

A Novel General Variable Neighborhood Search

through Q-Learning for No-Idle Flowshop Scheduling

Hande Öztop

Department of Industrial

Engineering

Yasar University

Izmir, Turkey

hande.oztop@yasar.edu.tr

Mehmet Fatih Tasgetiren

Department of International

Logistics Management

Yasar University

Izmir, Turkey

fatih.tasgetiren@yasar.edu.tr

Levent Kandiller

Department of Industrial

Engineering

Yasar University

Izmir, Turkey

levent.kandiller@yasar.edu.tr

Quan-Ke Pan

School of Mechatronic

Engineering and Automation

Shanghai University

Shanghai, China

panquanke@shu.edu.cn

Abstract— In this study, a novel general variable neighborhood

search through Q-learning (GVNS-QL) algorithm is proposed to

solve the no-idle flowshop scheduling problem with the makespan

objective. In the outer loop of the GVNS-QL, insertion, and

exchange operators are used to shaking the permutation. On the

other hand, in the inner loop of variable neighborhood descent

procedure, variable iterated greedy and variable block insertion

heuristic algorithms are employed with two effective insertion

local search procedures. The proposed GVNS-QL defines the

parameters of the algorithm using a Q-learning mechanism. The

developed GVNS-QL algorithm is compared with the traditional

iterated greedy (IG) algorithm using the well-known benchmark

set. The comprehensive computational experiments show that the

GVNS-QL outperforms the traditional IG algorithm. The results

of the IG and GVNS-QL algorithms are also compared with the

current best-known solutions reported in the literature. The

computational results show that the proposed GVNS-QL

algorithm improves the current best-known solutions for 104 out

of 250 instances.

Keywords— no-idle flowshop scheduling problem; makespan;

general variable neighborhood search; Q-learning; variable iterated

greedy; variable block insertion.

I. INTRODUCTION

In a flowshop, a set of n jobs are processed on m serial
machines following the same route, generally, machine 1,
machine 2, …, machine m. It is generally assumed that job pre-
emption is not allowed and, all machines and jobs are ready at
time zero. In the Permutation Flowshop Scheduling Problem
(PFSP), once a job order (permutation) is determined on the first
machine, this job order is employed for all machines, i.e., each
machine processes the jobs with the same job permutation.
Then, the PFSP aims to find the job permutation that optimizes
a given performance criterion. The PFSP is well-known to be
NP-hard [1].

In this study, we focus on an extension of the PFSP, in which
idle time is not permitted between the jobs on the machines. This
variant of the PFSP is known as the No-Idle Flowshop
Scheduling Problem (NIFSP). In many real production
environments such as foundries, integrated circuits, and
fiberglass, once the machines start to process the jobs, the idle
time is undesirable, as expensive machines are used. In this
paper, we study the m-machine (𝐹𝑚) no-idle permutation
flowshop scheduling problem with the makespan (𝐶𝑚𝑎𝑥)

objective, namely, 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜 − 𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥 . Accordingly,
the goal is to obtain the best job permutation that minimizes the
makespan (maximum completion time). The NIFSP has also
been proven to be NP-hard [2].

Many exact and heuristic solution approaches have been
proposed to solve the NIFSP. Vachajitpan [3] developed a
mixed-integer programming model and a Branch & Bound
(B&B) algorithm for the NIFSP with the makespan criterion.
Afterward, a B&B approach was also developed for the NIFSP
by Saadani et al. [4]. Since these B&B methods can only be used
to solve small-sized problems, heuristic methods have been
generally addressed to solve the NIFSP. Adiri and Pohoryles [5]
developed a polynomial-time heuristic method to solve the
NIFSP with two machines considering the total completion time
criterion, and revealed that 2-machine no-idle PFSP and 2-
machine PFSP are the same for the makespan objective. The
NIFSP with the makespan criterion was formulated as an
asymmetric traveling salesman problem in [6], where the
authors presented the nearest insertion rule-based heuristic
method. An efficient constructive heuristic was also presented
by Kalczynski and Kamburowski [7] for the NIFSP with the
makespan objective. Later, a two-stage improved greedy
algorithm was presented for the same problem [8].

Furthermore, discrete differential evolution (DDE) and
hybrid discrete particle swarm optimization (HDPSO)
algorithms were proposed for the NIFSP with the makespan
objective [9, 10]. In these two papers, a speed-up approach was
developed for the insertion neighborhood to decrease the time
complexity from 𝑂(𝑛3𝑚) to 𝑂(𝑛2𝑚). Ruiz et al. [11] assessed
the performance of the iterated greedy (IG) algorithm to solve
the NIFSP with the makespan objective, and according to their
results, the IG outperforms the DDE and the HDPSO. The
benchmark instances were also presented for the NIFSP in [11].
A hybrid discrete differential evolution (HDDE) algorithm was
also developed for the same problem by [12], and according to
their results, the HDDE outperforms the DDE, HDPSO, and IG
algorithms. A variable iterated greedy algorithm with
differential evolution was also developed by Tasgetiren et al.
[13] for the NIFSP with the makespan and total flowtime
criteria. Later, an invasive weed optimization (IWO) algorithm
was presented by [14] for the NIFSP, and their results, which are
based on the benchmark set of [15], show that the IWO
outperforms the IG and HDPSO. Recently, a memetic algorithm
was developed by [16] for the NIFSP with the makespan

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

objective, where the authors compared their algorithm with the
other well-known heuristics from the literature. They improved
89 out of the 250 best solutions presented for the benchmark
instances of [11].

Additionally, Tasgetiren et al. [17] presented a discrete
artificial bee colony algorithm and Shao et al. [18] developed a
hybrid discrete teaching-learning based metaheuristic for the
NIFSP with the total tardiness criterion. As other extensions of
the NIFSP, a two-stage memetic algorithm was proposed for the
distributed NIFSP by [19]. Later, a mathematical model and
heuristic algorithms were developed for the mixed NIFSP with
sequence-dependent setup times in [20].

Mladenovic and Hansen [21] presented a Variable
Neighborhood Search (VNS) by employing changes in the
neighborhood systematically. Afterward, the VNS was extended
by Hansen et al. [22] as a General Variable Neighborhood
Search (GVNS) algorithm. The GVNS has been effectively
applied to solve a variety of problems such as single machine
scheduling problem [23], the NIFSP [24], distributed PFSP [25]
and distributed no-wait flowshop scheduling problem [26]. Note
that, insertion, swap, IG and iterated local search algorithms are
used in the GVNS of [24].

Inspired by the abovementioned effective applications of the
GVNS in various scheduling problems, this study presents a
novel GVNS algorithm, called as GVNS-QL, for the NIFSP
with the makespan criterion by incorporating a Q-learning
mechanism. In the developed GVNS-QL, the initial solution is
obtained by using the FRB5 constructive heuristic. Insertion and
exchange operators are used in the outer loop, whereas an
effective Variable IG (𝑉𝐼𝐺𝐴𝐿𝐿) and an effective Variable Block
Insertion Heuristic (VBIH) are used in the inner loop of the
Variable Neighborhood Descent (VND) phase.

The Q-learning (QL) is one of the well-known reinforcement

learning algorithms. The QL aims to choose an appropriate

action based on experience. In the QL, once the learner performs

a chosen action, it obtains a reward or penalty. Then, it learns to

choose the best action to perform by assessing the action

alternatives using the cumulative rewards (Q-values). We use

the QL approach to choose the parameters of the algorithm.

Namely, parameters are determined through a Q-learning

approach in the proposed GVNS-QL, instead of using constant

parameter values. We compare the performance of the

developed GVNS-QL algorithm with the well-known IG

algorithm using the benchmarks from the literature. Then, we

compare the results of these algorithms with the current best-

known solutions reported in the literature. The rest of the paper

is organized as follows. In Section 2, the NIFSP is explained

formally. In Section 3, the developed GVNS-QL algorithm is

described. In Section 4, computational results are presented.

Finally, in Section 5, conclusions and future research directions

are provided.

II. PROBLEM DEFINITION

The NIFSP can be described as follows: a set of 𝑛 jobs 𝐽 =
{1,2, … , 𝑛} must be processed on a set of 𝑚 machines 𝑀 =
{1, 2, … , 𝑚} in the same order. Each job has 𝑚 operations,

where 𝑘𝑡ℎoperation of job j must be processed on machine 𝑘

with a given processing time 𝑝𝑗𝑘 without an interruption. Each

job can be processed by only one machine and each machine can
process only one job, at a time. All machines process the jobs
with the same job permutation. Idle time is not allowed between
two subsequent job operations on the same machine. All jobs are
ready at the beginning. The goal is to obtain the best job
permutation that minimizes the makespan.

Let 𝜋 = {𝜋1, 𝜋2,, … , 𝜋𝑛} represent the job permutation and

𝜋𝑗
𝐸={𝜋1, 𝜋2, . . , 𝜋𝑗} represent a partial order of 𝜋 such that 1 <

𝑗 < 𝑛 . Additionally, 𝐹(𝜋𝑗
𝐸 , 𝑘, 𝑘 + 1) denotes the minimum

difference between the completion time of processing the last

job of 𝜋𝑗
𝐸 on machines 𝑘 + 1 and 𝑘, which is limited by the no-

idle constraint. Consequently, the makespan 𝐶𝑚𝑎𝑥 can be

calculated as follows, where 𝑝𝜋𝑗,𝑘 denotes the processing time

of job 𝜋𝑗 on machine 𝑘:

𝐹(𝜋1
𝐸 , 𝑘, 𝑘 + 1) = 𝑝𝜋1,𝑘+1 𝑘 = 1,2, … , 𝑚 − 1 ()

𝐹(𝜋𝑗
𝐸 , 𝑘, 𝑘 + 1) = max{𝐹(𝜋𝑗−1

𝐸 , 𝑘, 𝑘 + 1) − 𝑝𝜋𝑗,𝑘 ,0}

 + 𝑝𝜋𝑗,𝑘+1 𝑗 = 2,3, . . , 𝑛 𝑘 = 1,2, … , 𝑚 − 1 ()

𝐶𝑚𝑎𝑥 = ∑ 𝐹(𝜋𝑛
𝐸 , 𝑘, 𝑘 + 1) + ∑ 𝑝𝜋𝑗,1

𝑛
𝑗=1

𝑚−1
𝑘=1 ()

III. GENERAL VARIABLE NEIGHBORHOOD SEARCH ALGORITHM

THROUGH Q-LEARNING

The VNS is an effective heuristic procedure that uses a multi
neighborhood structure during the search. The VNS has two
core phases: (1) shaking phase that perturbs the solution to
escape from local optima, and (2) local search phase that
explores the neighborhood of the solution by employing the
given neighborhood structures. The VNS has a set 𝑁𝑘 of
neighborhood structures, where 𝑘 = 1,2, . . , 𝑘𝑚𝑎𝑥 . In the VNS,
the solution is initialized randomly or using a constructive
heuristic. Then, shaking and local search phases are employed
on the solution until the stopping criterion is satisfied, where the
stopping criterion can be defined as the maximum CPU time or
the maximum number of iterations. Later, an extended version
of the VNS, named as GVNS, was proposed by [22]. In the
GVNS, the local search phase of the VNS is replaced with a
VND algorithm, which is a deterministic version of the VNS,
where the change of neighborhoods is performed in a
deterministic way.

In this study, we propose a novel GVNS algorithm through
Q-learning, i.e. GVNS-QL, where the algorithm parameters are
determined through a Q-learning approach. Namely, values of
the following parameters are updated through the GVNS
procedure using a QL mechanism: 𝜖 (𝜖jumping probability), 𝜏𝑃
(parameter of the acceptance criterion), 𝑑𝑚𝑎𝑥 (maximum
destruction/block size), 𝑙𝑓 (learning factor of the Q-learning
function) and 𝑑𝑓 (discount factor of the Q-learning function). In
the QL mechanism, once an action (parameter setting) is
performed, a reward or penalty is obtained for that action. Then,
the algorithm learns to choose the best action to perform for each
parameter by assessing the action alternatives based on their
cumulative rewards (Q-values). The details of the QL strategy
are explained in Section III.C.

The main framework of the proposed GVNS-QL algorithm
is outlined in Fig. 1, where U (0,1) is a uniform random number
in between 0 and 1. As shown in Fig.1, the GVNS-QL has two
main neighborhood parameters: 𝑘𝑚𝑎𝑥 the number of
neighborhoods employed in the outer loop and 𝑞𝑚𝑎𝑥 the
number of neighborhoods used in the inner (VND) loop. In this
study, we set 𝑞𝑚𝑎𝑥 = 2 and 𝑘𝑚𝑎𝑥 = 2. As shown in Fig. 1, the
initial solution is obtained by the FRB5 constructive heuristic
[27], which is an extended version of the NEH heuristic [28].
Then, the initial parameter values of the algorithm are
determined randomly. In the shaking part, insertion and
exchange operators are employed in the outer loop. For the
inner loop of VND, two powerful algorithms, namely, 𝑉𝐼𝐺𝐴𝐿𝐿
and VBIH algorithms are used. In the proposed GVNS-QL, if
the new solution is better than the incumbent solution, it is
accepted and the Q-values of the performed actions are updated
in the Q-value table for the parameters according to a Q-learning
function. Otherwise, a simulated annealing-type acceptance
criterion [29] with a temperature 𝑇 is employed to decide
whether the new permutation is accepted or not. 𝑇 is calculated
by equation (4), where 𝜏𝑃 is a parameter to be adjusted:

𝑇 =
∑ ∑ 𝑝𝑗𝑘

𝑚
𝑘=1

𝑛
𝑗=1

10𝑛𝑚
× 𝜏𝑃 ()

𝐺𝑉𝑁𝑆 − 𝑄𝐿

𝜋 = 𝐹𝑅𝐵5, 𝜋𝑏𝑒𝑠𝑡 = 𝜋, 𝑘𝑚𝑎𝑥 = 2

𝐷𝑜{
 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑓𝑟𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡
 𝑘 = 1

 𝐷𝑜{

 𝐼𝑓 (𝑘 = 1) 𝑡ℎ𝑒𝑛 𝜋1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜋)

 𝐼𝑓 (𝑘 = 2) 𝑡ℎ𝑒𝑛 𝜋1 = 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝜋)

 𝜋2 = 𝑉𝑁𝐷(𝜋1)

 𝐼𝑓 𝑓(𝜋2) < 𝑓(𝜋)

 𝜋 = 𝜋2

 𝑘 = 1

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑄-𝑣𝑎𝑙𝑢𝑒 𝑡𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 (1/𝑓(𝜋))

 𝐸𝑙𝑠𝑒

 𝑘 = 𝑘 + 1

 𝐼𝑓 (𝑈(0,1) < 𝑒𝑥𝑝{−(𝑓(𝜋2) − 𝑓(𝜋))/𝑇})

 𝜋 = 𝜋2

 𝐸𝑛𝑑𝑖𝑓

 𝐸𝑛𝑑𝑖𝑓

 }𝑊ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥)

 𝐼𝑓 (𝑓(𝜋) < 𝑓(𝜋𝑏𝑒𝑠𝑡))

 𝜋𝑏𝑒𝑠𝑡 = 𝜋
 𝐸𝑛𝑑𝑖𝑓
}𝑊ℎ𝑖𝑙𝑒(𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
𝑅𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡

Fig. 1. GVNS through Q-learning

The VND algorithm of the proposed GVNS-QL is explained
in Fig. 2. As shown in Fig. 2, the parameter values are selected
at each iteration using a QL strategy. Namely, the actions are
determined for the parameters either randomly with a jumping
probability 𝜖 or according to the Q-values of the actions, i.e.,
the actions with the maximum Q-values are selected. As seen
in Fig. 2, 𝑉𝐼𝐺𝐴𝐿𝐿 and VBIH algorithms are employed in the
VND. Then, a similar acceptance procedure as in the main
GVNS-QL is employed, where Q-values of the performed
actions are also updated for the parameters according to a Q-
learning function. FRB5 constructive heuristic, 𝑉𝐼𝐺𝐴𝐿𝐿 , VBIH
and QL procedures are explained in the following subsections.

𝑉𝑁𝐷 (𝜋)

𝑞 = 1, 𝑞𝑚𝑎𝑥=2

𝐷𝑜{

𝐼𝑓(𝑈(0.1) < 𝜖)

 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑓𝑟𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡

𝐸𝑙𝑠𝑒
 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑄-𝑣𝑎𝑙𝑢𝑒𝑠
 𝑖𝑛 𝑄-𝑣𝑎𝑙𝑢𝑒 𝑡𝑎𝑏𝑙𝑒

𝐸𝑛𝑑𝑖𝑓

 𝐼𝑓 (𝑞 = 1) 𝑡ℎ𝑒𝑛 𝜋1 = 𝑉𝐼𝐺𝐴𝐿𝐿(𝜋, 𝑑𝑚𝑎𝑥)

 𝐼𝑓 (𝑞 = 2) 𝑡ℎ𝑒𝑛 𝜋1 = 𝑉𝐵𝐼𝐻(𝜋, 𝑑𝑚𝑎𝑥)

 𝐼𝑓 𝑓(𝜋1) < 𝑓(𝜋)

 𝜋 = 𝜋1

 𝑞 = 1

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑄-𝑣𝑎𝑙𝑢𝑒 𝑡𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 (1/𝑓(𝜋))

 𝐸𝑙𝑠𝑒

 𝑞 = 𝑞 + 1

 𝐼𝑓 (𝑈(0,1) < 𝑒𝑥𝑝{−(𝑓(𝜋1) − 𝑓(𝜋))/𝑇})

 𝜋 = 𝜋1

 𝐸𝑛𝑑𝑖𝑓

 𝐸𝑛𝑑𝑖𝑓

}𝑊ℎ𝑖𝑙𝑒(𝑞 ≤ 𝑞𝑚𝑎𝑥)

𝑅𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 2. VND Algorithm

A. Constructive Heuristic

The developed GVNS-QL uses the well-known FRB5
heuristic [27] as a constructive heuristic. The FRB5 heuristic
contains an extra local search compared to the NEH heuristic.
In the FRB5 heuristic, initially, jobs are sorted in decreasing
order of their total processing times and a partial solution is
initialized with γ

1
 similar to the NEH. Then, the rest of the jobs

in γ are sequentially inserted into the partial solution, where an
insertion local search is employed on the partial solution at each
iteration. The FRB5 heuristic is explained in Fig. 3.

𝐹𝑅𝐵5 Heuristic

γ = 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟(∑ 𝑝𝑗𝑘
𝑚
𝑘=1)

𝜋1 = γ1

𝑓𝑜𝑟 𝑧 = 2 𝑡𝑜 𝑛 𝑑𝑜

 𝜋 = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋, γ𝑧)
 𝜋 = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜋)

𝑒𝑛𝑑𝑓𝑜𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 3. FRB5 heuristic

B. 𝑉𝐼𝐺𝐴𝐿𝐿 and VBIH Algorithms

Recently, the traditional IG [30] has been successfully
extended to an 𝐼𝐺𝐴𝐿𝐿 algorithm by [31]. Similar to the IG
algorithm, a destruction-construction procedure is employed in
the 𝐼𝐺𝐴𝐿𝐿 as follows. In the destruction part, 𝑑 jobs are

randomly removed from the permutation 𝜋 and kept in 𝜋𝑑 ,
while the rest of the jobs are kept in 𝜋𝑝. In the construction part,

the removed jobs in 𝜋𝑑 are sequentially inserted into the partial
solution 𝜋𝑝 according to the best insertion approach. Unlike the
IG, the 𝐼𝐺𝐴𝐿𝐿 applies an insertion local search (Fig. 4) to the
partial solution before the construction part, as long as the
solution is improved. As shown in Fig. 4, the insertion local
search removes the job 𝜋𝑗 from the solution 𝜋 randomly, and

inserts it into all positions of 𝜋. Once the best insertion is found,
the job 𝜋𝑗 is inserted into that position. These steps are repeated

for all jobs. If an improvement is found, the local search is
restarted until no improving solution is generated.

𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝜋)

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

 𝜋∗ = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋, 𝜋𝑗)

 𝑖𝑓 𝑓(𝜋∗) < 𝑓(𝜋)

 𝜋 = 𝜋∗

 𝑒𝑛𝑑𝑖𝑓

𝑒𝑛𝑑𝑓𝑜𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 4. Insertion local search

In this paper, we propose a variable 𝐼𝐺𝐴𝐿𝐿 algorithm, named
as 𝑉𝐼𝐺𝐴𝐿𝐿 , as one of the strategies of the VND algorithm. As
shown in Fig. 5, the 𝑉𝐼𝐺𝐴𝐿𝐿 algorithm takes the solution and the
maximum destruction size (𝑑𝑚𝑎𝑥) from the VND procedure,
where the 𝑑𝑚𝑎𝑥 parameter is determined through a QL
mechanism. In the beginning, the destruction size is set as 𝑑 =
1, and increased by one if the solution is not improved until the
𝑑 reaches at 𝑑𝑚𝑎𝑥. Note that, if the solution improves at any 𝑑
value, the destruction size 𝑑 is reset to one. The 𝑉𝐼𝐺𝐴𝐿𝐿
algorithm applies destruction-construction and local search
procedures to the solution, respectively. While the insertion
local search is employed on the partial solution 𝜋𝑝 as long as it
is improved, the referenced insertion scheme (RIS) and insertion
local search procedures are employed on the complete solution
𝜋1 in another VND loop, i.e. 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷 (Fig. 7).

𝑉𝐼𝐺𝐴𝐿𝐿(𝜋, 𝑑𝑚𝑎𝑥)

𝑑 = 1
 𝑑𝑜

 𝜋𝑑 , 𝜋𝑝 = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜋, 𝑑)
 𝜋𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝜋𝑝)

 𝜋1 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜋𝑑 , 𝜋𝑝)

 𝜋2 = 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷(𝜋1)
 𝑖𝑓 (𝑓(𝜋2) < 𝑓(𝜋))

 𝜋 = 𝜋2, 𝑑 = 1
 𝑒𝑙𝑠𝑒
 𝑑 = 𝑑 + 1
 𝑒𝑛𝑑𝑖𝑓

 𝑤ℎ𝑖𝑙𝑒(𝑑 ≤ 𝑑𝑚𝑎𝑥)
𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 5. 𝑉𝐼𝐺𝐴𝐿𝐿 algorithm

Another strategy of the VND is the VBIH algorithm, which
takes the solution and the maximum block size (𝑑𝑚𝑎𝑥) from the
VND procedure, where the 𝑑𝑚𝑎𝑥 parameter is determined
through a QL mechanism. The VBIH algorithm employs block
insertion and local search procedures on a solution as shown in
Fig. 6, where 𝑑 denotes the block size. At the beginning, the
block size is set as 𝑑 = 1. In the VBIH algorithm, 𝑑 consecutive
jobs (𝜋𝑑), i.e. block, are removed from the order 𝜋, where the
rest of the jobs construct a partial solution (𝜋𝑝) . Then, an
insertion local search (Fig. 4) is employed on the partial solution,
as long as the solution is improved. Then, block insertion moves
are applied to the partial solution and the best move is chosen.
Afterward, similar to the 𝑉𝐼𝐺𝐴𝐿𝐿 algorithm, two local search
procedures are applied to the complete solution in a VND loop,
i.e. 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷, which is explained in Fig. 7. If the new
solution after the local search procedures is better than the
current one, the VBIH replaces the current solution and the
block size is reset to one. Otherwise, the block size is
incremented by one. These steps are reiterated until the
maximum block size is reached.

𝑉𝐵𝐼𝐻(𝜋, 𝑑𝑚𝑎𝑥)

𝑑 = 1
 𝑑𝑜
 𝜋𝑑, 𝜋𝑝 = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑡ℎ 𝑑 𝑗𝑜𝑏𝑠 𝑓𝑟𝑜𝑚 𝜋
 𝜋𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝜋𝑝)
 𝜋1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋𝑑 , 𝜋𝑝)
 𝜋2 = 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷(𝜋1)
 𝑖𝑓 (𝑓(𝜋2) < 𝑓(𝜋)) 𝑡ℎ𝑒𝑛 𝑑𝑜
 𝜋 = 𝜋2, 𝑑 = 1
 𝑒𝑙𝑠𝑒
 𝑑 = 𝑑 + 1
 𝑒𝑛𝑑𝑖𝑓
 𝑤ℎ𝑖𝑙𝑒(𝑑 ≤ 𝑑𝑚𝑎𝑥)
𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 6. VBIH algorithm

 Local Search_VND procedure of the 𝑉𝐼𝐺𝐴𝐿𝐿 and VBIH
algorithms are outlined in Fig. 7. As seen in Fig. 7, the RIS and
insertion local search procedures are employed in the Local
Search_VND, where the RIS refers to a Referenced Insertion
Scheme [32], which is explained in Fig. 8.

𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷 (𝜋)

𝑢𝑚𝑎𝑥 = 2 , 𝑢 = 1

𝑑𝑜{

 𝐼𝑓 (𝑢 = 1) 𝑡ℎ𝑒𝑛 𝜋1 = 𝑅𝐼𝑆(𝜋, 𝜋𝑏𝑒𝑠𝑡)

 𝐼𝑓 (𝑢 = 2) 𝑡ℎ𝑒𝑛 𝜋1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ(𝜋)

 𝐼𝑓 𝑓(𝜋1) < 𝑓(𝜋)

 𝜋 = 𝜋1, 𝑢 = 1

 𝑒𝑙𝑠𝑒

𝑢 = 𝑢 + 1

 𝑒𝑛𝑑𝑖𝑓

}𝑤ℎ𝑖𝑙𝑒(𝑢 ≤ 𝑢𝑚𝑎𝑥)

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 7. Local Search_VND procedure

In the RIS, 𝜋𝑅 represents the reference order, which is the
best permutation obtained so far. As shown in Fig.8, the RIS
chooses the first job in 𝜋𝑅 and finds the best position for this job
in the current solution 𝜋 , by inserting it into all possible
positions of the solution 𝜋. Then, it chooses the second job in
𝜋𝑅 and finds the best position for this job in the current solution
𝜋. The iteration counter (c) is reset to one if an improvement
occurs. Otherwise, it is incremented by one. These steps are
applied until the iteration counter exceeds n.

𝑅𝐼𝑆(𝜋, 𝜋𝑏𝑒𝑠𝑡)

𝜋𝑅 = 𝜋𝑏𝑒𝑠𝑡, ℎ = 1, 𝑐 = 1

𝑤ℎ𝑖𝑙𝑒(𝑐 ≤ 𝑛)𝑑𝑜

 𝑘 = 1

 𝑤ℎ𝑖𝑙𝑒 (𝜋𝑘 ≠ 𝜋ℎ
𝑅)

 𝑘 = 𝑘 + 1
 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒
 ℎ = (ℎ + 1)(𝑚𝑜𝑑)𝑛

 𝑟𝑒𝑚𝑜𝑣𝑒 𝑗𝑜𝑏 𝜋𝑘 𝑓𝑟𝑜𝑚 𝜋

 𝜋1 = 𝑖𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 𝜋𝑘 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝜋

 𝑖𝑓(𝑓(𝜋1) < 𝑓(𝜋))𝑡ℎ𝑒𝑛

 𝜋 = 𝜋1, 𝑐 = 1

 𝑒𝑙𝑠𝑒

 𝑐 = 𝑐 + 1

 𝑒𝑛𝑑𝑖𝑓

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋)

Fig. 8. RIS local search

C. Q-Learning Procedure

The Q-learning (QL) is one of the widely used reinforcement

learning algorithms. The QL aims to choose an appropriate

action based on experience by interacting with the environment.

Once the agent (learner) performs a chosen action, it obtains a

reward or penalty. Then, it learns to choose the best action to

perform by assessing the action alternatives using the

cumulative rewards (Q-values).

The Q-value can be calculated for each state-action pair by a

Q-learning function given in equation (5) [33]. Then, Q-values

are kept for all state-action pairs in a Q-value table. Let 𝑆 =
[𝑠1, 𝑠2, … 𝑠𝑝] be the set of states, 𝐴 = [𝑎1, 𝑎2, … 𝑎𝑝] be the set of

actions, 𝑟𝑡+1 be the reward, 𝑙𝑓 ∈ [0,1] be the learning factor,

𝑑𝑓 ∈ [0,1] be the discount factor and 𝑄(𝑠𝑡 , 𝑎𝑡) be the Q-value

at time t. The learner aims to maximize its total reward.

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) =

𝑄(𝑠𝑡 , 𝑎𝑡) + 𝑙𝑓[𝑟𝑡+1 + 𝑑𝑓 ∗ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] ()

In the GVNS-QL algorithm, we assume that there is only one

state for each parameter, where the reward is the 1/𝐶𝑚𝑎𝑥 value.

As mentioned at the beginning of Section 3, we determine the 𝜖,

𝜏𝑃 , 𝑑𝑚𝑎𝑥 , 𝑙𝑓 and 𝑑𝑓 parameters of the GVNS-QL algorithm

using a QL approach. Namely, at each iteration, we update the

Q-values of the chosen actions for the parameters through the

Q-learning function. Then, in the next iteration, the algorithm

chooses the best action (value) for each parameter with the

maximum Q-value. Note that, in the GVNS-QL algorithm, we

also choose the actions of the parameters randomly with a small

𝜖 jumping probability. The action list of each parameter is given

in Table 1.

TABLE I. ACTION LIST OF THE PARAMETERS

Parameter Action List

𝜖 {0.05, 0.10, 0.15, 0.20}

𝜏𝑃 {0.1, 0.2, 0.3, 0.4, 0.5}

𝑑𝑚𝑎𝑥 {2, 3, 4, 5}

𝑙𝑓 {0.2, 0.4, 0.6, 0.8, 1}

𝑑𝑓 {0.2, 0.4, 0.6, 0.8, 1}

D. IG Algorithm

The IG algorithm is one of the state-of-the-art heuristic
algorithms in the literature, and it has been applied effectively to
various scheduling problems such as permutation flowshops
[30], hybrid flowshops [32, 34] and no-idle flowshops [11]. In
this paper, we compare the proposed GVNS-QL algorithm with
the well-known IG algorithm. In the traditional IG algorithm
[30], the initial solution is generated using the NEH heuristic
[28]. Afterward, a destruction-construction procedure is
employed on the solution as follows. In the destruction part, 𝑑
jobs are randomly removed from the permutation 𝜋 and kept in

𝜋𝑑 , and in the construction part, the removed jobs in 𝜋𝑑 are
sequentially inserted into the partial solution 𝜋𝑝 . Then, an
insertion local search is applied to the complete solution, as
explained in Fig. 4. If an improvement is found, the local search
is restarted until no improving solution is generated. Finally, the
new solution is accepted using a simulated annealing-type
acceptance criterion with a constant temperature 𝑇 [29].

IV. COMPUTATIONAL RESULTS

In this paper, we present a novel GVNS-QL algorithm for
the NIFSP with the makespan criterion. In order to assess the
performance of the developed GVNS-QL, we use the
benchmark set provided by [11] at http://soa.iti.es/rruiz. There
are 250 problems in the set, containing all combinations of 𝑛 =
{50, 100, 150, 200, 250, 300, 350, 400, 450, 500} and 𝑚 =
{10, 20, 30, 40, 50} , where there are five problems for each
combination of n and m.

In this paper, we compare the developed GVNS-QL
algorithm with the well-known IG algorithm. Both IG and
GVNS-QL algorithms are coded in C++ programming language
on Microsoft Visual Studio 2013 and run on an Intel Core-i9
3.10 GHz computer with 32 GB memory. For each algorithm,
five independent replications are conducted for each instance. In
each replication, both algorithms are run for 30nm milliseconds,
where n represents the number of jobs and m indicates the
number of machines. In the IG algorithm, we use 𝑑 = 4 and
𝜏𝑃 = 0.4 settings as proposed by the authors in [30]. For each
algorithm, the relative percentage deviation (RPD) is computed
for each instance by equation (6):

 RPD =
𝐻−𝐵𝑆

𝐵𝑆
× 100 ()

where 𝐻 indicates the makespan obtained by any of the heuristic
algorithms for a given instance, and 𝐵𝑆 is the best-known result
provided by [16]. The average RPD values over five replications
are computed for each heuristic, along with the minimum,
maximum, and standard deviation values. Afterward, the
average relative percentage deviations (ARPD) are calculated
for each instance group with the same instance size. Table 2
provides the ARPD values for each heuristic, classified by n and
m, over five instances.

As shown in Table 2, the GVNS-QL outperforms the IG
algorithm in terms of the maximum, minimum, and average
ARPD values. The overall average ARPD value is 0.25% for the
IG algorithm, whereas it is 0.09% for the GVNS-QL over 250
benchmark problems. In Table 2, the best average ARPD values
among the two algorithms is denoted in bold for each instance
set. The GVNS-QL has better average ARPD values than the IG
algorithm for 42 out of 50 instance classes, where both
algorithms have the same average ARPD values for the rest of
the instance classes.

To evaluate the performance of the two algorithms
statistically, we carried out a Wilcoxon signed-rank test with the
significance level of α= 0.05, based on the results in Table 2. Let
𝑚𝐷 denotes the median of the difference between the average
ARPDs of the two algorithms. The null hypothesis 𝐻0: 𝑚𝐷 = 0
indicates that there is no statistically significant difference
between the average ARPDs of the two compared algorithms
and the alternative hypothesis 𝐻1 : 𝑚𝐷 ≠ 0 indicates that there
is a statistically significant difference between them. Since the
p-value of the Wilcoxon signed-rank test is zero, it can be said
that the difference between the IG and GVNS-QL algorithms is
statistically significant at the α= 0.05 level. We also provide the
interval plot of the two algorithms in Fig. 9. As shown in Fig. 9,
the GVNS-QL is statistically better than the IG algorithm, since
their confidence intervals do not overlap.

http://soa.iti.es/rruiz

Furthermore, Table 3 reports the best results found by the
heuristic algorithms for each instance, where the BS column
represents the current best-known results provided by [16]. As
seen in Table 3, the IG algorithm obtains a makespan result that
is less than or equal to the current BS value for 129 instances.
However, the GVNS-QL finds a makespan result that is less than
or equal to the current BS value for 207 instances. The GVNS-
QL improves the current BS results for 104 instances, whereas
the IG improves the current BS results for 39 instances. In Table
3, the new best results found by the IG and GVNS-QL are
emphasized in bold. Consequently, it can be said that the
developed GVNS-QL is very effective to solve the NIFSP with
the makespan criterion.

Fig. 9. Interval plot of the algorithms

TABLE II. COMPUTATIONAL RESULTS OF IG AND GVNS-QL

n m

IG GVNS-QL

ARPD (%) ARPD (%)

Avg. Min. Max. Std. Dev. Avg. Min. Max. Std. Dev.

50 10 0.01 -0.01 0.05 0.02 -0.01 -0.01 -0.01 0.00
 20 0.16 0.02 0.28 0.11 0.06 0.01 0.10 0.04
 30 0.40 0.06 0.82 0.31 0.24 0.14 0.34 0.09
 40 0.95 0.53 1.28 0.31 0.41 0.03 0.79 0.28
 50 2.59 1.75 3.28 0.61 1.18 0.92 1.57 0.27

100 10 0.07 0.01 0.13 0.06 0.03 0.02 0.08 0.03
 20 0.17 0.01 0.36 0.17 0.03 0.00 0.04 0.02
 30 0.15 -0.01 0.38 0.15 0.05 -0.03 0.22 0.11
 40 0.94 0.27 1.65 0.51 0.26 -0.01 0.64 0.28
 50 0.68 0.26 1.23 0.41 0.17 -0.03 0.46 0.20

150 10 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00
 20 0.11 0.03 0.27 0.09 0.02 -0.01 0.07 0.03
 30 0.20 0.09 0.39 0.13 0.04 -0.01 0.15 0.07
 40 0.33 0.18 0.57 0.16 0.11 -0.04 0.26 0.13
 50 0.35 0.11 0.76 0.26 0.09 -0.01 0.27 0.12

200 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 20 0.06 0.03 0.13 0.04 0.03 0.01 0.06 0.02
 30 0.29 0.01 0.52 0.22 0.16 0.08 0.31 0.10
 40 0.37 0.20 0.64 0.19 0.12 0.04 0.24 0.09
 50 0.40 0.12 0.72 0.24 0.08 -0.02 0.21 0.09

250 10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
 20 0.06 0.01 0.14 0.06 0.03 0.00 0.08 0.04
 30 0.17 0.08 0.33 0.11 0.08 0.01 0.15 0.06
 40 0.21 0.02 0.42 0.15 0.08 0.01 0.16 0.06
 50 0.28 0.03 0.53 0.21 0.09 -0.01 0.22 0.10

300 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 20 0.04 0.01 0.07 0.03 0.01 -0.01 0.02 0.01
 30 0.10 0.04 0.19 0.07 0.03 -0.01 0.06 0.03
 40 0.28 0.12 0.51 0.17 0.09 0.02 0.18 0.07
 50 0.43 0.11 0.82 0.28 0.11 0.01 0.24 0.10

350 10 0.01 0.01 0.03 0.01 0.01 0.00 0.01 0.00
 20 0.06 0.04 0.11 0.03 0.01 0.00 0.03 0.01
 30 0.08 0.01 0.14 0.05 0.03 -0.01 0.10 0.05
 40 0.27 0.14 0.41 0.12 0.06 0.00 0.16 0.07
 50 0.23 0.10 0.39 0.12 0.07 -0.02 0.22 0.10

400 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 20 0.10 0.06 0.16 0.04 0.04 -0.01 0.09 0.04
 30 0.16 0.08 0.27 0.09 0.07 0.03 0.13 0.04
 40 0.16 0.07 0.27 0.08 0.04 -0.02 0.09 0.04
 50 0.28 0.06 0.50 0.19 0.08 -0.01 0.19 0.08

450 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 20 0.09 0.03 0.15 0.06 0.02 0.00 0.07 0.03
 30 0.17 0.05 0.28 0.10 0.06 -0.01 0.13 0.06
 40 0.19 0.06 0.38 0.13 0.04 -0.01 0.10 0.05
 50 0.24 0.07 0.37 0.12 0.13 0.02 0.22 0.08

500 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 20 0.02 0.00 0.03 0.01 0.01 0.00 0.02 0.01
 30 0.12 0.04 0.23 0.08 0.03 -0.01 0.06 0.03
 40 0.20 0.05 0.34 0.12 0.05 0.01 0.08 0.03

 50 0.21 0.03 0.37 0.14 0.03 -0.03 0.12 0.06

Average 0.25 0.10 0.42 0.13 0.09 0.02 0.18 0.06

TABLE III. BEST RESULTS FOR THE BENCHMARKS

Instance BS [16] IG GVNS-QL Instance BS [16] IG GVNS-QL Instance BS [16] IG GVNS-QL Instance BS [16] IG GVNS-QL

50-10-1 4127 4127 4127 150-40-1 15956 15999 15955 300-20-1 18837 18836 18833 400-50-1 37778 37832 37774

50-10-2 4283 4283 4283 150-40-2 18075 18140 18074 300-20-2 22032 22032 22032 400-50-2 38211 38213 38210

50-10-3 3262 3262 3262 150-40-3 16351 16348 16347 300-20-3 20229 20228 20227 400-50-3 37651 37715 37641

50-10-4 3217 3216 3216 150-40-4 14555 14580 14533 300-20-4 19483 19490 19483 400-50-4 40436 40450 40441

50-10-5 3470 3470 3470 150-40-5 17208 17225 17208 300-20-5 20705 20705 20705 400-50-5 35426 35412 35418

50-20-1 5646 5646 5646 150-50-1 20298 20347 20315 300-30-1 26487 26487 26487 450-10-1 23987 23987 23987

50-20-2 5814 5814 5814 150-50-2 19115 19103 19104 300-30-2 24260 24291 24260 450-10-2 26277 26277 26277

50-20-3 5793 5793 5793 150-50-3 19306 19305 19301 300-30-3 24363 24368 24368 450-10-3 25849 25849 25849

50-20-4 5795 5795 5799 150-50-4 20131 20181 20131 300-30-4 23705 23710 23688 450-10-4 26910 26910 26910

50-20-5 4869 4874 4869 150-50-5 19241 19270 19235 300-30-5 22544 22549 22542 450-10-5 25191 25191 25191

50-30-1 7223 7220 7235 200-10-1 12155 12155 12155 300-40-1 26572 26588 26569 450-20-1 27512 27539 27512
50-30-2 7330 7330 7337 200-10-2 12227 12227 12227 300-40-2 29158 29250 29166 450-20-2 27924 27924 27924

50-30-3 6844 6869 6868 200-10-3 12595 12595 12595 300-40-3 25261 25268 25268 450-20-3 28769 28779 28769

50-30-4 7571 7571 7578 200-10-4 12301 12301 12301 300-40-4 27438 27456 27442 450-20-4 28446 28446 28446

50-30-5 7333 7333 7333 200-10-5 12076 12076 12076 300-40-5 28760 28791 28771 450-20-5 28539 28539 28539

50-40-1 9130 9215 9126 200-20-1 14846 14864 14854 300-50-1 31522 31547 31513 450-30-1 35123 35153 35123

50-40-2 10094 10105 10107 200-20-2 14086 14086 14086 300-50-2 29357 29349 29351 450-30-2 32492 32492 32477

50-40-3 9765 9861 9767 200-20-3 16115 16115 16115 300-50-3 30634 30688 30633 450-30-3 31950 31977 31959
50-40-4 9495 9504 9498 200-20-4 15972 15972 15972 300-50-4 32202 32193 32192 450-30-4 33691 33722 33691

50-40-5 8904 8951 8904 200-20-5 14174 14178 14170 300-50-5 28965 29073 29006 450-30-5 33614 33603 33610

50-50-1 11064 11715 11533 200-30-1 17034 17021 17031 350-10-1 19297 19302 19300 450-40-1 39547 39547 39535

50-50-2 10857 10934 10854 200-30-2 16952 16984 17033 350-10-2 21316 21316 21317 450-40-2 35939 35958 35937

50-50-3 10841 10915 10847 200-30-3 17420 17412 17416 350-10-3 21330 21330 21330 450-40-3 37794 37807 37792

50-50-4 9858 9912 9899 200-30-4 19986 19983 19981 350-10-4 21759 21759 21759 450-40-4 37596 37668 37594

50-50-5 11316 11422 11304 200-30-5 17966 17968 17962 350-10-5 20591 20591 20591 450-40-5 35681 35681 35680

100-10-1 6570 6570 6575 200-40-1 19895 19890 19889 350-20-1 25413 25417 25413 450-50-1 37287 37311 37274

100-10-2 5798 5802 5798 200-40-2 21637 21682 21690 350-20-2 27185 27185 27185 450-50-2 43323 43358 43330

100-10-3 6533 6533 6533 200-40-3 20542 20605 20544 350-20-3 22880 22880 22880 450-50-3 44010 44073 44074

100-10-4 6158 6158 6158 200-40-4 17322 17394 17305 350-20-4 22968 22968 22968 450-50-4 41014 41013 41006

100-10-5 6654 6654 6654 200-40-5 21194 21213 21209 350-20-5 22746 22787 22745 450-50-5 40923 40944 40922

100-20-1 8606 8606 8606 200-50-1 22580 22699 22579 350-30-1 25192 25184 25184 500-10-1 28839 28839 28839

100-20-2 8217 8220 8217 200-50-2 23410 23430 23406 350-30-2 27739 27743 27738 500-10-2 27923 27923 27923

100-20-3 9043 9043 9043 200-50-3 22276 22276 22271 350-30-3 27638 27657 27638 500-10-3 27349 27349 27349
100-20-4 8970 8970 8970 200-50-4 23918 23916 23904 350-30-4 29295 29295 29295 500-10-4 27575 27575 27575

100-20-5 9109 9109 9109 200-50-5 24275 24274 24274 350-30-5 25209 25212 25205 500-10-5 27457 27457 27457

100-30-1 11200 11203 11198 250-10-1 16639 16639 16639 350-40-1 29020 29081 29008 500-20-1 35948 35948 35948

100-30-2 10938 10934 10934 250-10-2 15476 15476 15476 350-40-2 28950 28946 28949 500-20-2 34129 34129 34129

100-30-3 10523 10523 10515 250-10-3 14872 14872 14872 350-40-3 36247 36252 36247 500-20-3 31064 31064 31064

100-30-4 11089 11086 11087 250-10-4 15247 15247 15247 350-40-4 34644 34702 34659 500-20-4 30887 30887 30883

100-30-5 10983 10983 10981 250-10-5 15026 15026 15026 350-40-5 29742 29832 29738 500-20-5 33768 33776 33768

100-40-1 12551 12616 12550 250-20-1 17577 17577 17577 350-50-1 32065 32065 32060 500-30-1 36337 36349 36327

100-40-2 13117 13117 13112 250-20-2 17683 17683 17683 350-50-2 32760 32923 32750 500-30-2 39346 39365 39346

100-40-3 12411 12424 12410 250-20-3 17487 17487 17485 350-50-3 34682 34674 34672 500-30-3 39226 39251 39240

100-40-4 11680 11763 11681 250-20-4 17639 17646 17639 350-50-4 36957 36960 36948 500-30-4 33890 33900 33875

100-40-5 12877 12877 12877 250-20-5 17274 17273 17273 350-50-5 35343 35352 35334 500-30-5 38340 38356 38340

100-50-1 15998 15994 15996 250-30-1 21918 21920 21918 400-10-1 25238 25238 25238 500-40-1 40685 40721 40716

100-50-2 14761 14774 14756 250-30-2 21814 21838 21814 400-10-2 23001 23001 23001 500-40-2 44099 44131 44136

100-50-3 17514 17617 17513 250-30-3 20077 20080 20083 400-10-3 23665 23665 23665 500-40-3 40313 40309 40296

100-50-4 16569 16646 16563 250-30-4 19744 19787 19744 400-10-4 23275 23275 23275 500-40-4 41886 41882 41868

100-50-5 14746 14772 14740 250-30-5 20881 20891 20884 400-10-5 21956 21956 21956 500-40-5 36037 36075 36026

150-10-1 10404 10404 10404 250-40-1 22743 22770 22740 400-20-1 27686 27686 27686 500-50-1 46175 46164 46154

150-10-2 8824 8824 8824 250-40-2 24082 24056 24076 400-20-2 28088 28088 28088 500-50-2 43272 43301 43267

150-10-3 9180 9180 9180 250-40-3 24314 24313 24314 400-20-3 26224 26227 26224 500-50-3 45147 45146 45134

150-10-4 10032 10032 10032 250-40-4 24741 24768 24762 400-20-4 25105 25162 25104 500-50-4 42343 42341 42334

150-10-5 9866 9870 9870 250-40-5 23443 23435 23449 400-20-5 24675 24686 24667 500-50-5 43000 43046 42991

150-20-1 10758 10757 10755 250-50-1 28511 28529 28507 400-30-1 29405 29447 29399
150-20-2 11696 11699 11696 250-50-2 24241 24271 24244 400-30-2 29180 29252 29235
150-20-3 12046 12060 12046 250-50-3 26351 26347 26345 400-30-3 28633 28632 28630
150-20-4 10887 10887 10887 250-50-4 25410 25406 25407 400-30-4 31276 31276 31270
150-20-5 13210 13210 13210 250-50-5 27332 27331 27327 400-30-5 34533 34539 34533
150-30-1 15497 15496 15492 300-10-1 17498 17498 17498 400-40-1 37426 37448 37418
150-30-2 13667 13683 13667 300-10-2 17350 17350 17350 400-40-2 33805 33812 33797
150-30-3 14650 14651 14647 300-10-3 18627 18627 18627 400-40-3 34450 34455 34448
150-30-4 14544 14550 14548 300-10-4 16941 16941 16941 400-40-4 35245 35263 35235
150-30-5 15245 15288 15242 300-10-5 17521 17524 17521 400-40-5 32727 32800 32716

V. CONCLUSION

In this paper, a novel GVNS algorithm through Q-learning
was presented for the NIFSP with the makespan criterion. In the
outer loop, insertion and exchange operators are employed,
while, in the inner loop of VND, 𝑉𝐼𝐺𝐴𝐿𝐿 and VBIH algorithms

are used. Effective insertion and RIS local searches are also
employed in another VND loop, in the developed 𝑉𝐼𝐺𝐴𝐿𝐿 and
VBIH algorithms. The parameters are determined through a Q-
learning approach in the proposed GVNS-QL algorithm,
instead of using constant parameter values.

The developed GVNS-QL algorithm was compared with the
widely known IG algorithm using the benchmark set of [11].
The results indicate that the GVNS-QL outperforms the
traditional IG algorithm in terms of RPD values. Additionally,
the results of IG and GVNS-QL were compared with the current
best-known results provided by [16]. The results state that the
developed GVNS-QL algorithm improves the current best-
known results for 104 out of 250 benchmark instances.

In future research, other metaheuristic algorithms can be
developed for the problem. Other performance measures can
also be studied for the problem such as total completion time and
total tardiness. Additionally, developed GVNS-QL can be
employed to solve other scheduling problems.

REFERENCES

[1] M. R. Garey, D. S. Johnson, and R. Sethi “The complexity of flowshop
and job shop scheduling,” Mathematics of Operations Research, vol. 1,
no. 2, pp. 117–129, 1976.

[2] P. Baptiste and K. H. Lee, “A branch and bound algorithm for the F|no-
idle|Cmax,” in Proceedings of the International Conference on Industrial
Engineering and Production Management (IEPM’1997), pp. 429–438,
1997.

[3] P. Vachajitpan, “Job sequencing with continuous machine operation,”
Comput. Ind. Eng., vol. 6, no. 3, pp. 255–259, 1982.

[4] N. E. H. Saadani, P. Baptiste, and M. Moalla, “The simple F2//C max with
forbidden tasks in first or last position: A problem more complex than it
seems,” Eur. J. Oper. Res., vol. 161, no. 1, pp. 21–31, 2005.

[5] I. Adiri and D. Pohoryles, “Flowshop/no-idle or no-wait scheduling to
minimize the sum of completion times,” Nav. Res. Logist. Q., vol. 29, no.
3, pp. 495–504, 1982.

[6] N. E. H. Saadani, A. Guinet, and M. Moalla, "A traveling salesman
approach to solve the F/no−idle/Cmax problem," Eur. J. Oper. Res., vol.
161, no. 1, p.p. 11–20, 2005.

[7] P. J. Kalczynski and J. Kamburowski, “A heuristic for minimizing the
makespan in no-idle permutation flow shops,” Comput. Ind. Eng., vol. 49,
no. 1, pp. 146–154, 2005.

[8] D. Baraz and G. Mosheiov, “A note on a greedy heuristic for flow-shop
makespan minimization with no machine idle-time,” Eur. J. Oper. Res.,
vol. 184, no. 2, pp. 810–813, 2008.

[9] Q. K. Pan and L. Wang, “A novel differential evolution algorithm for no-
idle permutation flow-shop scheduling problems,” Eur. J. Ind. Eng., vol.
2, no. 3, pp. 279–297, 2008.

[10] Q. K. Pan and L. Wang, “No-idle permutation flow shop scheduling based
on a hybrid discrete particle swarm optimization algorithm,” Int. J. Adv.
Manuf. Technol., vol. 39, no. 7–8, pp. 796–807, 2008.

[11] R. Ruiz, E. Vallada, and C. Fernandez-Martinez, “Scheduling in
flowshops with no-idle machines,” in U.K. Chakraborty (Ed.),
Computational Intelligence in Flow Shop and Job Shop Scheduling,
Springer Berlin Heidelberg, pp. 21-51, 2009.

[12] G. Deng and X. Gu, “A hybrid discrete differential evolution algorithm
for the no-idle permutation flow shop scheduling problem with makespan
criterion,” Comput. Oper. Res., vol. 39, no. 9, pp. 2152–2160, 2012.

[13] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and O. Buyukdagli, “A
variable iterated greedy algorithm with differential evolution for the no-
idle permutation flowshop scheduling problem,” Comput. Oper. Res., vol.
40, no. 7, pp. 1729–1743, 2013.

[14] Y. Zhou, H. Chen, and G. Zhou, “Invasive weed optimization algorithm
for optimization no-idle flow shop scheduling problem,”
Neurocomputing, vol. 137, pp. 285–292, 2014.

[15] E. Taillard, “Benchmarks for basic scheduling problems,” Eur. J. Oper.
Res., vol. 64, pp. 278–285, 1993.

[16] W. Shao, D. Pi, and Z. Shao, “Memetic algorithm with node and edge
histogram for no-idle flow shop scheduling problem to minimize the
makespan criterion,” Appl. Soft Comput. J., vol. 54, pp. 164–182, 2017.

[17] M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and A. Oner, “A discrete
artificial bee colony algorithm for the no-idle permutation flowshop
scheduling problem with the total tardiness criterion,” Appl. Math.
Model., vol. 37, no. 10–11, pp. 6758–6779, 2013.

[18] W. Shao, D. Pi, and Z. Shao, “A hybrid discrete teaching-learning based
meta-heuristic for solving no-idle flow shop scheduling problem with
total tardiness criterion,” Comput. Oper. Res., vol. 94, pp. 89–105, 2018.

[19] C. Ling-Fang, W. Ling, and W. Jing-Jing, “A two-stage memetic
algorithm for distributed no-idle permutation flowshop scheduling
problem,” Chinese Control Conf. CCC, vol. 2018–July, pp. 2278–2283,
2018.

[20] F. L. Rossi and M. S. Nagano, “Heuristics for the mixed no-idle flowshop
with sequence-dependent setup times and total flowtime criterion,”
Expert Syst. Appl., vol. 125, pp. 40–54, 2019.

[21] N. Mladenovic and P. Hansen, “Variable neighborhood search,” Comput.
Oper. Res., vol. 24, no. 11, pp. 1097–1100, 1997.

[22] P. Hansen, N. Mladenović, and D. Urošević, “Variable neighborhood
search and local branching,” Comput. Oper. Res., vol. 33, no. 10, pp.
3034–3045, 2006.

[23] G. Kirlik and C. Oguz, “A variable neighborhood search for minimizing
total weighted tardiness with sequence-dependent setup times on a single
machine,” Comput. Oper. Res., vol. 39, no. 7, pp. 1506–1520, 2012.

[24] M. F. Tasgetiren, O. Buyukdagli, Q. K. Pan, and P. N. Suganthan, “A
general variable neighborhood search algorithm for the no-idle
permutation flowshop scheduling problem,” in International Conference
on Swarm, Evolutionary, and Memetic Computing, pp. 24–34, 2013.

[25] G. M. Komaki, S. Mobin, E. Teymourian, and S. Sheikh, “A general
variable neighborhood search algorithm to minimize the makespan of the
distributed permutation flowshop scheduling problem,” Int. Sch. Sci. Res.
Innov., vol. 9, no. 8, pp. 2582–2589, 2015.

[26] M. Komaki and B. Malakooti, “General variable neighborhood search
algorithm to minimize the makespan of the distributed no-wait flow shop
scheduling problem,” Prod. Eng., vol. 11, no. 3, pp. 315–329, 2017.

[27] S.F. Rad, R. Ruiz, N. Boroojerdian, "New high performing heuristics for
minimizing makespan in permutation flowshops", Omega, vol. 37, no. 2,
p.p. 331–45, 2009.

[28] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem,” Omega, vol. 11, no. 1,
pp. 91–95, Jan. 1983.

[29] I. Osman, C. Potts, "Simulated annealing for permutation flow-shop
scheduling," Omega, vol. 17 (6), p.p. 551–557, 1989.

[30] R. Ruiz , T. Stützle , "A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem", Eur. J. Oper. Res., vol.
177, p.p. 2033–2049, 2007.

[31] J. Dubois-Lacoste, F. Pagnozzi, and T. Stützle, “An iterated greedy
algorithm with optimization of partial solutions for the makespan
permutation flowshop problem,” Comput. Oper. Res., vol. 81, pp. 160–
166, 2017.

[32] H. Öztop , M. F. Tasgetiren, D.T. Eliiyi and Q. K. Pan, "Metaheuristic
algorithms for the hybrid flowshop scheduling problem," Comput. Oper.
Res., vol. 111, pp. 177–196, 2019.

[33] S.S. Choong, L-P. Wong, and C.P. Lim, “Automatic design of hyper-
heuristic based on reinforcement learning,” Information Sciences, vol.
436-437, pp. 89-107, 2018.

[34] H. Öztop, M. F. Tasgetiren, D.T. Eliiyi, and Q. K. Pan, “Iterated greedy
algorithms for the hybrid flowshop scheduling with total flow time
minimization,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ACM, pp. 379–385, 2018.
https://doi.org/10.1145/3205455.3205500.

