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Abstract—Local energy markets (LM) are attracting significant
interest due to their potential of balancing generation and con-
sumption and supporting the adoption of distributed renewable
sources at the distribution level. Besides, LMs aim at increasing
the participation of small end-users in energy transactions, setting
the stage for transactive energy systems. In this work, we explore
the use of ant colony optimization (ACO) for learning bidding
strategies under a bi-level optimization framework that arises
when trading energy in an LM. We performed an empirical
analysis of the impact of ACO parameters have in the learning
process and the obtained profits of agents. After that, we
analyze and compare ACO performance against an evolutionary
algorithm under a realistic case study with nine agents trading
energy in the day-ahead LM. Results suggest that ACO can be
efficient for strategic learning of agents, providing solutions in
which all agents can improve their profits. Overall, it is shown the
advantages that an LM can bring to market participants, thereby
increasing the tolerable penetration of renewable resources and
facilitating the energy transition.

Index Terms—Ant Colony Optimization; Evolutionary com-
putation; Learning Strategy; Local energy market; Renewable
energy.

I. INTRODUCTION

The Clean Energy for all European package is one of the

most essential legislation directives to strengthen the European

leadership in the energy transition. This is achieved in practice

by placing consumers at the heart of the energy system.

In addition, the European Green Deal aims to transform

Europe as the world’s first climate-neutral continent by 2050

[1]. Consumers involvement is key to assure this successful

transition, while playing the role of producers of green energy

through renewable energy sources, helping to smooth the

local and regional energy system transition to solve important

challenges. Hence, realization of a secure and reliable future

energy system requires development and demonstrations of

technical and market solutions keeping the consumers at the

centre of the process [2], [3].
In this paradigm, the concept of local energy markets (LM)

provides a unique platform to trade renewable energy at the
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local level while contributing to a climate-neutral Europe,

i.e. cutting carbon emissions. Indeed, the proliferation of

distributed renewable energy sources has led to a significant

interest in local energy transactions at the lower level in order

to increase renewable energy use, deffer grid investments and

reduce energy costs [4], [5], [3]. Also, LM will empower the

end-users to participate as real actors in the energy community

while promoting a sustainable electricity transition [5].

The trading mechanism in LM is expected to be complex

and computing-intensive. Several mechanisms have been de-

veloped to facilitate automated trading, such as peer-to-peer,

blockchain, etc. [2], [6]. Evolutionary Computation (EC) pro-

vides a powerful set of tools for solving complex optimization

problems in the energy domain, which are also well suited

for the LM optimal bidding problem [7], [8]. EC methods

are in general straightforward to implement when compared

with classical approaches. Moreover, learning features can

be incorporated by inspiration on the ”intelligence” seen in

nature.

This paper is based on a prior work [8] that used EC

to solve the optimal bidding in LM. The previous results

indicated that agents using LM could profit by using a strategy

based on social welfare to obtain higher profits with LM. The

limitation of the previous proposal is that information from

all agents must be disclosed to the decision-maker, the so-

called ”perfect information”, which in turn provides the ”best”

bidding strategy to each participant. Therefore, in this work,

we propose that each agent can learn with their actions in the

LM without disclosing all the information (thus, considering a

more realistic scenario). To implement the learning strategy we

adopt an EC method, namely Ant Colony Optimization (ACO).

ACO has different applications in energy, demonstrating its

effectiveness [9], [10], [11], [12]. We use the same case

study as in [8] to compare the performance of ACO with

the centralized proposal, previously published. The realistic

case study considers nine agents trading energy in the day-

ahead LM. The research outcomes are further discussed in the

remainder of the paper and are organized as follows after this

introduction: Section II presents the optimal bidding problem

formulation; Section III describes the EC approach, namely

ACO for learning strategic bidding in LM; Section IV presents

the results and discussion; Finally, Section V fully draws the

conclusions of the research paper.
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II. PROBLEM FORMULATION

In this section, the formulation of the problem is described.

This formulation was firstly proposed in [8]. We adopt the

same formulation for the optimal bidding problem, which

consists in a day-ahead LM bidding optimization, in which

agents submit bids/offers to maximize their profits (producers)

or minimize their costs (consumers). We assume the following

type of agents: consumers, producers, and prosumers (i.e.,

consumers with generation capabilities). Also, agents have

access to the main grid, which works as a back-up system.

Therefore, agents can trade energy in the LM with prices

between the feed-in tariff (cF ) and the grid electricity tariff

(cG). It is assumed that cF < cG and therefore buy/sell energy

from the grid is less beneficial to agents than transacting

energy in the LM. Figure 1 illustrates the local market scenario

described above.
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Fig. 1: Considered LM and the grid as back-up system.

A. Bi-level optimization problem

The LM bidding is formulated as a bi-level optimization

problem. The upper-level problem is the maximization of

agents’ profits, and the lower-level problem is the maximiza-

tion of energy transacted in the LM. Hence, after determining

the clearing price, the lower-level affects the upper-level by

modifying the profits/costs of all agents.

Consider a set of consumer agents I = 1, 2, ...Nc, and

producer agents J = 1, 2, ...Np, where each agent i wants

to minimize its costs while agents j want to maximize their

profits. The upper problem, therefore, is a multi-objective

problem in which each agent wants to maximize/minimize

their profits/costs.

The optimization problem for each consumer agents (mini-

mization of costs) can be formulated as:

minimize Ci =
∑

j

cp · xj,i + cG · Ebuygrid,i (1)

where cp is the LM clearing price, xj,i contains the energy

sold by agent j to agent i in the LM, cG is the grid price, and

Ebuyi,grid is the energy bought by agent i from the grid.

On the other hand, producer agents try to maximize their

profits regarding their production marginal cost as follows:

maximize Pj =
∑

i

cp ·xj,i+cF ·Esellj,grid−cm ∗Gj (2)

where cp is the LM clearing price (equal for buyers and

sellers), xj,i contains the energy sold by agent j to agent

i, cF is the feed-in tariff, Esellj,grid is the energy sold by

agent j to the grid, and cm ∗Gj represents the marginal cost

associated to j. We assume that cm = 0 for PV generation,

and cm = cmCHP (Gj) (i.e., the marginal cost associated to a

combined heat and power (CHP) generator) is defined as a

monotone decreasing function [3]:

cmCHP (Gj) =
bCHP ·

√

Gj

Gj

(3)

where bCHP is a cost factor of the CHP generation unit and

Gj is the energy produced by the CHP.

The agents’ profits/costs are influenced by the LM clearing

price cp, which is determined in the lower-level problem and

depends on the market clearing. The lower-level problem is

formulated as an symmetric pool market, in which bids and

offers are allocated using a merit order procedure to determine

the supply and demand curves [13]. The clearing price is de-

termined as the price in which demand equals supply (i.e., the

LM clearing price). Each agent’s bid influences the LM price.

Since we are interested in increasing the overall mean profits

of the system and at the same time provide solutions that

distribute the earns among all agents, the objective function is

modeled as:

max
∑

j

(Pj)/Np −
∑

i

(Ci)/Nc (4)

where Pj and Ci are objectives in conflict since agents want

to achieve the best result for their own. In this work, we avoid

a multi-objective formulation of the problem by adopting the

summation of the individual costs. In the next section, we

describe how we adapt this equation for the implemented EC

methods, namely ACO and Vortex Search.

III. ANT COLONY FOR LEARNING STRATEGIC BIDDING IN

LM

Ant Colony Optimization (ACO) is a swarm intelligence

problem-solving approach that takes inspiration from the so-

cial behaviour of some ant species. For instance, ants deposit

pheromone on the ground to mark favourable paths to food,



that is reinforced by other members of the colony depending

on their quality. ACO exploits a similar mechanism when

solving optimization problems, reinforcing paths (solutions)

with better performance [14].

To apply the ACO algorithm to a given problem, and

adequate model is needed. In particular, for a combinatorial

optimization problem, a model P = (S,Ω, f) consists of:

• a search space S defined over a finite set of discrete

decision variables Xi, i = 1, ..., D;

• a set Ω of constraints among the variables;

• an objective function f : S ∈ R
+

The generic variable Xi can take value over the set Vi =

{v1i , ..., v
|Vi|
i }. A feasible solution s ∈ S is a complete

assignment of values that satisfies constrains in Ω. A solution

s∗ ∈ S is optimal iff: f(s∗) ≤ f(s)∀s ∈ S. In the next

subsections, we explain how ACO is used to model strategic

bidding in LM.

A. Ant Colony Optimization

Several variants of ACO have been proposed in the literature

to solve a wide range of combinatorial optimization problems.

Also, there are some modified ACO versions for the continu-

ous domain [15]. The bi-level optimization problem presented

in this work was solved by EA in [8], targeting continuous

variables for the bids/offers of quantity and prices. Different

from [8], in this work, we explore the use of ACO to learn

optimal bidding policies from a discrete set of bidding options,

and for each independent agent.

To that end, we follow the standard steps of the ACO

algorithm presented in algorithm [15]. In fact, the first ACO

algorithm was called as ant system (AS) [16], and since then,

many variants (such as the MAX-MIN Ant System [17] or

the Ant Colony System [18]) have been applied to diverse

optimization problems. In this work, we limit our study to

adapt the basic AS to the problem of bidding in local markets.

In the next subsections, we explain in detail the phases of each

iteration of our approach. We expect to explore other ACO

variants in further studies.

Algorithm 1 ACO pseudocode

1: Set parameters, initialize pheromone trails.
2: while termination condition not met do
3: Construct Ant Solutions.
4: Evaluate fitness of ants.
5: Apply Local Search (optional).
6: Update Pheromones.
7: end while

B. Solution construction phase

In the bidding optimization problem, a solution for each

agent K = {1, 2, ...Nk}, where Nk is the number of agents,

can be represented through a set of T tuples including two

variables, where T is the number of considered periods (i.e.,

T = 24 periods in the day-ahead market). Agents aim at

determining the best tuple {q(k,t), p(k,t)}∀k ∈ K, t ∈ T ,

representing the optimal price and quantity to bid in the LM for

each agent. Therefore, we define a vector ~x = {[qk,t]∪ [pk,t]}
including the bids for quantity and price that the kth agent

will send to the LM. We use a sign convention in which a

positive quantity represents a bid (i.e., buying in the market),

while a negative quantity represents an offer (i.e., selling in

the LM).

In the continuous domain, each producer agent can put a

bid of quantity in the LM within allowed bounds [0, Lmax]
(i.e., between 0 and their maximum consumption), while

producer agents can send offers within the bounds [−Pmax, 0]
(i.e., between 0 and their maximum production capacity). The

bounds for bid/offers of price are the same for all agents and

within the range [cF , cG]. Such bounds are discretized in our

application, divided the range of the bound in L equal parts (L
is assumed to be a discretization level). Therefore, the contin-

ues variables qi and pi are mapped to a discrete space q(i,l) =
{q(i,1), q(i,2), ..., q(i,L)} and p(i,l) = {p(i,1), p(i,2), ..., p(i,L)}.
This is done in order to turn the problem into a combinatorial

one that can be easily adapted to be solved by ACO.

In ACO, a set of m artificial ants constructs solutions

from elements of a finite set of available solution compo-

nents C = {qi, pj}, i = 1, ..., T , j = 1, ...T . A solution

construction starts from an empty partial solution sp = ∅.
At each construction step, the partial solution sp is extended

by adding a feasible solution component N(sp) ⊆ C (i.e., a

bid/offer of quantity and price from the available discrete set).

In ACO, the choice of a solution component is guided by a

stochastic mechanism biased by a pheromone associated with

each element N(sp). In particular, the selection of a bid/offer

of quantity and price is given by the following probabilities:

Probq(i,l) =
τα
q(i,l) · η

β

q(i,l)
∑

cqi∈N(sp) τ
α
q(i,l) · η

β

q(i,l)

(5)

Probp(i,l) =
τα
p(i,l) · η

β

p(i,l)
∑

cpi∈N(sp) τ
α
p(i,l) · η

β

p(i,l)

(6)

where the parameters α and β control the relative importance

of the pheromone (i.e., τ ) versus the heuristic information

(i.e., η). In the next subsection, we define the pheromone and

heuristic matrices used for the bidding problem.

C. Pheromone and heuristic information

A pheromone value is associated with each possible solution

component; that is, with each potential assignment of a value

to a variable. Formally, in this work the pheromone trail is

modelled as two matrices τq and τp, both of dimension T ×L,

where T is the number of periods, and L is the discrete level

(i.e., in how many parts we break the continuous bound of the

variables). The pheromone trail stores the information learned

from the ants. For this application, a pheromone trail indicates

the bid/offer of quantity and price that the agent put in the

LM for each period. The information is reinforced according

to the fitness of each ant after obtaining a complete solution.

The better the fitness, the more the reinforcement of matrices

τq and τp.



Additionally, a heuristic information matrix ηq and ηp, also

both of dimension T×L, are defined with specific information

of the problem to be solve. The heuristic information related

to the decision of quantity is defined as:

ηq(i,l) =

{

qi,l if qi,l ≥ 0 (for consumers)
|qi,L−l+1| otherwise (for producers)

(7)

where qi,l is the discrete bid/offer value of energy quantity.

As it can be observed, when qi,l ≥ 0, the matrix reinforce the

decision of buying as much as possible in the local market.

On the contrary, when qi,l < 0 (representing a producer), the

matrix is flip to favour major quantities to sell into the LM.
A similar differentiation is done for the heuristic informa-

tion of price:

ηp(i,l) =

{

1/pi,l if qi,l ≥ 0 (for consumers)
pi,l otherwise (for producers)

(8)

D. Update of pheromone trails

An update of the pheromone trails is performed at each

iteration to increase the values associated with promising

solutions, and to decrease those that are associated with bad

ones. This is typically achieved by reducing all the pheromone

values through pheromone evaporation, and by increasing the

pheromone levels related to a chosen set of good solutions in

function of the fitness in the objective function.
After the construction of all the solutions, the pheromone

trails are modified through and evaporation and reinforcement

as:

τq(i,l) ← (1− ρ) · τq(i,l) +
M
∑

m=1

∆τmq(i,l) (9)

τp(i,l) ← (1− ρ) · τp(i,l) +
M
∑

m=1

∆τmp(i,l) (10)

where ρ is an evaporation rate parameter defined by the user to

simulate the evaporation process of pheromone, and ∆τp(i,l)
and ∆τq(i,l) are the pheromone contribution of ant m to the

trace calculated as:

∆τmq(i,l) =







1/F itm if qi,l ∈ solm ∧ Fitm ≥ 0
|Fitm| if qi,l ∈ solm ∧ Fitm < 0
0 otherwise

(11)

∆τmp(i,l) =







1/F itm if pi,l ∈ solm ∧ Fitm ≥ 0
|Fitm| if pi,l ∈ solm ∧ Fitm < 0
0 otherwise

(12)

where Fitm is the fitness of the solution constructed by ant

m (denoted by solm). The inverse and absolute value are

used because the fitness is associated with the costs/profits of

each agent, which in this applications can take negative values

(representing profits). This procedure reinforces the traces of

the best solutions found. The iterative process is repeated

until a termination condition is met, such as the number of

generations.

E. Distributed ACO for each agent

The optimization problem, seen as a whole, searches for the

optimal bidding of agents in the LM to maximize their profits

(or minimize costs in the case of consumers). The definition

of ACO from the previous section can be applied to each

agent independently since each of them can have their own

pheromone matrix, and reinforce such matrix as a function of

their independent profit/cost (i.e., their fitness). Therefore, the

ACO algorithm for all the system is showed in 2.

Algorithm 2 Distributed ACO pseudocode

1: Set parameters, initialize pheromone and heuristic information
trails.

2: while termination condition not met do
3: for k = 1 : Nk do
4: for m=1:M do
5: Construct Ant Solutions.
6: end for
7: end for
8: for m=1:M do
9: Apply market clearing considering all agents.

10: Evaluate fitness of agents Fit(k,m)∀k ∈ Nk.
11: end for
12: Update Pheromones.
13: end while

Notice that the fitness evaluation is independently done by

each agent in function of Eqs. 1 and 2. However, we can also

have a measurement of the fitness of all the system, similar to

[8], by grouping the resulting fitness of all agents as:

Profits = [P1, ...Pk]∀t ∈ T (13)

This vector includes all the profits of agents, and therefore,

a combined fitness of all agents can be expressed as follows:

Fitness(~x) = −mean(Profits) + std(Profits) (14)

where mean(Profits) and std(Profits) are functions that

compute the average and standard deviation of the profits

that all agents obtained considering the bids/offers encoded

in the individual. The negative sign in the first term is

used to transform the profits maximization problem into a

minimization one. The less the value in Eq. (14), the better the

mean profits achieved by all agents. Notice that this combined

measure considers exchange of information between agents,

which in practice cannot be fulfilled if agents are not willing to

share information. However, the combined fitness is used in the

results section to evaluate the performance of ACO compared

to the best values obtained in [8].

IV. RESULTS AND DISCUSSION

This section is divided in three parts: A) case study, B) ACO

tuning of parameters, C) ACO performance and comparison

against other heuristics. The experiments were done in MAT-

LAB 2018a in a computer with Intel Xeon(R) E5-2620v2@2.1

GHz processor with 16GB of RAM running Windows 10.



A. Case Studies

We adopt the same case study used in [8], which allows a

straightforward comparison of results. The case study consid-

ers nine agents, from which 3 of them are consumers, 3 are

prosumers (i.e., consumers with PV generation capabilities),

and 3 are CHP small generators. Sample power profiles of

residential houses and PV systems are built for the case study

using the open datasets available in PES ISS website1. Three

standard house power profiles and a PV power profile (see

Fig. 2) are used to generate data of other agents using a

randomized function with uniform distribution, 20% around

the standard profiles. Fig. 2 also provides the power ranges

of the base profiles. We also consider generator agents cor-

responding to CHPs with a maximum generation capacity of

2kW and a marginal cost calculated with Eq. (3) with a factor

bCHP = 0.18 EUR/kWh [3]. Finally, feed-in and grid tariffs

are set to cF = 0.12 and cG = 0.28 EUR/kWh as in [3].
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Fig. 2: Profiles used in the case study. Ranges of power (in

kW): house 1 [0.18-0.48], house 2 [0.06-2.50], house 3 [0.07-

0.36], PV (house) [0-1].

B. ACO tuning of parameters

The ACO algorithm employed in this work has some

control parameters that can impact the performance of the

learning procedure. In particular, five parameters are fine-tuned

exploring a different range of values, namely ρ, α, β, m, and

number of iterations.

In the first set of experiments related to fine-tuning of

parameters, we fix a default set of values and explore variations

around the tuned parameters. Ten trials are done, and the

average of fitness value, as well as profits/costs of each type

of agent, are reported. Table I present the default value used

in this first experiment, as well as the tested values and

recommended one.

TABLE I: Exp1 default and tested values for ACO parameter

tuning.

Parameter Default Tested Recommendation

ρ 0.5 [0.1,0.3,0.5,0.7,0.9] 0.3
α 1 [0.5,1,2,3,4] 0.5
β 1 [0.5,1,2,3,4] 0.5
Number of ants and iteration are set to m = 10 and Iter = 100

The ρ parameter, typically in the range [0,1], is used as

an evaporation rate (see Eqs. (9) and (10)). Table II presents

the results obtained regarding average costs (negative values

indicate profits) of all agents (and by type of agents) showing

that a better fitness is achieved with ρ = 0.3, and that higher

values have an impact in the resulting fitness.

TABLE II: Evaporation rate ρ fine tuning.

ρ Costs Consumer Prosumer Producer Mean fit. Time

0.1 6.03 4.47 1.92 -0.36 3.66 0.52
0.3 5.98 4.60 1.79 -0.40 3.65 0.51
0.5 6.10 4.55 1.93 -0.39 3.71 0.52
0.7 6.33 4.70 1.97 -0.34 3.80 0.51
0.8 6.35 4.79 1.88 -0.31 3.81 0.52

The parameters α and β control the relative importance of

the pheromone versus the heuristic information in Eqs. (9) and

(10). Tables III and IV summarize the results, showing that

low values of this parameters are preferred for this application

in particular. For instance, the greater the value of these two

parameters, the worse the result in terms of fitness and costs.

Therefore, a recommended value of α = 0.5 and β = 0.5 is

provided.

TABLE III: Relative importance of pheromone α fine tuning.

α Costs Consumer Prosumer Producer Mean fit. Time

0.5 5.97 4.50 1.80 -0.32 3.61 0.52
1.0 6.10 4.55 1.93 -0.39 3.71 0.52
2.0 6.24 4.68 1.87 -0.31 3.77 0.51
3.0 6.38 4.78 1.99 -0.38 3.85 0.53
4.0 6.46 4.80 2.04 -0.38 3.89 0.55

TABLE IV: Relative importance of heuristic info β fine tuning.

β Costs Consumer Prosumer Producer Mean fit. Time

0.5 5.20 4.21 1.46 -0.48 3.30 0.50
1.0 6.10 4.55 1.93 -0.39 3.71 0.52
2.0 7.63 5.47 2.44 -0.29 4.41 0.48
3.0 8.21 5.96 2.59 -0.34 4.68 0.45
4.0 8.38 6.02 2.70 -0.34 4.76 0.44

After determining the best set of values for ρ, α and

β, we fixed these values and proceeded with a fine-tuning

of parameter m (number of ants) and Iter (iterations as

stop criteria). Table V summarize the tested values and the

recommendation achieved.
Tables VI and VII present the results of the experiments

varying the number of ants and iterations respectively. It



TABLE V: Exp2 default and tested values for ACO parameter

tuning.

Parameter Default Tested Recommendation

m 10 [5,10,20,30,40,50] 20, 40
Iter 100 [100,200,300,400,500,1000] 500,1000
Other parameters are set to ρ = 0.3, α = 0.5 and β = 0.5

can be noticed that the quality of solutions improves along

with the increase of these two parameters. However, these

two parameters, in particular, have an impact also in the

computation time, so large values should be avoided in case

the problem is scaled to larger instances. For this reason, and

this particular case, we advise selecting values in the range of

m = 20 and m = 40 which provide solutions in acceptable

times (from one to two minutes) and of acceptable quality.

The same reasoning can be done for the number of iterations,

advising a value of 500 iterations that already provide quality

solutions in half of the time of the best-found value.

TABLE VI: Number of ants m fine tuning.

m Costs Consumer Prosumer Producer Mean fit. Time

5 5.64 4.31 1.61 -0.28 3.44 0.26
10 5.68 4.30 1.67 -0.29 3.48 0.51
20 5.42 4.24 1.49 -0.31 3.33 1.07
30 5.24 4.12 1.42 -0.29 3.25 1.61
40 5.30 4.12 1.48 -0.31 3.28 2.13
50 5.27 4.15 1.36 -0.23 3.23 2.68

TABLE VII: Number of Iterations for fine-tuning.

Iter Costs Consumer Prosumer Producer Mean fit. Time

100 5.24 4.12 1.42 -0.29 3.25 1.61
200 5.26 4.13 1.42 -0.29 3.25 3.27
300 5.18 4.04 1.42 -0.28 3.22 4.98
400 5.31 4.07 1.48 -0.24 3.28 6.26
500 5.18 4.08 1.37 -0.27 3.22 7.98

1000 5.14 4.05 1.34 -0.25 3.18 15.74

C. ACO comparison and performance assessment

After defining the best set of parameters for ACO, we

compare its performance against the vortex search (VS) [19]

algorithm, which obtained the best results in [8]. VS is not

strictly speaking a population-based approach but evaluates in

each iteration a given number of neighbour solutions (NS),

which results in a given number of function evaluations

(FE) per iteration. To perform a fair comparison between

both approaches, we perform two comparisons with the same

number of FE used in [8]. Table VIII presents the setting of

iterations and population that results in an equivalent number

of FEs for both approaches. In addition, ACO parameters were

set to ρ = 0.3, α = 0.5, β = 0.5, while VS does not need any

other parameter specification.

The algorithms were run for 30 trials each, and the reported

results correspond to the mean value of those 30 trials. Table

IX presents the total costs of the system, the costs by group

of agents (i.e., consumers, prosumers, and producers), and

TABLE VIII: Setting for algorithms comparison.

NS Iter FE

VS
5 2000 10000

20 2000 40000

m Iter FE

ACO
20 500 10000
40 1000 40000

the average fitness and time required by each algorithm to

perform the optimization. The table also includes the overall

costs/profits that agents can attain in the absence of an LM

(used as a baseline). It can be seen that ACO outperforms the

results obtained with VS in terms of fitness and overall costs of

the system, in both cases. Notice, however, that VS can attain

better profits for producers as a result of the centralized ap-

proach employed that searches for fair distribution of resources

among all agents. However, despite the distributed learning

employed in ACO, producer agents can still get profits. Also,

notice that the optimization times are kept in similar ranges,

around 5 minutes for 10000 FEs and 20 minutes for 40000.

To analyze the profits obtained by independent agents, we

show plots with the individual agents’ profits. Figure 3a shows

the individual profits achieved by the agents in the baseline

case. It can be seen that in the baseline when no LM is

available, the best option for the generator agents is not selling

anything to the grid due to their associated marginal cost

being higher than the grid feed-in tariff. This turns in zero

profits/costs for them, which is bad for the system as a whole.

On the contrary, notice that the best solutions found with

ACO (Fig. 3b) and VS (Fig. 3c) achieve, on average, a lower

mean cost value, and all agents improve their situation, i.e.,

consumer agents reduce their costs while generator agents

(agents 7 to 9) and even prosumers (agents 4 to 6) obtain

some profits.

Finally, we analyze the convergence and learning behaviour

of ACO in terms of its fitness value evolution and independent

profits/costs. Fig. 4 shows the mean convergence curve and

standard deviation of the total fitness of the system using m =
20 and Iter = 500. It can be seen that the algorithm has a fast

convergence rate during the first 150 iterations, and presents

a wider standard deviation in the final stage of the iterative

process. Nonetheless, ACO attains a good average cost in all

the cases, which demonstrates its robustness.

Regarding the learning behaviour of independent agents,

Fig. 5 shows the average costs evolution during the itera-

tive procedure. It can be seen that consumer and prosumer

agents tend to convergence quickly to a low value, while for

producers, it turns out to be challenging to find a strategy

that improves their profits. This can be explained by the

fact that all agents are using the same parameters in their

evaporation/reinforcement of pheromone process. Still, their

obtained profits/cost vary from agent to agent, so the learning

profits are different. Since this is a distributed version of

ACO, in which each agent uses its own fitness function to

reinforce the pheromone and biased its decisions, it would



TABLE IX: Comparison of ACO vs. VS algorithm. The Table also include the baseline where no LM is considered.

FEs Algortihm Overall Costs (EUR)
Costs by group of agents (EUR)

Fit. Time (mins)Consumers Prosumers Producers

10000
ACO 5.24 4.10 1.45 -0.31 3.25 5.17
VS 5.77 4.79 1.76 -0.79 3.58 4.87

40000
ACO 5.06 4.02 1.33 -0.29 3.15 21.05
VS 5.29 4.57 1.58 -0.85 3.34 20.31

No LM 9.00 6.15 2.84 0.00 4.97 -

*Negative values represent profits
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Fig. 3: Overall profits achieved by individual agents. [a]

Baseline solution. [b] Best solution found with ACO using

1000 FE. [c] Best solution found with VS using 1000 FE.

Fig. 4: Average convergence and standard deviation of ACO.

make sense to tune the parameters independently for each

agent. An interesting avenue of research is advised concerning

the fine-tuning of parameters for each agent.

V. CONCLUSIONS

In this paper, a simple ACO algorithm has been applied to

solve a bi-level optimization problem that arises in the context

of LM. The problem of competitive agents is not trivial since

all agents search for a maximization/minimization of their own

profits, modifying the clearing price with their actions, and

affecting other agents’ decisions. The problem was previously

solved with a centralized approach in which the share of

information was assumed. However, in practice, agents aim

at the definition of a bidding strategy without sharing infor-

mation with their peers. Therefore, we have implemented a

distributed version of ACO in which each agent reinforce its

own pheromone matrix based on its profit/cost. In this way,

agents are able to learn their own bidding strategies, while

the whole system converges to a better overall fitness value.

As further work, independent definition of ACO parameters

for each agent can be explored, since it is expected that

the learning rate varies from agent to agent. Also, advanced

versions of ACO, such as the min-max ACO or the ACsystem

can be implemented under this framework. The application of

such model using distributed computing platforms and more

realistic scenarios is also worth to be explored.
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Fig. 5: Learning behavior of independent agents using ACO.
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