A Novel General Variable Neighborhood Search through Q-Learning for No-Idle Flowshop Scheduling

Hande Öztop Department of Industrial Engineering Yasar University Izmir, Turkey hande.oztop@yasar.edu.tr Mehmet Fatih Tasgetiren Department of International Logistics Management Yasar University Izmir, Turkey fatih.tasgetiren@yasar.edu.tr

Abstract— In this study, a novel general variable neighborhood search through Q-learning (GVNS-QL) algorithm is proposed to solve the no-idle flowshop scheduling problem with the makespan objective. In the outer loop of the GVNS-QL, insertion, and exchange operators are used to shaking the permutation. On the other hand, in the inner loop of variable neighborhood descent procedure, variable iterated greedy and variable block insertion heuristic algorithms are employed with two effective insertion local search procedures. The proposed GVNS-QL defines the parameters of the algorithm using a Q-learning mechanism. The developed GVNS-OL algorithm is compared with the traditional iterated greedy (IG) algorithm using the well-known benchmark set. The comprehensive computational experiments show that the GVNS-QL outperforms the traditional IG algorithm. The results of the IG and GVNS-QL algorithms are also compared with the current best-known solutions reported in the literature. The computational results show that the proposed GVNS-QL algorithm improves the current best-known solutions for 104 out of 250 instances.

Keywords— no-idle flowshop scheduling problem; makespan; general variable neighborhood search; Q-learning; variable iterated greedy; variable block insertion.

I. INTRODUCTION

In a flowshop, a set of n jobs are processed on m serial machines following the same route, generally, machine l, machine $2, \ldots$, machine m. It is generally assumed that job preemption is not allowed and, all machines and jobs are ready at time zero. In the Permutation Flowshop Scheduling Problem (PFSP), once a job order (permutation) is determined on the first machine, this job order is employed for all machines, i.e., each machine processes the jobs with the same job permutation. Then, the PFSP aims to find the job permutation that optimizes a given performance criterion. The PFSP is well-known to be NP-hard [1].

In this study, we focus on an extension of the PFSP, in which idle time is not permitted between the jobs on the machines. This variant of the PFSP is known as the No-Idle Flowshop Scheduling Problem (NIFSP). In many real production environments such as foundries, integrated circuits, and fiberglass, once the machines start to process the jobs, the idle time is undesirable, as expensive machines are used. In this paper, we study the *m*-machine (*Fm*) no-idle permutation flowshop scheduling problem with the makespan (C_{max})

Levent Kandiller Department of Industrial Engineering Yasar University Izmir, Turkey levent.kandiller@yasar.edu.tr Quan-Ke Pan School of Mechatronic Engineering and Automation Shanghai University Shanghai, China panquanke@shu.edu.cn

objective, namely, $Fm|prmu, no - idle|C_{max}$. Accordingly, the goal is to obtain the best job permutation that minimizes the makespan (maximum completion time). The NIFSP has also been proven to be NP-hard [2].

Many exact and heuristic solution approaches have been proposed to solve the NIFSP. Vachajitpan [3] developed a mixed-integer programming model and a Branch & Bound (B&B) algorithm for the NIFSP with the makespan criterion. Afterward, a B&B approach was also developed for the NIFSP by Saadani et al. [4]. Since these B&B methods can only be used to solve small-sized problems, heuristic methods have been generally addressed to solve the NIFSP. Adiri and Pohoryles [5] developed a polynomial-time heuristic method to solve the NIFSP with two machines considering the total completion time criterion, and revealed that 2-machine no-idle PFSP and 2machine PFSP are the same for the makespan objective. The NIFSP with the makespan criterion was formulated as an asymmetric traveling salesman problem in [6], where the authors presented the nearest insertion rule-based heuristic method. An efficient constructive heuristic was also presented by Kalczynski and Kamburowski [7] for the NIFSP with the makespan objective. Later, a two-stage improved greedy algorithm was presented for the same problem [8].

Furthermore, discrete differential evolution (DDE) and hybrid discrete particle swarm optimization (HDPSO) algorithms were proposed for the NIFSP with the makespan objective [9, 10]. In these two papers, a speed-up approach was developed for the insertion neighborhood to decrease the time complexity from $O(n^3m)$ to $O(n^2m)$. Ruiz et al. [11] assessed the performance of the iterated greedy (IG) algorithm to solve the NIFSP with the makespan objective, and according to their results, the IG outperforms the DDE and the HDPSO. The benchmark instances were also presented for the NIFSP in [11]. A hybrid discrete differential evolution (HDDE) algorithm was also developed for the same problem by [12], and according to their results, the HDDE outperforms the DDE, HDPSO, and IG algorithms. A variable iterated greedy algorithm with differential evolution was also developed by Tasgetiren et al. [13] for the NIFSP with the makespan and total flowtime criteria. Later, an invasive weed optimization (IWO) algorithm was presented by [14] for the NIFSP, and their results, which are based on the benchmark set of [15], show that the IWO outperforms the IG and HDPSO. Recently, a memetic algorithm was developed by [16] for the NIFSP with the makespan

objective, where the authors compared their algorithm with the other well-known heuristics from the literature. They improved 89 out of the 250 best solutions presented for the benchmark instances of [11].

Additionally, Tasgetiren et al. [17] presented a discrete artificial bee colony algorithm and Shao et al. [18] developed a hybrid discrete teaching-learning based metaheuristic for the NIFSP with the total tardiness criterion. As other extensions of the NIFSP, a two-stage memetic algorithm was proposed for the distributed NIFSP by [19]. Later, a mathematical model and heuristic algorithms were developed for the mixed NIFSP with sequence-dependent setup times in [20].

Mladenovic and Hansen [21] presented a Variable Neighborhood Search (VNS) by employing changes in the neighborhood systematically. Afterward, the VNS was extended by Hansen et al. [22] as a General Variable Neighborhood Search (GVNS) algorithm. The GVNS has been effectively applied to solve a variety of problems such as single machine scheduling problem [23], the NIFSP [24], distributed PFSP [25] and distributed no-wait flowshop scheduling problem [26]. Note that, insertion, swap, IG and iterated local search algorithms are used in the GVNS of [24].

Inspired by the abovementioned effective applications of the GVNS in various scheduling problems, this study presents a novel GVNS algorithm, called as GVNS-QL, for the NIFSP with the makespan criterion by incorporating a Q-learning mechanism. In the developed GVNS-QL, the initial solution is obtained by using the FRB5 constructive heuristic. Insertion and exchange operators are used in the outer loop, whereas an effective Variable IG (VIG_{ALL}) and an effective Variable Block Insertion Heuristic (VBIH) are used in the inner loop of the Variable Neighborhood Descent (VND) phase.

The Q-learning (QL) is one of the well-known reinforcement learning algorithms. The QL aims to choose an appropriate action based on experience. In the QL, once the learner performs a chosen action, it obtains a reward or penalty. Then, it learns to choose the best action to perform by assessing the action alternatives using the cumulative rewards (Q-values). We use the QL approach to choose the parameters of the algorithm. Namely, parameters are determined through a Q-learning approach in the proposed GVNS-QL, instead of using constant parameter values. We compare the performance of the developed GVNS-QL algorithm with the well-known IG algorithm using the benchmarks from the literature. Then, we compare the results of these algorithms with the current bestknown solutions reported in the literature. The rest of the paper is organized as follows. In Section 2, the NIFSP is explained formally. In Section 3, the developed GVNS-QL algorithm is described. In Section 4, computational results are presented. Finally, in Section 5, conclusions and future research directions are provided.

II. PROBLEM DEFINITION

The NIFSP can be described as follows: a set of n jobs $J = \{1, 2, ..., n\}$ must be processed on a set of m machines $M = \{1, 2, ..., m\}$ in the same order. Each job has m operations, where k^{th} operation of job j must be processed on machine k

with a given processing time p_{jk} without an interruption. Each job can be processed by only one machine and each machine can process only one job, at a time. All machines process the jobs with the same job permutation. Idle time is not allowed between two subsequent job operations on the same machine. All jobs are ready at the beginning. The goal is to obtain the best job permutation that minimizes the makespan.

Let $\pi = {\pi_1, \pi_2, ..., \pi_n}$ represent the job permutation and $\pi_j^E = {\pi_1, \pi_2, ..., \pi_j}$ represent a partial order of π such that 1 < j < n. Additionally, $F(\pi_j^E, k, k + 1)$ denotes the minimum difference between the completion time of processing the last job of π_j^E on machines k + 1 and k, which is limited by the noidle constraint. Consequently, the makespan C_{max} can be calculated as follows, where $p_{\pi_j,k}$ denotes the processing time of job π_j on machine k:

$$F(\pi_1^E, k, k+1) = p_{\pi_1, k+1} \quad k = 1, 2, \dots, m-1$$
(1)

$$F(\pi_j^E, k, k+1) = \max\{F(\pi_{j-1}^E, k, k+1) - p_{\pi_j, k}, 0\} + p_{\pi_j, k+1} \quad j = 2, 3, \dots, n \quad k = 1, 2, \dots, m-1$$
(2)

$$C_{max} = \sum_{k=1}^{m-1} F(\pi_n^E, k, k+1) + \sum_{j=1}^n p_{\pi_j, 1}$$
(3)

III. GENERAL VARIABLE NEIGHBORHOOD SEARCH ALGORITHM THROUGH Q-LEARNING

The VNS is an effective heuristic procedure that uses a multi neighborhood structure during the search. The VNS has two core phases: (1) shaking phase that perturbs the solution to escape from local optima, and (2) local search phase that explores the neighborhood of the solution by employing the given neighborhood structures. The VNS has a set N_k of neighborhood structures, where $k = 1, 2, ..., k_{max}$. In the VNS, the solution is initialized randomly or using a constructive heuristic. Then, shaking and local search phases are employed on the solution until the stopping criterion is satisfied, where the stopping criterion can be defined as the maximum CPU time or the maximum number of iterations. Later, an extended version of the VNS, named as GVNS, was proposed by [22]. In the GVNS, the local search phase of the VNS is replaced with a VND algorithm, which is a deterministic version of the VNS, where the change of neighborhoods is performed in a deterministic way.

In this study, we propose a novel GVNS algorithm through Q-learning, i.e. GVNS-QL, where the algorithm parameters are determined through a Q-learning approach. Namely, values of the following parameters are updated through the GVNS procedure using a QL mechanism: ϵ (ϵ jumping probability), τP (parameter of the acceptance criterion), d_{max} (maximum destruction/block size), lf (learning factor of the Q-learning function) and df (discount factor of the Q-learning function). In the QL mechanism, once an action (parameter setting) is performed, a reward or penalty is obtained for that action. Then, the algorithm learns to choose the best action to perform for each parameter by assessing the action alternatives based on their cumulative rewards (Q-values). The details of the QL strategy are explained in Section III.C.

The main framework of the proposed GVNS-QL algorithm is outlined in Fig. 1, where U(0,1) is a uniform random number in between 0 and 1. As shown in Fig.1, the GVNS-QL has two main neighborhood parameters: k_{max} the number of neighborhoods employed in the outer loop and q_{max} the number of neighborhoods used in the inner (VND) loop. In this study, we set $q_{max} = 2$ and $k_{max} = 2$. As shown in Fig. 1, the initial solution is obtained by the FRB5 constructive heuristic [27], which is an extended version of the NEH heuristic [28]. Then, the initial parameter values of the algorithm are determined randomly. In the shaking part, insertion and exchange operators are employed in the outer loop. For the inner loop of VND, two powerful algorithms, namely, VIGALL and VBIH algorithms are used. In the proposed GVNS-QL, if the new solution is better than the incumbent solution, it is accepted and the O-values of the performed actions are updated in the Q-value table for the parameters according to a Q-learning function. Otherwise, a simulated annealing-type acceptance criterion [29] with a temperature T is employed to decide whether the new permutation is accepted or not. T is calculated by equation (4), where τP is a parameter to be adjusted:

$$T = \frac{\sum_{j=1}^{n} \sum_{k=1}^{m} p_{jk}}{10nm} \times \tau P$$

$$\frac{GVNS - QL}{\pi = FRB5, \pi^{best} = \pi, k_{max} = 2}$$
(4)

 π, κ_{max} Do{ Initialize actions of parameters randomly from action list k = 1Do{ If (k = 1) then $\pi^1 = Insertion(\pi)$ If (k = 2) then $\pi^1 = Exchange(\pi)$ $\pi^2 = VND(\pi^1)$ If $f(\pi^2) < f(\pi)$ $\pi = \pi^2$ k = 1Update the Q-value table with a reward of $(1/f(\pi))$ Else k = k + 1 $If (U(0,1) < exp\{-(f(\pi^2) - f(\pi))/T\})$ $\pi = \pi^2$ Endif Endif $While(k \le k_{max})$ $If\left(f(\pi) < f(\pi^{best})\right)$ $\pi^{best} = \pi$ Endif }While(NotTermination) Return π^{best}

Fig. 1. GVNS through Q-learning

The VND algorithm of the proposed GVNS-QL is explained in Fig. 2. As shown in Fig. 2, the parameter values are selected at each iteration using a QL strategy. Namely, the actions are determined for the parameters either randomly with a jumping probability ϵ or according to the Q-values of the actions, i.e., the actions with the maximum Q-values are selected. As seen in Fig. 2, VIG_{ALL} and VBIH algorithms are employed in the VND. Then, a similar acceptance procedure as in the main GVNS-QL is employed, where Q-values of the performed actions are also updated for the parameters according to a Qlearning function. FRB5 constructive heuristic, VIG_{ALL} , VBIH and QL procedures are explained in the following subsections.

VND	(π)
-----	---------

 $q = 1, q_{max}=2$

 $Do\{If(U(0.1) < \epsilon)$

 $Determine\ actions\ of\ parameters\ randomly\ from\ action\ list\ Else$

Determine actions of parameters according to Q-values in Q-value table

If $(q = 1)$ then $\pi^1 = VIG_{ALL}(\pi, d_{max})$
If $(q = 2)$ then $\pi^1 = VBIH(\pi, d_{max})$
$If f(\pi^1) < f(\pi)$
$\pi = \pi^1$
q = 1
Update the Q-value table with a reward of $(1/f(\pi))$
Else
q = q + 1
$If (U(0,1) < exp\{-(f(\pi^{1}) - f(\pi))/T\})$
$\pi = \pi^1$
Endif
Endif
$While(q \le q_{max})$
Return π and $f(\pi)$

Fig. 2. VND Algorithm

A. Constructive Heuristic

The developed GVNS-QL uses the well-known FRB5 heuristic [27] as a constructive heuristic. The FRB5 heuristic contains an extra local search compared to the NEH heuristic. In the FRB5 heuristic, initially, jobs are sorted in decreasing order of their total processing times and a partial solution is initialized with γ_1 similar to the NEH. Then, the rest of the jobs in γ are sequentially inserted into the partial solution, where an insertion local search is employed on the partial solution at each iteration. The FRB5 heuristic is explained in Fig. 3.

FRB5 Heuristic	
$\gamma = DecreasingOrder(\sum_{k=1}^{m} p_{jk})$	
$\pi_1 = \gamma_1$	
for z = 2 to n do	
$\pi = InsertJobInBestPosition(\pi, \gamma_z)$	
$\pi = LocalSearch(\pi)$	
endfor	
return π and $f(\pi)$	
Fig. 3. FRB5 heuristic	

B. VIG_{ALL} and VBIH Algorithms

Recently, the traditional IG [30] has been successfully extended to an IG_{ALL} algorithm by [31]. Similar to the IG algorithm, a destruction-construction procedure is employed in the IG_{ALL} as follows. In the destruction part, d jobs are randomly removed from the permutation π and kept in π^d , while the rest of the jobs are kept in π^p . In the construction part, the removed jobs in π^d are sequentially inserted into the partial solution π^p according to the best insertion approach. Unlike the IG, the IG_{ALL} applies an insertion local search (Fig. 4) to the partial solution before the construction part, as long as the solution is improved. As shown in Fig. 4, the insertion local search removes the job π_i from the solution π randomly, and inserts it into all positions of π . Once the best insertion is found, the job π_i is inserted into that position. These steps are repeated for all jobs. If an improvement is found, the local search is restarted until no improving solution is generated.

Insertion Local Search (π)
for j = 1 to n do
$\pi^* = InsertJobInBestPosition(\pi, \pi_i)$
$if f(\pi^*) < f(\pi)$
$\pi=\pi^*$
endif
endfor
return π and $f(\pi)$

Fig. 4. Insertion local search

In this paper, we propose a variable IG_{ALL} algorithm, named as VIG_{ALL} , as one of the strategies of the VND algorithm. As shown in Fig. 5, the VIG_{ALL} algorithm takes the solution and the maximum destruction size (d_{max}) from the VND procedure, where the d_{max} parameter is determined through a QL mechanism. In the beginning, the destruction size is set as d =1, and increased by one if the solution is not improved until the *d* reaches at d_{max} . Note that, if the solution improves at any *d* value, the destruction size *d* is reset to one. The VIG_{ALL} algorithm applies destruction-construction and local search procedures to the solution, respectively. While the insertion local search is employed on the partial solution π^p as long as it is improved, the referenced insertion scheme (RIS) and insertion local search procedures are employed on the complete solution π^1 in another VND loop, i.e. Local Search_VND (Fig. 7).

$do = \pi^d \pi^p = Destruction(\pi d)$
$\pi^d \pi^p = Destruction(\pi d)$
n n = D(S(n(n(n(n(n(n(n(n(n(n(n(n(n(n(n(n(n(n(
π^p = Insertion Local Search (π^p)
$\pi^1 = Construction(\pi^d, \pi^p)$
$\pi^2 = Local Search_VND(\pi^1)$
$if\left(f(\pi^2) < f(\pi)\right)$
$\pi = \pi^2, d = 1$
else
d = d + 1
endif
while $(d \le d_{max})$
return π and $f(\pi)$

```
Fig. 5. VIG<sub>ALL</sub> algorithm
```

Another strategy of the VND is the VBIH algorithm, which takes the solution and the maximum block size (d_{max}) from the VND procedure, where the d_{max} parameter is determined through a QL mechanism. The VBIH algorithm employs block insertion and local search procedures on a solution as shown in Fig. 6, where d denotes the block size. At the beginning, the block size is set as d = 1. In the VBIH algorithm, d consecutive jobs (π^d) , i.e. block, are removed from the order π , where the rest of the jobs construct a partial solution (π^p) . Then, an insertion local search (Fig. 4) is employed on the partial solution, as long as the solution is improved. Then, block insertion moves are applied to the partial solution and the best move is chosen. Afterward, similar to the VIGALL algorithm, two local search procedures are applied to the complete solution in a VND loop, i.e. Local Search_VND, which is explained in Fig. 7. If the new solution after the local search procedures is better than the current one, the VBIH replaces the current solution and the block size is reset to one. Otherwise, the block size is incremented by one. These steps are reiterated until the maximum block size is reached.

$/BIH(\pi, d_{max})$
l = 1
do
π^d , $\pi^p = Remove \ block \ with \ d \ jobs \ from \ \pi$
π^p = Insertion Local Search (π^p)
$\pi^1 = InsertBlockInBestPosition(\pi^d, \pi^p)$
$\pi^2 = Local Search_VND(\pi^1)$
if $(f(\pi^2) < f(\pi))$ then do
$\pi = \pi^2, \ d = 1$
else
d = d + 1
endif
while $(d \le d_{max})$
teturn π and $f(\pi)$

Fig. 6. VBIH algorithm

Local Search_VND procedure of the VIG_{ALL} and VBIH algorithms are outlined in Fig. 7. As seen in Fig. 7, the RIS and insertion local search procedures are employed in the Local Search_VND, where the RIS refers to a Referenced Insertion Scheme [32], which is explained in Fig. 8.

Local Search_VND (π)
$u_{max} = 2, u = 1$
do{
If $(u = 1)$ then $\pi^1 = RIS(\pi, \pi^{best})$
If $(u = 2)$ then π^1 = Insertion Local Search (π)
$If f(\pi^1) < f(\pi)$
$\pi = \pi^1, \ u = 1$
else
u = u + 1
endif
$while(u \le u_{max})$
return π and $f(\pi)$

Fig. 7. Local Search_VND procedure

In the RIS, π^R represents the reference order, which is the best permutation obtained so far. As shown in Fig.8, the RIS chooses the first job in π^R and finds the best position for this job in the current solution π , by inserting it into all possible positions of the solution π . Then, it chooses the second job in π^R and finds the best position for this job in the current solution π . The iteration counter (*c*) is reset to one if an improvement occurs. Otherwise, it is incremented by one. These steps are applied until the iteration counter exceeds *n*.

$RIS(\pi,\pi^{best})$
$\pi^R = \pi^{best}, h = 1, c = 1$
$while (c \le n) do$
k = 1
while $(\pi_k \neq \pi_h^R)$
k = k + 1
end while
h = (h+1)(mod)n
remove job π_k from π
$\pi^1 = insert \ job \ \pi_k \ into \ the \ best \ position \ in \ \pi$
$if(f(\pi^1) < f(\pi))$ then
$\pi = \pi^1, c = 1$
else
c = c + 1
endif
endwhile
return π and $f(\pi)$

Fig. 8. RIS local search

C. Q-Learning Procedure

The Q-learning (QL) is one of the widely used reinforcement learning algorithms. The QL aims to choose an appropriate action based on experience by interacting with the environment. Once the agent (learner) performs a chosen action, it obtains a reward or penalty. Then, it learns to choose the best action to perform by assessing the action alternatives using the cumulative rewards (Q-values).

The Q-value can be calculated for each state-action pair by a Q-learning function given in equation (5) [33]. Then, Q-values are kept for all state-action pairs in a Q-value table. Let $S = [s_1, s_2, ..., s_p]$ be the set of states, $A = [a_1, a_2, ..., a_p]$ be the set of actions, r_{t+1} be the reward, $lf \in [0,1]$ be the learning factor, $df \in [0,1]$ be the discount factor and $Q(s_t, a_t)$ be the Q-value at time t. The learner aims to maximize its total reward.

$$Q_{t+1}(s_t, a_t) =$$

 $Q(s_t, a_t) + lf[r_{t+1} + df * max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$ (5)

In the GVNS-QL algorithm, we assume that there is only one state for each parameter, where the reward is the $1/C_{max}$ value. As mentioned at the beginning of Section 3, we determine the ϵ , τP , d_{max} , lf and df parameters of the GVNS-QL algorithm using a QL approach. Namely, at each iteration, we update the Q-values of the chosen actions for the parameters through the Q-learning function. Then, in the next iteration, the algorithm chooses the best action (value) for each parameter with the maximum Q-value. Note that, in the GVNS-QL algorithm, we also choose the actions of the parameters randomly with a small ϵ jumping probability. The action list of each parameter is given in Table 1.

 TABLE I.
 ACTION LIST OF THE PARAMETERS

Parameter	Action List	
ϵ	$\{0.05, 0.10, 0.15, 0.20\}$	
τP	$\{0.1, 0.2, 0.3, 0.4, 0.5\}$	
d_{max}	$\{2, 3, 4, 5\}$	
lf	$\{0.2, 0.4, 0.6, 0.8, 1\}$	
df	$\{0.2, 0.4, 0.6, 0.8, 1\}$	

D. IG Algorithm

The IG algorithm is one of the state-of-the-art heuristic algorithms in the literature, and it has been applied effectively to various scheduling problems such as permutation flowshops [30], hybrid flowshops [32, 34] and no-idle flowshops [11]. In this paper, we compare the proposed GVNS-QL algorithm with the well-known IG algorithm. In the traditional IG algorithm [30], the initial solution is generated using the NEH heuristic [28]. Afterward, a destruction-construction procedure is employed on the solution as follows. In the destruction part, d jobs are randomly removed from the permutation π and kept in π^d , and in the construction part, the removed jobs in π^d are sequentially inserted into the partial solution π^p . Then, an insertion local search is applied to the complete solution, as explained in Fig. 4. If an improvement is found, the local search is restarted until no improving solution is generated. Finally, the new solution is accepted using a simulated annealing-type acceptance criterion with a constant temperature T [29].

IV. COMPUTATIONAL RESULTS

In this paper, we present a novel GVNS-QL algorithm for the NIFSP with the makespan criterion. In order to assess the performance of the developed GVNS-QL, we use the benchmark set provided by [11] at http://soa.iti.es/rruiz. There are 250 problems in the set, containing all combinations of n ={50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and m ={10, 20, 30, 40, 50}, where there are five problems for each combination of n and m.

In this paper, we compare the developed GVNS-QL algorithm with the well-known IG algorithm. Both IG and GVNS-QL algorithms are coded in C++ programming language on Microsoft Visual Studio 2013 and run on an Intel Core-i9 3.10 GHz computer with 32 GB memory. For each algorithm, five independent replications are conducted for each instance. In each replication, both algorithms are run for 30*nm* milliseconds, where *n* represents the number of jobs and *m* indicates the number of machines. In the IG algorithm, we use d = 4 and $\tau P = 0.4$ settings as proposed by the authors in [30]. For each algorithm, the relative percentage deviation (RPD) is computed for each instance by equation (6):

$$RPD = \frac{H - BS}{BS} \times 100 \tag{6}$$

where H indicates the makespan obtained by any of the heuristic algorithms for a given instance, and BS is the best-known result provided by [16]. The average RPD values over five replications are computed for each heuristic, along with the minimum, maximum, and standard deviation values. Afterward, the average relative percentage deviations (ARPD) are calculated for each instance group with the same instance size. Table 2 provides the ARPD values for each heuristic, classified by n and m, over five instances.

As shown in Table 2, the GVNS-QL outperforms the IG algorithm in terms of the maximum, minimum, and average ARPD values. The overall average ARPD value is 0.25% for the IG algorithm, whereas it is 0.09% for the GVNS-QL over 250 benchmark problems. In Table 2, the best average ARPD values among the two algorithms is denoted in bold for each instance set. The GVNS-QL has better average ARPD values than the IG algorithm for 42 out of 50 instance classes, where both algorithms have the same average ARPD values for the rest of the instance classes.

To evaluate the performance of the two algorithms statistically, we carried out a Wilcoxon signed-rank test with the significance level of $\alpha = 0.05$, based on the results in Table 2. Let m_D denotes the median of the difference between the average ARPDs of the two algorithms. The null hypothesis $H_0: m_D = 0$ indicates that there is no statistically significant difference between the average ARPDs of the two compared algorithms and the alternative hypothesis $H_1: m_D \neq 0$ indicates that there is a statistically significant difference between them. Since the *p*-value of the Wilcoxon signed-rank test is zero, it can be said that the difference between the IG and GVNS-QL algorithms is statistically significant at the $\alpha = 0.05$ level. We also provide the interval plot of the two algorithms in Fig. 9. As shown in Fig. 9, the GVNS-QL is statistically better than the IG algorithm, since their confidence intervals do not overlap.

Furthermore, Table 3 reports the best results found by the heuristic algorithms for each instance, where the BS column represents the current best-known results provided by [16]. As seen in Table 3, the IG algorithm obtains a makespan result that is less than or equal to the current BS value for 129 instances. However, the GVNS-QL finds a makespan result that is less than or equal to the current BS value for 207 instances. The GVNS-QL improves the current BS results for 104 instances, whereas the IG improves the current BS results for 39 instances. In Table 3, the new best results found by the IG and GVNS-QL are emphasized in bold. Consequently, it can be said that the developed GVNS-QL is very effective to solve the NIFSP with the makespan criterion.

Fig. 9. Interval plot of the algorithms

TABLE II.	COMPUTATIONAL RESULTS OF IG AND GVNS-OL
1110000	

		IG				GVNS-QL					
п	т	ARPD (%)				ARPD (%)					
		Avg.	Min.	Max.	Std. Dev.	Avg.	Min.	Max.	Std. Dev.		
50	10	0.01	-0.01	0.05	0.02	-0.01	-0.01	-0.01	0.00		
	20	0.16	0.02	0.28	0.11	0.06	0.01	0.10	0.04		
	30	0.40	0.06	0.82	0.31	0.24	0.14	0.34	0.09		
	40	0.95	0.53	1.28	0.31	0.41	0.03	0.79	0.28		
	50	2.59	1.75	3.28	0.61	1.18	0.92	1.57	0.27		
100	10	0.07	0.01	0.13	0.06	0.03	0.02	0.08	0.03		
	20	0.17	0.01	0.36	0.17	0.03	0.00	0.04	0.02		
	30	0.15	-0.01	0.38	0.15	0.05	-0.03	0.22	0.11		
	40	0.94	0.27	1.65	0.51	0.26	-0.01	0.64	0.28		
	50	0.68	0.26	1.23	0.41	0.17	-0.03	0.46	0.20		
150	10	0.01	0.01	0.01	0.00	0.01	0.01	0.01	0.00		
	20	0.11	0.03	0.27	0.09	0.02	-0.01	0.07	0.03		
	30	0.20	0.09	0.39	0.13	0.04	-0.01	0.15	0.07		
	40	0.33	0.18	0.57	0.16	0.11	-0.04	0.26	0.13		
200	50	0.35	0.11	0.76	0.26	0.09	-0.01	0.27	0.12		
200	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	20	0.06	0.03	0.13	0.04	0.03	0.01	0.06	0.02		
	30	0.29	0.01	0.52	0.22	0.16	0.08	0.31	0.10		
	40	0.37	0.20	0.64	0.19	0.12	0.04	0.24	0.09		
250	50	0.40	0.12	0.72	0.24	0.08	-0.02	0.21	0.09		
250	10	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00		
	20	0.06	0.01	0.14	0.06	0.03	0.00	0.08	0.04		
	30	0.17	0.08	0.33	0.11	0.08	0.01	0.15	0.06		
	40	0.21	0.02	0.42	0.15	0.08	0.01	0.16	0.06		
200	50	0.28	0.03	0.53	0.21	0.09	-0.01	0.22	0.10		
300	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	20	0.04	0.01	0.07	0.03	0.01	-0.01	0.02	0.01		
	30	0.10	0.04	0.19	0.07	0.03	-0.01	0.06	0.03		
	40	0.28	0.12	0.31	0.17	0.09	0.02	0.18	0.07		
250	30	0.45	0.11	0.82	0.28	0.11	0.01	0.24	0.10		
330	10	0.01	0.01	0.03	0.01	0.01	0.00	0.01	0.00		
	20	0.00	0.04	0.11	0.05	0.01	0.00	0.03	0.01		
	30	0.08	0.01	0.14	0.03	0.05	-0.01	0.10	0.03		
	40	0.27	0.14	0.41	0.12	0.00	0.00	0.10	0.07		
400	10	0.23	0.10	0.39	0.12	0.07	-0.02	0.22	0.10		
400	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	30	0.16	0.00	0.10	0.04	0.04	-0.01	0.09	0.04		
	40	0.16	0.03	0.27	0.09	0.07	-0.02	0.09	0.04		
	50	0.10	0.07	0.50	0.19	0.04	-0.02	0.09	0.04		
450	10	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
150	20	0.09	0.03	0.00	0.06	0.00	0.00	0.00	0.03		
	30	0.09	0.05	0.15	0.00	0.06	-0.01	0.13	0.05		
	40	0.19	0.06	0.38	0.13	0.04	-0.01	0.10	0.05		
	50	0.24	0.07	0.37	0.12	0.13	0.02	0.22	0.08		
500	10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	20	0.02	0.00	0.03	0.01	0.01	0.00	0.02	0.01		
	30	0.12	0.04	0.23	0.08	0.03	-0.01	0.06	0.03		
	40	0.20	0.05	0.34	0.12	0.05	0.01	0.08	0.03		
	50	0.21	0.03	0.37	0.14	0.03	-0.03	0.12	0.06		
Average		0.25	0.10	0.42	0.13	0.09	0.02	0.18	0.06		

 TABLE III.
 BEST RESULTS FOR THE BENCHMARKS

Instance	BS [16]	IG	GVNS-QL	Instance BS [16] IG	GVNS-QL	Instance B	BS [16]	IG	GVNS-QL	Instance BS [16	IG	GVNS-QL
50-10-1	4127	4127	4127	150-40-1 15956	15999	15955	300-20-1	18837	18836	18833	400-50-1 37778	37832	37774
50-10-2	4283	4283	4283	150-40-2 18075	18140	18074	300-20-2 2	22032	22032	22032	400-50-2 38211	38213	38210
50-10-3	3262	3262	3262	150-40-3 16351	16348	16347	300-20-3 2	20229	20228	20227	400-50-3 37651	37715	37641
50-10-4	3217	3216	3216	150-40-4 14555	14580	14533	300-20-4	19483	19490	19483	400-50-4 40436	40450	40441
50-10-5	3470	3470	3470	150-40-5 17208	17225	17208	300-20-5 2	20705	20705	20705	400-50-5 35426	35412	35418
50-20-1	5646	5646	5646	150-50-1 20298	20347	20315	300-30-1 2	26487	26487	26487	450-10-1 23987	23987	23987
50-20-2	5814	5814	5814	150-50-2 19115	19103	19104	300-30-2 2	24260	24291	24260	450-10-2 26277	26277	26277
50-20-3	5793	5793	5793	150-50-3 19306	19305	19301	300-30-3 2	24363	24368	24368	450-10-3 25849	25849	25849
50-20-4	5795	5795	5799	150-50-4 20131	20181	20131	300-30-4 2	23705	23710	23688	450-10-4 26910	26910	26910
50-20-5	4869	4874	4869	150-50-5 19241	19270	19235	300-30-5 2	22544	22549	22542	450-10-5 25191	25191	25191
50-30-1	7223	7220	7235	200-10-1 12155	12155	12155	300-40-1 2	26572	26588	26569	450-20-1 27512	27539	27512
50-30-2	7330	7330	7337	200-10-2 12227	12227	12227	300-40-2 2	29158	29250	29166	450-20-2 2/924	27924	27924
50-30-3	6844	6869	6868	200-10-3 12595	12393	12595	300-40-3 4	25261	25268	25268	450-20-3 28/69	28/19	28/69
50-30-4	/5/1	/5/1	/5/8	200-10-4 12301	12301	12301	300-40-4	2/438	2/456	2/442	450-20-4 28446	28446	28446
50-30-5	/333	/333	/333	200-10-5 120/6	120/6	12076	300-40-5 4	28/60	28/91	28//1	450-20-5 28539	28539	28539
50-40-1	9130	9215	9126	200-20-1 14840	14804	14854	300-50-1 3	31322	3134/	31513	450-30-1 35123	30100	35123
50 40 2	0765	10103	10107	200-20-2 14080	14080	14080	300-30-2 2	29337	29349	29351	450-30-2 32492	21077	324//
50 40 4	9/03	9801	9/6/	200-20-3 10113	10113	10113	300-30-3 3	20034	22102	30033	450-30-5 51950	22722	22601
50 40 5	9495	9504	9496	200-20-4 13972	1/170	13972	300-30-4	2202	20072	20006	450 20 5 22614	22602	22610
50 50 1	11064	11715	11522	200-20-3 14174	141/0	14170	300-30-3 2	10207	10202	10200	450 40 1 20547	20547	20525
50 50 2	1004	10024	10854	200-30-1 17034	16084	17031	350 10 2	19297	21216	21217	450 40 2 35020	25058	35035
50 50 2	10871	10934	10847	200-30-2 10932	10964	17055	350-10-2 2	21310	21310	21317	450 40 2 37704	33938	33937
50-50-3	0858	0012	0800	200-30-3 17420	10083	10081	350-10-3 2	21350	21350	21350	450-40-4 37596	37668	37594
50-50-5	11316	11/22	11304	200-30-5 17966	17968	17962	350-10-4 2	21759	20501	20591	450-40-5 35681	35681	35680
100-10-1	6570	6570	6575	200-40-1 19895	19890	19889	350-20-1	25413	25417	25413	450-50-1 37287	37311	37274
100-10-1	5798	5802	5798	200-40-2 21632	21682	21690	350-20-2	25415	27185	27185	450-50-2 43323	43358	43330
100-10-2	6533	6533	6533	200-40-3 20542	20605	20544	350-20-2 2	27880	27880	27880	450-50-2 43323	44073	43530
100-10-4	6158	6158	6158	200-40-4 17322	17394	17305	350-20-4	22968	22968	22968	450-50-4 41014	41013	41006
100-10-5	6654	6654	6654	200-40-5 21194	21213	21209	350-20-5	22746	22787	22745	450-50-5 40923	40944	40922
100-20-1	8606	8606	8606	200-50-1 22580	22699	22579	350-30-1	25192	25184	25184	500-10-1 28839	28839	28839
100-20-2	8217	8220	8217	200-50-2 23410	23430	23406	350-30-2	27739	27743	27738	500-10-2 27923	27923	27923
100-20-3	9043	9043	9043	200-50-3 22276	22276	22271	350-30-3 2	27638	27657	27638	500-10-3 27349	27349	27349
100-20-4	8970	8970	8970	200-50-4 23918	23916	23904	350-30-4 2	29295	29295	29295	500-10-4 27575	27575	27575
100-20-5	9109	9109	9109	200-50-5 24275	24274	24274	350-30-5 2	25209	25212	25205	500-10-5 27457	27457	27457
100-30-1	11200	11203	11198	250-10-1 16639	16639	16639	350-40-1 2	29020	29081	29008	500-20-1 35948	35948	35948
100-30-2	10938	10934	10934	250-10-2 15476	15476	15476	350-40-2 2	28950	28946	28949	500-20-2 34129	34129	34129
100-30-3	10523	10523	10515	250-10-3 14872	14872	14872	350-40-3 3	36247	36252	36247	500-20-3 31064	31064	31064
100-30-4	11089	11086	11087	250-10-4 15247	15247	15247	350-40-4 3	34644	34702	34659	500-20-4 30887	30887	30883
100-30-5	10983	10983	10981	250-10-5 15026	15026	15026	350-40-5 2	29742	29832	29738	500-20-5 33768	33776	33768
100-40-1	12551	12616	12550	250-20-1 17577	17577	17577	350-50-1 3	32065	32065	32060	500-30-1 36337	36349	36327
100-40-2	13117	13117	13112	250-20-2 17683	17683	17683	350-50-2 3	32760	32923	32750	500-30-2 39346	39365	39346
100-40-3	12411	12424	12410	250-20-3 17487	17487	17485	350-50-3	34682	34674	34672	500-30-3 39226	39251	39240
100-40-4	11680	11763	11681	250-20-4 17639	17646	17639	350-50-4 3	36957	36960	36948	500-30-4 33890	33900	33875
100-40-5	12877	12877	12877	250-20-5 17274	17273	17273	350-50-5	35343	35352	35334	500-30-5 38340	38356	38340
100-50-1	15998	15994	15996	250-30-1 21918	21920	21918	400-10-1 2	25238	25238	25238	500-40-1 40685	40721	40716
100-50-2	14761	14774	14756	250-30-2 21814	21838	21814	400-10-2 2	23001	23001	23001	500-40-2 44099	44131	44136
100-50-3	17514	17617	17513	250-30-3 20077	20080	20083	400-10-3 2	23665	23665	23665	500-40-3 40313	40309	40296
100-50-4	16569	16646	16563	250-30-4 19744	19787	19744	400-10-4 2	23275	23275	23275	500-40-4 41886	41882	41868
100-50-5	14/46	14//2	14740	250-30-5 20881	20891	20884	400-10-5 4	21956	21956	21956	500-40-5 3603/	360/5	36026
150-10-1	10404	10404	10404	250-40-1 22/43	22//0	22/40	400-20-1 2	2/080	2/080	27686	500-50-1 461/5	40104	40154
150-10-2	0120	0120	0120	250 40 2 24082	24050	24070	400-20-2 2	28088	26088	26088	500-50-2 452/2	45501	45207
150-10-5	10022	10022	10032	250 40 4 24314	24313	24314	400-20-3 2	20224	20227	20224	500 50 4 43147	43140	45154
150 10 5	0866	0870	0870	250 40 5 23443	24/00	24702	400-20-4 2	23103	23102	23104	500 50 5 42000	42046	42334
150 20 1	10758	10757	10755	250 50 1 28511	23433	29507	400 30 1	24075	290407	24007	500-50-5 45000	-50-0	42771
150-20-1	11696	11699	11696	250-50-7 26511	20529	24744	400-30-2	29180	29252	29235			
150-20-2	12046	12060	12046	250-50-3 26351	26347	26345	400-30-3	28633	28632	28630			
150-20-5	10887	10887	10887	250-50-4 25410	25406	25407	400-30-4	31276	31276	31270			
150-20-5	13210	13210	13210	250-50-5 27332	27331	27327	400-30-5	34533	34539	34533			
150-30-1	15497	15496	15492	300-10-1 17498	17498	17498	400-40-1	37426	37448	37418			
150-30-2	13667	13683	13667	300-10-2 17350	17350	17350	400-40-2	33805	33812	33797			
150-30-3	14650	14651	14647	300-10-3 18627	18627	18627	400-40-3	34450	34455	34448			
150-30-4	14544	14550	14548	300-10-4 16941	16941	16941	400-40-4	35245	35263	35235			
150-30-5	15245	15288	15242	300-10-5 17521	17524	17521	400-40-5	32727	32800	32716			

V. CONCLUSION

In this paper, a novel GVNS algorithm through Q-learning was presented for the NIFSP with the makespan criterion. In the outer loop, insertion and exchange operators are employed, while, in the inner loop of VND, VIG_{ALL} and VBIH algorithms

are used. Effective insertion and RIS local searches are also employed in another VND loop, in the developed VIG_{ALL} and VBIH algorithms. The parameters are determined through a Q-learning approach in the proposed GVNS-QL algorithm, instead of using constant parameter values.

The developed GVNS-QL algorithm was compared with the widely known IG algorithm using the benchmark set of [11]. The results indicate that the GVNS-QL outperforms the traditional IG algorithm in terms of RPD values. Additionally, the results of IG and GVNS-QL were compared with the current best-known results provided by [16]. The results state that the developed GVNS-QL algorithm improves the current best-known results for 104 out of 250 benchmark instances.

In future research, other metaheuristic algorithms can be developed for the problem. Other performance measures can also be studied for the problem such as total completion time and total tardiness. Additionally, developed GVNS-QL can be employed to solve other scheduling problems.

REFERENCES

- M. R. Garey, D. S. Johnson, and R. Sethi "The complexity of flowshop and job shop scheduling," *Mathematics of Operations Research*, vol. 1, no. 2, pp. 117–129, 1976.
- [2] P. Baptiste and K. H. Lee, "A branch and bound algorithm for the F|noidle|Cmax," in *Proceedings of the International Conference on Industrial Engineering and Production Management (IEPM'1997)*, pp. 429–438, 1997.
- [3] P. Vachajitpan, "Job sequencing with continuous machine operation," *Comput. Ind. Eng.*, vol. 6, no. 3, pp. 255–259, 1982.
- [4] N. E. H. Saadani, P. Baptiste, and M. Moalla, "The simple F2//C max with forbidden tasks in first or last position: A problem more complex than it seems," *Eur. J. Oper. Res.*, vol. 161, no. 1, pp. 21–31, 2005.
- [5] I. Adiri and D. Pohoryles, "Flowshop/no-idle or no-wait scheduling to minimize the sum of completion times," *Nav. Res. Logist.* Q., vol. 29, no. 3, pp. 495–504, 1982.
- [6] N. E. H. Saadani, A. Guinet, and M. Moalla, "A traveling salesman approach to solve the F/no-idle/Cmax problem," *Eur. J. Oper. Res.*, vol. 161, no. 1, p.p. 11–20, 2005.
- [7] P. J. Kalczynski and J. Kamburowski, "A heuristic for minimizing the makespan in no-idle permutation flow shops," *Comput. Ind. Eng.*, vol. 49, no. 1, pp. 146–154, 2005.
- [8] D. Baraz and G. Mosheiov, "A note on a greedy heuristic for flow-shop makespan minimization with no machine idle-time," *Eur. J. Oper. Res.*, vol. 184, no. 2, pp. 810–813, 2008.
- [9] Q. K. Pan and L. Wang, "A novel differential evolution algorithm for noidle permutation flow-shop scheduling problems," *Eur. J. Ind. Eng.*, vol. 2, no. 3, pp. 279–297, 2008.
- [10] Q. K. Pan and L. Wang, "No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm," *Int. J. Adv. Manuf. Technol.*, vol. 39, no. 7–8, pp. 796–807, 2008.
- [11] R. Ruiz, E. Vallada, and C. Fernandez-Martinez, "Scheduling in flowshops with no-idle machines," in U.K. Chakraborty (Ed.), *Computational Intelligence in Flow Shop and Job Shop Scheduling*, Springer Berlin Heidelberg, pp. 21-51, 2009.
- [12] G. Deng and X. Gu, "A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion," *Comput. Oper. Res.*, vol. 39, no. 9, pp. 2152–2160, 2012.
- [13] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and O. Buyukdagli, "A variable iterated greedy algorithm with differential evolution for the noidle permutation flowshop scheduling problem," *Comput. Oper. Res.*, vol. 40, no. 7, pp. 1729–1743, 2013.
- [14] Y. Zhou, H. Chen, and G. Zhou, "Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem," *Neurocomputing*, vol. 137, pp. 285–292, 2014.
- [15] E. Taillard, "Benchmarks for basic scheduling problems," Eur. J. Oper. Res., vol. 64, pp. 278–285, 1993.

- [16] W. Shao, D. Pi, and Z. Shao, "Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion," *Appl. Soft Comput. J.*, vol. 54, pp. 164–182, 2017.
- [17] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and A. Oner, "A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion," *Appl. Math. Model.*, vol. 37, no. 10–11, pp. 6758–6779, 2013.
- [18] W. Shao, D. Pi, and Z. Shao, "A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling problem with total tardiness criterion," *Comput. Oper. Res.*, vol. 94, pp. 89–105, 2018.
- [19] C. Ling-Fang, W. Ling, and W. Jing-Jing, "A two-stage memetic algorithm for distributed no-idle permutation flowshop scheduling problem," *Chinese Control Conf. CCC*, vol. 2018–July, pp. 2278–2283, 2018.
- [20] F. L. Rossi and M. S. Nagano, "Heuristics for the mixed no-idle flowshop with sequence-dependent setup times and total flowtime criterion," *Expert Syst. Appl.*, vol. 125, pp. 40–54, 2019.
- [21] N. Mladenovic and P. Hansen, "Variable neighborhood search," Comput. Oper. Res., vol. 24, no. 11, pp. 1097–1100, 1997.
- [22] P. Hansen, N. Mladenović, and D. Urošević, "Variable neighborhood search and local branching," *Comput. Oper. Res.*, vol. 33, no. 10, pp. 3034–3045, 2006.
- [23] G. Kirlik and C. Oguz, "A variable neighborhood search for minimizing total weighted tardiness with sequence-dependent setup times on a single machine," *Comput. Oper. Res.*, vol. 39, no. 7, pp. 1506–1520, 2012.
- [24] M. F. Tasgetiren, O. Buyukdagli, Q. K. Pan, and P. N. Suganthan, "A general variable neighborhood search algorithm for the no-idle permutation flowshop scheduling problem," in *International Conference* on Swarm, Evolutionary, and Memetic Computing, pp. 24–34, 2013.
- [25] G. M. Komaki, S. Mobin, E. Teymourian, and S. Sheikh, "A general variable neighborhood search algorithm to minimize the makespan of the distributed permutation flowshop scheduling problem," *Int. Sch. Sci. Res. Innov.*, vol. 9, no. 8, pp. 2582–2589, 2015.
- [26] M. Komaki and B. Malakooti, "General variable neighborhood search algorithm to minimize the makespan of the distributed no-wait flow shop scheduling problem," *Prod. Eng.*, vol. 11, no. 3, pp. 315–329, 2017.
- [27] S.F. Rad, R. Ruiz, N. Boroojerdian, "New high performing heuristics for minimizing makespan in permutation flowshops", *Omega*, vol. 37, no. 2, p.p. 331–45, 2009.
- [28] M. Nawaz, E. E. Enscore, and I. Ham, "A heuristic algorithm for the mmachine, n-job flow-shop sequencing problem," *Omega*, vol. 11, no. 1, pp. 91–95, Jan. 1983.
- [29] I. Osman, C. Potts, "Simulated annealing for permutation flow-shop scheduling," *Omega*, vol. 17 (6), p.p. 551–557, 1989.
- [30] R. Ruiz, T. Stützle, "A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem", *Eur. J. Oper. Res.*, vol. 177, p.p. 2033–2049, 2007.
- [31] J. Dubois-Lacoste, F. Pagnozzi, and T. Stützle, "An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem," *Comput. Oper. Res.*, vol. 81, pp. 160– 166, 2017.
- [32] H. Öztop, M. F. Tasgetiren, D.T. Eliiyi and Q. K. Pan, "Metaheuristic algorithms for the hybrid flowshop scheduling problem," *Comput. Oper. Res.*, vol. 111, pp. 177–196, 2019.
- [33] S.S. Choong, L-P. Wong, and C.P. Lim, "Automatic design of hyperheuristic based on reinforcement learning," *Information Sciences*, vol. 436-437, pp. 89-107, 2018.
- [34] H. Öztop, M. F. Tasgetiren, D.T. Eliiyi, and Q. K. Pan, "Iterated greedy algorithms for the hybrid flowshop scheduling with total flow time minimization," in Proceedings of the Genetic and Evolutionary Computation Conference, ACM, pp. 379–385, 2018. https://doi.org/10.1145/3205455.3205500.