DMOPs is
more challenging due to the time-varying POS or POF [11],
[12]. Therefore, MOEAs for tackling DMOPs (DMOEAs) re-
quire the design of additional strategies to react to the changes,
such as introducing or maintaining diversity [13], [14], change
prediction [15], [16], [17], and extra memory design [18], [19].
As most DMOPs exhibit certain predictable patterns in the
moving of POS or POF, among existing DMOEAs, prediction-
based approaches generally achieve superior optimization per-
formance for solving DMOPs in contrast to the others.

To track the moving directions of optima in a given DMOP,
the correlations between sequentially non-dominated solutions
obtained along the evolutionary search are usually used to
build the prediction model of the DMOP [20]. In particular,
most of existing prediction methods further simplify the re-
lationship between solutions in two sequential time periods
as linear correlation. Therefore, linear prediction models are
trained to predict the moving POS of a given DMOP, such
as autoregressive model [15], [21], linear predictor [22], [23],
[24] and Kalman filter [16]. Furthermore, as nonlinearity may
exist in the POS solutions found along the search, nonlinear
predictor has also been proposed in the literature. For instance,
Cao et al. [20] proposed a Support Vector Regression (SVR)
predictor combined with MOEA/D, to capture diverse types
of correlations existed between the obtained POS solutions
over time. In both the linear and nonlinear approaches, it is
worth noting that they all build the prediction models in the
solution space using the optimized POS solutions. However,
as the evaluation in solving a given DMOP is based on the
objective values, the POF found while the search progresses
online could provide more accurate information in contrast to
the POS. In the literature, to the best of our knowledge, there is
only little work conducted to explore the prediction model for
solving DMOP in the objective space. In particular, Jiang et al.
in [17] presented a transfer learning approach based on transfer
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component analysis (TCA) to predict the moving of optima,
using POFs obtained in two consecutive time instances. N-
evertheless, as it requires to build common representation of
different POFs periodically, it is computational expensive and
thus could fail to provide high quality prediction for solving
DMOP when limited computational budget is given.

Keeping the above in mind, in this paper, we propose a
new prediction method to tackle DMOPs using information
obtained in the objective space while the search progresses on-
line. In particular, with respect to both accuracy and efficiency
of the prediction, we propose to build the prediction model in
Reproducing Kernel Hilbert Space to track the moving of POF
in solving DMOP. The proposed method holds a closed-form
solution, which thus makes the prediction extremely efficient
in reacting to the dynamic changes. Moreover, the proposed
method is designed to regenerate an initial population for the
search in a new environment, which can be easily integrated
into any population-based optimization algorithms for solving
DMOPs. To evaluate the efficacy of the proposed method,
empirical studies are conducted on commonly used DMOP
benchmarks against three recently proposed DMOEAs based
on different evolutionary optimizers. The obtained results
confirmed the efficiency and effectiveness of the proposed
prediction method for solving DMOPs.

The rest of this paper is organized as follows. The defi-
nition of the DMOP studied in this paper as well as some
related work of prediction-based approaches are presented
in Section II. In Section III, we detail the design of the
proposed prediction method for evolutionary dynamic multi-
objective optimization. Subsequently, Section IV provides the
empirical studies on the IEEE CEC2018 DMOP benchmarks,
by comparing the proposed method with three state-of-the-art
prediction-based DMOEAs. Lastly, we conclude this work and
discuss our future work in Section V.

II. PRELIMINARIES

In this section, the background of the DMOP is introduced
firstly. Next, a brief review of the prediction-based approaches
is also presented.

A. Dynamic Multi-objective Optimization Problem

In this paper, we consider the DMOP as a time-variant
MOP. In particular, minimization problems are investigated
here. Formally, the mathematical definition of a DMOP is
formulated as [11], [20]:

min F (x, t) = [f1(x, t), · · · , fm(x, t)]T

s.t. x ∈ Ω =

n∏
i=1

[Li, Ui]
(1)

where Ω ⊂ Rn represents the decision (variable) space, and
x = (x1, . . . , xn) ∈ Rn is a vector of n-number of decision
variables in this space. The given DMOP involves an m-
dimensional objective space Rm that comprises m-number
of objective functions, while fi denotes the i-th objective
function, which is continuous with respect to x, xi is in a range
between Li and Ui. F (x, t) is the set of objective functions

with respect to time (or other dynamics) of the problem, which
is represented by t.

At the time of index t, a decision vector x1 is Pareto
dominated by another vector x2, denoted by x1 ≺t x2, if and
only if: {

∀i ∈ {1, . . . ,m} fi(x1, t) ≥ fi(x2, t)
∃i ∈ {1, . . . ,m} fi(x1, t) > fi(x2, t)

(2)

Based on the concept of dynamic Pareto dominance, the
definitions of DPOS and DPOF are given below:

Definition 1 (Dynamic Pareto Optimal Solutions).
The POS at time t, denoted as DPOS(t)∗, is the set of all

Pareto optimal solutions in the decision space such that:

DPOS(t)∗ = {x∗
i |�f(xj , t) ≺ f(x∗

i , t)
∗, f(xj , t) ∈ Fm} (3)

Definition 2 (Dynamic Pareto Optimal Front).
The POF at time t, denoted as DPOF (t)∗, is the corre-

sponding projection of the DPOS(t)∗ in the objective space
such that:

DPOF (t)∗ = {f(xi, t)
∗|�f(xj , t) ≺ f(xi, t)

∗, f(xj , t) ∈ Fm}
(4)

B. Prediction-based Approaches in Dynamic Multi-objective
Optimization

In recent years, many research attempts have been made in
the design of prediction-based DMOEAs for solving DMOPs.
As the behavior of the dynamic often follows a certain trend,
prediction-based approaches can exploit the relationship be-
tween solutions obtained from two consecutive time instances,
thus to track the changing POS or POF over time. Without

Algorithm 1 General Prediction-based Approach

1. Initialization:
a. Initialize the population;
b. Initialize the learning model and training set.

2. Search for optima
3. Change detection:

a. Re-evaluate dedicated detectors;
b. Assess algorithm behaviors.

4. Population prediction (If a change is detected in Step
3):

a. Configure the obtained environment state as the input
of the learning model;

b. Use the learning model to estimate the type of this
current change and/or the next change;

c. Generate new individuals as initial population that
best match with the estimation.
5. Return to Step 2 and update the training set.

loss of generality, a framework following the prediction-based
approaches is presented in Algorithm. 1. More precisely, the
common procedure of population prediction is as follows.
Firstly, to estimate the states of the changing environment



by utilizing the obtained optimization knowledge with some
forms of machine learning techniques, then to predict new in-
dividuals as change reaction such that the DMOEA can adapt
itself to changes for tackling DMOPs. In contrast to the flow
of static MOEAs, Change detection and Population prediction
are two additional elements in prediction-based DMOEAs. In
the literature, most of prediction methods are proposed with
a combination of Change detection and Population prediction
for solving DMOPs, wherein the research generally focused on
the design of prediction. In this section, some representative
as well as recent prediction methods are reviewed below.

Feedforward prediction strategy (FPS) proposed in [21]
utilizes an autoregressive (AR) forecasting model to predict
some isolated individuals of the new population. Further in
[15], Population Prediction Strategy (PPS) presented by Zhou
et al. also adopted the AR model, to predict the whole
population of MOEA. The proposed PPS mainly contains two
parts: center point prediction and manifold prediction. This
strategy maintained a sequence of preceding center points
to predict the new center by the AR model, and the new
manifold is estimated by the preceding manifolds, thus to form
a whole population. More recently, Rong et al. [25] proposed
a multidirectional prediction strategy (MDP) to enhance the
performance of MOEAs in solving DMOP. Instead of using the
center point, a number of individuals, which can describe the
location and the diversity of the POS, were used to track the
moving of POS. In summary, the above approaches conduct
the Population prediction focusing on the change of some
deterministic data points, such as center point, knee point and
boundary point, etc., which is not able to adequately capture
the changes of the whole POS.

In contrast to the strategies using deterministic knowledge
in Population prediction, Muruganantham et al. proposed a
new prediction model in [16] that combines linear Kalman
filter (KF) prediction and a scoring scheme. The KF assumes
that the decision variables are independent and helps to guide
the search towards the changing optima; thereby, the DMOEA
can quickly track the moving optima in the solution space.
To overcome the limitation caused by the IID hypothesis in
DMOPs, Jiang et al. [17] introduced the integration of TCA
and MOEAs to explore the prediction for solving DMOP in
objective space, which has properly addressed the violation
of KF assumption that the relationship between solutions is
linear. However, heavy computational burden is brought to
the transfer learning based prediction, due to iterative domain
adaptation learning applied in the search process.

III. PROPOSED METHOD

In this section, the details of the proposed prediction method
for evolutionary dynamic multi-objective optimization are pre-
sented. The whole flowchart of the proposed algorithm follows
Algorithm. 1. In particular, by employing a conventional
MOEA as the basic optimization solver, the search process
starts as routine, following the procedures as in static environ-
ment. However, an additional detection operator is designed
to trigger the prediction operator when a change is detected.

In what follows, we first introduce the environmental-change
detection operator employed in the proposed method, then the
details of the prediction operator, and the overall framework
of the DMOEA based on prediction in objective space (OP-
DMOEA) are elaborated.

A. Dynamic Detection

Before entering into the phase of population prediction,
a signal of change shall be known and give notice to the
algorithm [26]. In this paper, DMOPs are tackled in the
unknown environment, it is crucial for the DMOEA to detect
changes along the search process. In the literature, according to
the framework of prediction-based methods outlined in Section
II-B, existing dynamic detection methods can be categorized
into two groups, i.e., detector-based detection and behavior-
based detection. In particular, the detector-based methods re-
evaluate some specific solutions (detectors) to detect changes
in their objective values or feasibilities, while the behavior-
based approaches consider to assess the behaviors of algorithm
for dynamic detection.

Following the robust detection performance achieved in
previous DMOEAs [16], [25], [27], herein, we do not propose
a new solution for the design of detection operator, while
a simple yet effective detector-based detection method is
employed. Particularly, to reduce the number of function eval-
uations and maintain the coverage of the detection region, we
randomly select 5% individuals as detectors in the population,
and store their objective values. At the start of each generation,
the detectors will be re-evaluated, when the current objective
values of these detectors vary from the stored ones at last
generation, it is recognized that an change occurs. If no change
is detected, the algorithm performs static optimization and
evolves the population.

B. Proposed prediction method

In the context of solving DMOP, prediction methods aim
at learning the predictable patterns exhibited in solutions
collected from the preceding environments. However, with
the learning of linear mapping between the optimization data
obtained in two consecutive time instances, nonlinearity is
hardly captured. In order to address this issue, we propose a
new solution to construct a prediction model with closed-form
solution in Reproducing Kernel Hilbert Space (RKHS).

In particular, we denote the optimization problems of a
DMOP before and after the dynamic occurs as OP1 and
OP2, respectively. The solutions of these two optimization
problems are represented by P ∈ Rd×N and Q ∈ Rd×N ,
respectively, i.e., P = {p1 . . . , pN} and Q = {q1 . . . , qN},
where N denotes the number of solutions in each set, and
d is the dimension. Naturally, through learning the mapping
M ∈ Rd×d from P to Q [28], the connection between OP1

and OP2 is also built by M.
Apply kernelization in the learning of M, suppose that P

is mapped to RKHS H by a nonlinear mapping function Φ :
Rd → H. Denote Φ(P) = [Φ(p1, . . . ,Φ(pN )] as the mapped
data matrix. The original loss function in [28], which serves to



build connection across problems, thus can be rewritten with
kernelized terms as:

L(M) =
1

2N
tr[(Q−MΦ(P))T(Q−MΦ(P))] (5)

where T is the transpose operation of a matrix. According
to [29], the linear mapping M can be represented as a linear
combination of the mapped data points in H, that is, M =
MkΦ(P)T, and the loss minimization function becomes:

L(Mk) =
1

2N
tr[(Q−MkK(P,P))T(Q−MkK(P,P))]

(6)
where K(P,P) = Φ(P)TΦ(P) is the kernel matrix with
ki,j = k(pi, pj), and k(·, ·) is a kernel function. Eq. 6 holds a
closed-form solution, which is given by:

Mk = Pk(Qk)
−1with

Pk = QK(P,P)T,Qk = K(P,P)K(P,P)T
(7)

As can be observed in Eq. 6, the connection between two
optimization problems is built by the learned matrix Mk.
Moreover, the relationships among the optimization data can
be simply captured by the multiplication of Mk and the
corresponding kernel matrix.

C. Framework of The Proposed OP-DMOEA

When environmental change is detected in solving a given
DMOP, the proposed prediction operator receives the non-
dominated solutions from the evolutionary search process of
a chosen MOEA, and the prediction of subsequent DPOF
is triggered at the beginning of the third time period. We
assume a sequence of non-dominated solutions found by
the basic optimization solver in the previous time periods
are denoted as NDS = {NDS0,NDS1, . . . ,NDSt−1,NDSt}.
Herein, we propose to utilize the DPOFs obtained in the
time windows t − 1 and t, to learn the moving directions of
DPOF. With the learned moving directions, a set of objective
values is estimated. The overall framework of the proposed
OP-DMOEA is presented in Algorithm. 2.

In particular, We first sort the solutions of NDSt−1 and
NDSt independently, with respect to the ranking indicator
corresponding to the basic MOEA. Next, calculate their ob-
jective values via objective functions F (NDSt−1, t − 1) and
F (NDSt, t) and archive the values into DPOF (t − 1) and
DPOF (t), respectively. Further, by configuring DPOF (t−1)
and DPOF (t), as the input P and output Q of the learning
model discussed in Section III-B, respectively, the moving
directions of DPOF from time window t − 1 to t can be
modeled by the matrix Mk learned via Eq. 7. To predict
the objective values in time window t + 1 (i.e., Yt+1), new
kernel matrix with a determined kernel function is derived to
multiply with the corresponding mapping matrix Mk, which
is formulated as follows:

Yt+1 = MΦ(DPOF (t))

= MkΦ(DPOF (t− 1))TΦ(DPOF (t))

= MkK(DPOF (t− 1), DPOF (t)

(8)

Algorithm 2 OP-DMOEA: Dynamic Multi-objective Evolu-
tionary Algorithm via Prediction in Objective Space
Input: F (x, ·): the dynamic objective function; a multi-

objective evolutionary algorithm MOEA.
Output: DPOF : the DPOFs of the DMOP.

1: Initialization;
2: Solve F (x, 0) and F (x, 1) with the MOEA to get NDS0

and NDS1, respectively;
3: Rank solutions in NDS0 and NDS1;
4: Calculate the DPOF (0) = F (NDS0, 0) and

DPOF (1) = F (NDS1, 1), respectively, and randomly
select 5% individuals in NDS1 as detectors and archive
their objective values;

5: Set time index t = 1;
6: DPOF = DPOF (0) ∪DPOF (1)
7: for t = 1 to end do
8: Configure the input P and output Q of the learning

model, as DPOF (t− 1) and DPOF (t), respectively;
9: Obtain the matrix Mk via Eq. 7;

10: Predict initial population IPt+1 via Eq. 8 and Eq. 9;
11: Search for NDSt+1 and calculate the DPOF (t+ 1);
12: DPOF = DPOF ∪DPOF (t+ 1)
13: end for
14: return the DPOF .

Since the predicted Yt+1 is a set of objective values, an
additional mapping function is required to map these values
back into solution space as initial population for the search in
time window t+1 (i.e., IPt+1). The objective value of newly
found individual in the initial population is the closest with
respect to the predicted value. Hence, to locate the individuals
in the solution space, a single objective optimization problem
need to be solved here. With a predicted value y∗ in Yt+1, an
initial solution x∗ is calculated as:

x∗ ← min ‖F(x∗, t+ 1)− y∗‖ (9)

We follows the adoption of the Interior Point Algorithm in
[17] to solve this problem.

Last but not the least, the predicted solutions compose a new
population as change reaction, thus to accelerate the search
toward the true POF in the new environment. Observing this,
the proposed prediction method is optimizer independent, it
thus can be easily integrated into any of population-based
static MOEAs for tackling DMOPs. In the proposed prediction
operator, the Gaussian RBF kernel is employed as the kernel
function.

IV. EMPIRICAL STUDY

In this section, to evaluate the performance of the pro-
posed OP-DMOEA for solving DMOPs, empirical studies on
commonly used DMOP benchmarks against three recently
proposed DMOEAs are presented.

A. Experimental Setup
1) Test Instances: The IEEE CEC2018 Competition on Dy-

namic Multi-objective Optimization Benchmark problems [30]



TABLE I
MEAN AND STANDARD DEVIATIONS OF MIGD VALUES OBTAINED BY THE COMPARED ALGORITHMS ON DMOPS POSSESSING TWO OBJECTIVES

MOEA/D Optimizer MOPSO Optimizer

Problems (nt,τt) Tr-MOEA/D OP-MOEA/D MDP-MOPSO Tr-MOPSO OP-MOPSO

DF1
(5,10) 1.9955E-02 (1.9053E-02)≈ 2.7862E-02 (2.7104E-02) 6.2201E-02 (9.8853E-03)+ 2.7879E-02 (1.0109E-02)≈ 2.4812E-02 (1.0578E-02)

(2.5,10) 4.5946E-02 (2.5566E-02)≈ 4.4469E-02 (1.9279E-02) 2.3505E-01 (2.5293E-02)+ 3.8378E-02 (1.0324E-02)– 7.3248E-02 (3.5875E-02)

(1,10) 5.8406E-02 (1.3437E-02)≈ 5.0459E-02 (1.0633E-02) 1.8502E+00 (2.9654E-01)+ 3.3164E-02 (1.6444E-02)– 1.5958E-01 (7.0041E-02)

DF2
(5,10) 2.3551E-02 (1.0912E-02)≈ 2.5035E-02 (2.2909E-02) 9.7943E-02 (2.0205E-02)+ 1.9316E-02 (6.9590E-03)– 2.9791E-02 (7.1038E-03)

(2.5,10) 6.4191E-02 (7.4648E-02)+ 3.2250E-02 (2.1324E-02) 1.8657E-01 (1.8058E-02)+ 1.8152E-02 (6.8592E-03)– 3.7037E-02 (1.1480E-02)

(1,10) 5.9982E-02 (2.9287E-02)≈ 5.8742E-02 (2.5481E-02) 1.5970E+00 (1.5952E-01)+ 1.6540E-02 (7.9081E-03)– 1.5934E-01 (6.5745E-02)

DF3
(5,10) 2.6010E-01 (1.8158E-02)≈ 2.3318E-01 (8.1696E-02) 3.6925E-01 (3.0446E-02)+ 1.2284E+00 (4.7810E-01)+ 2.8142E-01 (4.6781E-02)

(2.5,10) 2.1170E-01 (1.8949E-02)+ 1.7948E-01 (5.8183E-02) 4.4430E-01 (3.0045E-02)+ 1.0622E+00 (3.3991E-01)+ 2.9103E-01 (4.2715E-02)

(1,10) 1.5329E-01 (2.2963E-02)≈ 1.4346E-01 (3.3503E-02) 4.7208E-01 (6.5452E-02)+ 8.0173E-01 (3.6145E-01)+ 3.1774E-01 (7.7236E-02)

DF4
(5,10) 1.2311E-01 (2.4970E-02)≈ 1.2984E-01 (3.0900E-02) 1.0516E+00 (1.4857E-01)+ 1.1962E+00 (2.1267E-01)+ 3.8251E-01 (9.4019E-02)

(2.5,10) 1.1015E-01 (1.9350E-02)≈ 1.0516E-01 (1.6974E-02) 1.0946E+00 (1.0628E-01)+ 1.1415E+00 (2.4204E-01)+ 3.4825E-01 (8.9705E-02)

(1,10) 6.1115E-02 (9.4059E-03)≈ 5.9841E-02 (2.2882E-02) 1.2851E+00 (1.3134E-01)+ 1.3199E+00 (1.7648E-01)+ 2.6830E-01 (7.0662E-02)

DF5
(5,10) 1.6426E-02 (8.6040E-03)+ 1.1099E-02 (2.2385E-03) 1.3096E-01 (1.8647E-02)+ 3.2623E-01 (7.3027E-02)+ 7.2574E-02 (6.6264E-02)

(2.5,10) 1.3889E-02 (1.5163E-03)+ 1.1440E-02 (2.9452E-03) 1.8084E-01 (1.2646E-02)+ 5.1224E-01 (1.4839E-01)+ 8.7710E-02 (7.3333E-02)

(1,10) 3.8425E-02 (1.0211E-02)+ 1.3905E-02 (3.2474E-03) 3.2212E-01 (1.0808E-01)+ 8.5409E-01 (1.0320E-01)+ 5.9112E-02 (4.6411E-02)

DF6
(5,10) 1.2814E+00 (3.9050E-01)+ 8.6064E-01 (3.5330E-01) 2.3972E+00 (3.4955E-01)– 1.2051E+01 (1.1314E+00)+ 3.7035E+00 (6.0488E-01)

(2.5,10) 5.7628E-01 (5.3989E-02)+ 3.0538E-01 (5.0614E-02) 1.9676E+00 (3.9709E-01)≈ 9.7248E+00 (7.0239E-01)+ 2.0857E+00 (3.8609E-01)

(1,10) 4.4211E-01 (2.2433E-02)+ 1.8347E-01 (1.9260E-02) 1.0413E+00 (4.7044E-01)≈ 7.6502E+00 (9.4631E-01)+ 8.9059E-01 (3.1032E-01)

DF7
(5,10) 2.6546E-01 (4.1794E-02)≈ 4.3349E-01 (1.5637E-01) 3.2899E-01 (3.6425E-02)– 2.7422E-01 (3.4569E-02)– 7.7691E-01 (3.6755E-02)

(2.5,10) 7.2006E-01 (9.5435E-02)– 1.2066E+00 (4.6182E-02) 5.7898E-01 (6.3800E-02)– 4.5970E-01 (7.1846E-02)– 1.3340E+00 (5.7692E-02)

(1,10) 1.8238E+00 (3.2338E-01)– 2.9086E+00 (1.4497E-01) 7.6362E-01 (6.2217E-02)– 8.3281E-01 (8.6814E-02)– 2.3489E+00 (1.7624E-01)

DF8
(5,10) 1.0486E-01 (1.6498E-02)– 2.5655E-01 (2.2962E-02) 2.2670E-01 (9.7179E-03)+ 3.3067E-01 (5.0169E-02)+ 1.8595E-01 (2.3775E-02)

(2.5,10) 1.2650E-01 (4.2268E-02)– 2.2443E-01 (2.9958E-02) 2.5663E-01 (9.0549E-03)+ 3.5144E-01 (4.9894E-02)+ 1.5102E-01 (1.2471E-02)

(1,10) 1.0764E-01 (3.7231E-02)– 2.4674E-01 (5.7031E-02) 2.2199E-01 (1.2884E-02)+ 1.9679E-01 (1.2299E-02)+ 1.0615E-01 (8.4044E-03)

DF9
(5,10) 6.5768E-02 (9.3095E-03)+ 3.4521E-02 (9.2937E-03) 4.0295E-01 (5.1122E-02)+ 8.8193E-01 (1.4022E-01)+ 1.8431E-01 (2.1593E-02)

(2.5,10) 6.1455E-02 (8.3039E-03)+ 3.3885E-02 (9.2815E-03) 5.0768E-01 (3.5292E-02)+ 9.4988E-01 (2.0971E-01)+ 2.1985E-01 (2.7217E-02)

(1,10) 8.2888E-02 (2.9222E-02)+ 3.0782E-02 (4.2557E-03) 4.8227E-01 (2.8609E-02)+ 9.9123E-01 (7.9726E-02)+ 2.1740E-01 (1.8893E-02)

Superior performances are highlighted in bold. “+”, “–”, and “≈” denote proposed OP-DMOEA is statistically significant better, worse, and similar to the compared dynamic
multi-objective method which shares the same multi-objective optimizer, respectively.

are used to evaluate our proposed OP-DMOEA. The test suite
(called DF in this competition) has fourteen test problems,
including nine two-objective and five three-objective problems,
whose dynamic characteristics cover diverse properties repre-
senting various real-world scenarios [20]. The dynamics of
these test functions are governed by a time variable (t), which
is defined as:

t =
1

nt

⌊
τ

τt

⌋
, (10)

where τ is the generation counter and �· is the floor operator.
A smaller value of nt means larger changes, while a smaller
value of τt leads to more frequent occurrence of changes in the
DMOP. Towards comprehensive experiments, three different
configurations of dynamic changes are investigated in the
following experiments, which are (nt, τt) = (5, 10), (2.5, 10)
and (1, 10).

2) Performance Metrics: In this paper, we employ two
metrics, the Inverted Generational Distance (IGD) [31] and
one of its variants, to measure the quality of obtained solutions
and to assess the performance of the competing algorithms.

IGD is a performance indicator which quantify the solution

quality of a MOEA. It is mathematically given by:

IGD(POF t∗, POF t) =

∑
v∈POF t∗ minv∈POF t ‖ v∗ − v ‖

| POF t∗ |
(11)

where POF t∗ is the projection of the uniformly distributed
true POS at time window t and POF t represents the ap-
proximated POF obtained by the algorithm, respectively. In
the experiments, 1500 and 2500 points are uniformly sampled
on the POF t∗ of two-objective problems and three-objective
problems, respectively, to compute the IGD metrics. A lower
value of IGD implies that the algorithm has better optimization
quality. To obtain a low value of IGD, the POF t should be
close enough to the true POF POF t∗.

The Mean Inverted Generational Distance (MIGD) [16],
[17] is a variant of IGD which is modified to evaluate
DMOEAs, it calculates the average of the IGD values in a
certain number of time periods over a single run, given by:

MIGD(POF t∗, POF t) =
1

T

∑
t∈T

IGD(POF t∗, POF t)

(12)
where T is a set of discrete time periods.



TABLE II
MEAN AND STANDARD DEVIATIONS OF MIGD VALUES OBTAINED BY THE COMPARED ALGORITHMS ON DMOPS POSSESSING THREE OBJECTIVES

MOEA/D Optimizer MOPSO Optimizer

Problems (nt,τt) Tr-MOEA/D OP-MOEA/D MDP-MOPSO Tr-MOPSO OP-MOPSO

DF10
(5,10) 1.3621E-01 (8.1155E-03)≈ 1.2652E-01 (2.3681E-02) 2.2542E-01 (4.1795E-03)≈ 2.6226E-01 (1.5775E-02)+ 2.1934E-01 (1.6415E-02)

(2.5,10) 1.6812E-01 (2.0096E-02)≈ 1.8162E-01 (1.5115E-02) 2.2940E-01 (6.0724E-03)≈ 2.8869E-01 (1.2301E-02)+ 2.2467E-01 (2.3262E-02)

(1,10) 2.1716E-01 (3.2408E-02)≈ 2.3831E-01 (3.3606E-02) 2.2670E-01 (7.3124E-03)+ 2.9898E-01 (1.3314E-02)+ 1.9312E-01 (1.4250E-02)

DF11
(5,10) 6.6853E-01 (5.4275E-03)+ 6.6316E-01 (1.3526E-02) 7.1543E-01 (2.7151E-03)+ 3.2339E+01 (4.2026E-02)+ 7.0797E-01 (1.7309E-02)

(2.5,10) 6.6218E-01 (2.1266E-03)+ 6.6064E-01 (5.3725E-03) 7.0902E-01 (3.2705E-03)+ 3.2274E+01 (2.6487E-02)+ 7.0017E-01 (6.3414E-03)

(1,10) 5.7089E-01 (2.2866E-03)≈ 5.8153E-01 (2.2644E-02) 6.1020E-01 (1.9451E-02)+ 3.1682E+01 (9.6272E-02)+ 5.7390E-01 (4.2007E-03)

DF12
(5,10) 2.7948E-01 (4.1479E-02)+ 1.0551E-01 (9.9298E-03) 6.0747E-01 (2.9697E-02)+ 6.8831E-01 (5.3918E-02)+ 2.0201E-01 (1.1212E-02)

(2.5,10) 2.2647E-01 (2.5067E-02)+ 1.1508E-01 (8.7657E-03) 5.7491E-01 (2.4269E-02)+ 6.3474E-01 (2.7760E-02)+ 1.9379E-01 (8.2697E-03)

(1,10) 2.4811E-01 (1.8299E-02)+ 1.8025E-01 (1.1810E-02) 5.3045E-01 (2.6535E-02)+ 5.8177E-01 (5.2169E-02)+ 2.1375E-01 (1.1531E-02)

DF13
(5,10) 3.3996E-01 (2.7335E-02)+ 2.7685E-01 (2.4950E-02) 3.9910E-01 (2.4519E-02)+ 1.1538E+00 (1.3014E-01)+ 1.9434E-01 (1.0502E-02)

(2.5,10) 3.4271E-01 (2.9593E-02)+ 2.6955E-01 (3.7015E-02) 5.7352E-01 (5.2451E-02)+ 1.1718E+00 (1.4145E-01)+ 2.1778E-01 (1.4630E-02)

(1,10) 3.6518E-01 (4.1525E-02)+ 2.9568E-01 (3.9705E-02) 5.5972E-01 (4.0483E-02)+ 1.1397E+00 (1.0005E-01)+ 2.6790E-01 (2.8651E-02)

DF14
(5,10) 6.4360E-02 (1.9245E-03)≈ 6.2030E-02 (4.3103E-03) 1.9178E-01 (2.0239E-02)+ 1.7449E-01 (3.1672E-02)≈ 9.1416E-02 (3.1123E-02)

(2.5,10) 6.2861E-02 (2.6633E-03)+ 6.1762E-02 (5.7728E-03) 2.7141E-01 (3.8948E-02)+ 1.5267E-01 (2.9497E-02)+ 8.6230E-02 (1.2471E-02)

(1,10) 5.6179E-02 (6.7604E-03)≈ 5.1052E-02 (6.4459E-03) 5.6948E-01 (1.3235E-01)+ 9.7977E-02 (1.5858E-02)+ 4.9186E-02 (4.8722E-03)

Superior performances are highlighted in bold. “+”, “–”, and “≈” denote proposed OP-DMOEA is statistically significant better, worse, and similar to the compared dynamic
multi-objective method which shares the same multi-objective optimizer, respectively.

3) Compared Algorithms: To confirm the efficacy of the
proposed prediction method for solving DMOPs, three state-
of-the-art DMOEAs based on two different optimization
solvers, are considered here as the baseline algorithms for
comparison. In particular, the first one is Tr-MOPSO proposed
by Jiang et al. in [17], while the second one integrates
the same transfer learning framework as in [17] with the
MOEA/D solver, named Tr-MOEA/D. The third baseline is a
multidirectional POS prediction approach based on the multi-
objective particle swarm optimization solver, called MDP-
MOPSO, proposed by Rong et al. in [25]. For fair comparison,
we integrate our proposed prediction in objective space with
MOPSO (labeled as OP-MOPSO), and MOEA/D (labeled as
OP-MOEA/D), and compare them with the baseline algorithm
possessing the same evolutionary solver, respectively.

In the experiments, according to [30], for each studied
DMOP, all the algorithms are supposed to stop after 30 envi-
ronmental changes. The population size of all the compared
algorithms is set as 100, number of variables is set as 10. Other
configurations of evolutionary operators and parameters are
kept consistent with the settings in [25] and [17] for MOPSO.

B. Results and Discussion

In this section, we analyse the comparison results first
from the perspective of solution quality, which is followed
by the discussion on the convergence speed of the compared
algorithms after the dynamic occurs.

1) Solution Quality: Averaged MIGD values and the stan-
dard deviations obtained by Tr-MOEA/D, OP-MOEA/D, MDP-
MOPSO, Tr-MOPSO and OP-MOPSO under the frameworks
of MOEA/D and MOPSO, respectively, are presented in Table
I and Table II. In the tables, over 20 independent runs on the
two-objective and three-objective DMOPs, comparison results

are summarized and superior performances are highlighted in
bold. Further, the Wilcoxon rank sum test with 95% confidence
level is conducted on the results. “+”, “–”, and “≈” denote
proposed OP-DMOEA is statistically significant better, worse,
and similar to the compared method which shares the same
multi-objective optimizer, respectively.

As can be observed in the tables, the proposed OP-MOPSO
performs best on all instances of DF3∼DF5, DF8, DF9
and five three-objective DMOP benchmarks, as well as the
proposed OP-MOEA/D achieves superior performance on all
instances of DF3, DF5, DF6, DF9 and DF12∼DF14 in the
comparison with Tr-MOEA/D. The transfer learning based
DMOEAs (i.e., Tr-MOPSO and Tr-MOEA/D) obtains better
results on most cases of DF1 and DF2. DF2 has a simple
dynamic on the PS and its PF remains stationary over time,
but the switch of the position-related variable is a challenging
dynamic [30], which makes Tr-MOPSO and Tr-MOEA/D more
suitable to solve this kind of DMOP. Because of the special
characteristics of DF6 and DF7, it is difficult to find good
solutions within the given optimization budget [20]. Therefore
the poor quality of historical solutions weakens the perfor-
mance of these compared prediction methods. In summary, on
totally 42 number of DMOP instances, OP-MOPSO and OP-
MOEA/D obtained superior or competitive MIGD values over
the compared DMOEAs with same optimizer, on 30 and 35
instances, respectively.

2) Convergence Speed: The IGD values of the tracking
dynamics for six representative DMOP benchmarks obtained
by three prediction-based DMOES based on the MOPSO
solver are depicted in Fig. 1. In the figures, Y-axis denotes
the averaged IGD values, while the X-axis gives the index
of dynamic changes. It can be observed in Fig. 1 that on
all the studied DMOP benchmarks, the proposed OP-MOPSO
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Fig. 1. Convergence curves of the averaged IGD (over 20 runs) obtained by Tr-MOPSO, MDP-MOPSO, and OP-MOPSO on representative DMOPs, with
nt = 5, τt = 10, (Y-axis: IGD value; X-axis: Index of dynamic change).

achieved superior performance in terms of tracking dynamic
changes, compared to Tr-MOPSO and MDP-MOPSO.

The graphical view of the tracking ability shows that the
proposed prediction method responds to changes more stably
and recovers faster on most of the test inctances, thereby
obtaining superior convergence performance when compared
with the other approaches.

V. CONCLUSION

In this paper, we have proposed a new prediction method
which builds the prediction model in Reproducing Kernel
Hilbert Space, to track the moving of POF in objective space
for solving DMOP. In particular, when a change is detected,
the prediction model with a closed-form solution, is derived
to generate the initial population for the evolutionary search
in next time instance. To evaluate the performance of the
proposed prediction in objective space, empirical studies have
been conducted on IEEE CEC2018 DMOP benchmarks under
three different dynamic configurations. The results obtained
on two evolutionary optimizer confirmed the superior per-
formance of the proposed method in terms of both solution
quality and convergence speed.

For future work, we would like to apply the proposed
prediction method to solve DMOP applications in real-world
scenarios, such as dynamic optimization of recommendation
system and dynamic path planning.
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