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Abstract— In this study, a novel general variable neighborhood 

search through Q-learning (GVNS-QL) algorithm is proposed to 

solve the no-idle flowshop scheduling problem with the makespan 

objective. In the outer loop of the GVNS-QL, insertion, and 

exchange operators are used to shaking the permutation. On the 

other hand, in the inner loop of variable neighborhood descent 

procedure, variable iterated greedy and variable block insertion 

heuristic algorithms are employed with two effective insertion 

local search procedures. The proposed GVNS-QL defines the 

parameters of the algorithm using a Q-learning mechanism. The 

developed GVNS-QL algorithm is compared with the traditional 

iterated greedy (IG) algorithm using the well-known benchmark 

set. The comprehensive computational experiments show that the 

GVNS-QL outperforms the traditional IG algorithm. The results 

of the IG and GVNS-QL algorithms are also compared with the 

current best-known solutions reported in the literature. The 

computational results show that the proposed GVNS-QL 

algorithm improves the current best-known solutions for 104 out 

of 250 instances.  

Keywords— no-idle flowshop scheduling problem; makespan; 

general variable neighborhood search; Q-learning; variable iterated 

greedy; variable block insertion. 

I. INTRODUCTION 

In a flowshop, a set of n jobs are processed on m serial 
machines following the same route, generally, machine 1, 
machine 2, …, machine m. It is generally assumed that job pre-
emption is not allowed and, all machines and jobs are ready at 
time zero. In the Permutation Flowshop Scheduling Problem 
(PFSP), once a job order (permutation) is determined on the first 
machine, this job order is employed for all machines, i.e., each 
machine processes the jobs with the same job permutation. 
Then, the PFSP aims to find the job permutation that optimizes 
a given performance criterion. The PFSP is well-known to be 
NP-hard [1].  

In this study, we focus on an extension of the PFSP, in which 
idle time is not permitted between the jobs on the machines. This 
variant of the PFSP is known as the No-Idle Flowshop 
Scheduling Problem (NIFSP). In many real production 
environments such as foundries, integrated circuits, and 
fiberglass, once the machines start to process the jobs, the idle 
time is undesirable, as expensive machines are used. In this 
paper, we study the m-machine ( 𝐹𝑚 ) no-idle permutation 
flowshop scheduling problem with the makespan ( 𝐶𝑚𝑎𝑥 ) 

objective, namely, 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜 − 𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥 . Accordingly, 
the goal is to obtain the best job permutation that minimizes the 
makespan (maximum completion time). The NIFSP has also 
been proven to be NP-hard [2]. 

Many exact and heuristic solution approaches have been 
proposed to solve the NIFSP. Vachajitpan [3] developed a 
mixed-integer programming model and a Branch & Bound 
(B&B) algorithm for the NIFSP with the makespan criterion. 
Afterward, a B&B approach was also developed for the NIFSP 
by Saadani et al. [4]. Since these B&B methods can only be used 
to solve small-sized problems, heuristic methods have been 
generally addressed to solve the NIFSP. Adiri and Pohoryles [5] 
developed a polynomial-time heuristic method to solve the 
NIFSP with two machines considering the total completion time 
criterion, and revealed that 2-machine no-idle PFSP and 2-
machine PFSP are the same for the makespan objective. The 
NIFSP with the makespan criterion was formulated as an 
asymmetric traveling salesman problem in [6], where the 
authors presented the nearest insertion rule-based heuristic 
method. An efficient constructive heuristic was also presented 
by Kalczynski and Kamburowski [7] for the NIFSP with the 
makespan objective. Later, a two-stage improved greedy 
algorithm was presented for the same problem [8]. 

Furthermore, discrete differential evolution (DDE) and 
hybrid discrete particle swarm optimization (HDPSO) 
algorithms were proposed for the NIFSP with the makespan 
objective [9, 10]. In these two papers, a speed-up approach was 
developed for the insertion neighborhood to decrease the time 
complexity from 𝑂(𝑛3𝑚) to 𝑂(𝑛2𝑚). Ruiz et al. [11] assessed 
the performance of the iterated greedy (IG) algorithm to solve 
the NIFSP with the makespan objective, and according to their 
results, the IG outperforms the DDE and the HDPSO. The 
benchmark instances were also presented for the NIFSP in [11]. 
A hybrid discrete differential evolution (HDDE) algorithm was 
also developed for the same problem by [12], and according to 
their results, the HDDE outperforms the DDE, HDPSO, and IG 
algorithms. A variable iterated greedy algorithm with 
differential evolution was also developed by Tasgetiren et al. 
[13] for the NIFSP with the makespan and total flowtime 
criteria. Later, an invasive weed optimization (IWO) algorithm 
was presented by [14] for the NIFSP, and their results, which are 
based on the benchmark set of [15], show that the IWO 
outperforms the IG and HDPSO. Recently, a memetic algorithm 
was developed by [16] for the NIFSP with the makespan 
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objective, where the authors compared their algorithm with the 
other well-known heuristics from the literature. They improved 
89 out of the 250 best solutions presented for the benchmark 
instances of [11].  

Additionally, Tasgetiren et al. [17] presented a discrete 
artificial bee colony algorithm and Shao et al. [18] developed a 
hybrid discrete teaching-learning based metaheuristic for the 
NIFSP with the total tardiness criterion. As other extensions of 
the NIFSP, a two-stage memetic algorithm was proposed for the 
distributed NIFSP by [19]. Later, a mathematical model and 
heuristic algorithms were developed for the mixed NIFSP with 
sequence-dependent setup times in [20].  

Mladenovic and Hansen [21] presented a Variable 
Neighborhood Search (VNS) by employing changes in the 
neighborhood systematically. Afterward, the VNS was extended 
by Hansen et al. [22] as a General Variable Neighborhood 
Search (GVNS) algorithm. The GVNS has been effectively 
applied to solve a variety of problems such as single machine 
scheduling problem [23], the NIFSP [24], distributed PFSP [25] 
and distributed no-wait flowshop scheduling problem [26]. Note 
that, insertion, swap, IG and iterated local search algorithms are 
used in the GVNS of [24]. 

Inspired by the abovementioned effective applications of the 
GVNS in various scheduling problems, this study presents a 
novel GVNS algorithm, called as GVNS-QL, for the NIFSP 
with the makespan criterion by incorporating a Q-learning 
mechanism. In the developed GVNS-QL, the initial solution is 
obtained by using the FRB5 constructive heuristic. Insertion and 
exchange operators are used in the outer loop, whereas an 
effective Variable IG (𝑉𝐼𝐺𝐴𝐿𝐿) and an effective Variable Block 
Insertion Heuristic (VBIH) are used in the inner loop of the 
Variable Neighborhood Descent (VND) phase.  

The Q-learning (QL) is one of the well-known reinforcement 

learning algorithms. The QL aims to choose an appropriate 

action based on experience. In the QL, once the learner performs 

a chosen action, it obtains a reward or penalty. Then, it learns to 

choose the best action to perform by assessing the action 

alternatives using the cumulative rewards (Q-values). We use 

the QL approach to choose the parameters of the algorithm. 

Namely, parameters are determined through a Q-learning 

approach in the proposed GVNS-QL, instead of using constant 

parameter values. We compare the performance of the 

developed GVNS-QL algorithm with the well-known IG 

algorithm using the benchmarks from the literature. Then, we 

compare the results of these algorithms with the current best-

known solutions reported in the literature. The rest of the paper 

is organized as follows. In Section 2, the NIFSP is explained 

formally. In Section 3, the developed GVNS-QL algorithm is 

described. In Section 4, computational results are presented. 

Finally, in Section 5, conclusions and future research directions 

are provided.  

II. PROBLEM DEFINITION 

The NIFSP can be described as follows: a set of 𝑛 jobs 𝐽 =
{1,2, … , 𝑛}  must be processed on a set of 𝑚  machines 𝑀 =
{1, 2, … , 𝑚}  in the same order. Each job has 𝑚  operations, 

where 𝑘𝑡ℎoperation of job j must be processed on machine 𝑘 

with a given processing time 𝑝𝑗𝑘 without an interruption. Each 

job can be processed by only one machine and each machine can 
process only one job, at a time. All machines process the jobs 
with the same job permutation. Idle time is not allowed between 
two subsequent job operations on the same machine. All jobs are 
ready at the beginning. The goal is to obtain the best job 
permutation that minimizes the makespan.  

Let 𝜋 = {𝜋1, 𝜋2,, … , 𝜋𝑛} represent the job permutation and 

𝜋𝑗
𝐸={𝜋1, 𝜋2, . . , 𝜋𝑗} represent a partial order of 𝜋 such that 1 <

𝑗 < 𝑛 . Additionally, 𝐹(𝜋𝑗
𝐸 , 𝑘, 𝑘 + 1)  denotes the minimum 

difference between the completion time of processing the last 

job of 𝜋𝑗
𝐸 on machines 𝑘 + 1 and 𝑘, which is limited by the no-

idle constraint. Consequently, the makespan 𝐶𝑚𝑎𝑥  can be 

calculated as follows, where 𝑝𝜋𝑗,𝑘 denotes the processing time 

of job 𝜋𝑗 on machine 𝑘:  

𝐹(𝜋1
𝐸 , 𝑘, 𝑘 + 1) = 𝑝𝜋1,𝑘+1      𝑘 = 1,2, … , 𝑚 − 1 () 

𝐹(𝜋𝑗
𝐸 , 𝑘, 𝑘 + 1) = max{𝐹(𝜋𝑗−1

𝐸 , 𝑘, 𝑘 + 1) − 𝑝𝜋𝑗,𝑘 ,0}  

 + 𝑝𝜋𝑗,𝑘+1    𝑗 = 2,3, . . , 𝑛   𝑘 = 1,2, … , 𝑚 − 1  () 

𝐶𝑚𝑎𝑥 = ∑ 𝐹(𝜋𝑛
𝐸 , 𝑘, 𝑘 + 1) + ∑ 𝑝𝜋𝑗,1

𝑛
𝑗=1

𝑚−1
𝑘=1                           () 

III. GENERAL VARIABLE NEIGHBORHOOD SEARCH ALGORITHM 

THROUGH Q-LEARNING 

The VNS is an effective heuristic procedure that uses a multi 
neighborhood structure during the search. The VNS has two 
core phases: (1) shaking phase that perturbs the solution to 
escape from local optima, and (2) local search phase that 
explores the neighborhood of the solution by employing the 
given neighborhood structures. The VNS has a set 𝑁𝑘  of 
neighborhood structures, where 𝑘 = 1,2, . . , 𝑘𝑚𝑎𝑥 . In the VNS, 
the solution is initialized randomly or using a constructive 
heuristic. Then, shaking and local search phases are employed 
on the solution until the stopping criterion is satisfied, where the 
stopping criterion can be defined as the maximum CPU time or 
the maximum number of iterations. Later, an extended version 
of the VNS, named as GVNS, was proposed by [22]. In the 
GVNS, the local search phase of the VNS is replaced with a 
VND algorithm, which is a deterministic version of the VNS, 
where the change of neighborhoods is performed in a 
deterministic way.  

In this study, we propose a novel GVNS algorithm through 
Q-learning, i.e. GVNS-QL, where the algorithm parameters are 
determined through a Q-learning approach. Namely, values of 
the following parameters are updated through the GVNS 
procedure using a QL mechanism: 𝜖 (𝜖jumping probability), 𝜏𝑃 
(parameter of the acceptance criterion), 𝑑𝑚𝑎𝑥  (maximum 
destruction/block size), 𝑙𝑓 (learning factor of the Q-learning 
function) and 𝑑𝑓 (discount factor of the Q-learning function). In 
the QL mechanism, once an action (parameter setting) is 
performed, a reward or penalty is obtained for that action. Then, 
the algorithm learns to choose the best action to perform for each 
parameter by assessing the action alternatives based on their 
cumulative rewards (Q-values). The details of the QL strategy 
are explained in Section III.C. 



The main framework of the proposed GVNS-QL algorithm 
is outlined in Fig. 1, where U (0,1) is a uniform random number 
in between 0 and 1. As shown in Fig.1, the GVNS-QL has two 
main neighborhood parameters: 𝑘𝑚𝑎𝑥  the number of 
neighborhoods employed in the outer loop and 𝑞𝑚𝑎𝑥  the 
number of neighborhoods used in the inner (VND) loop. In this 
study, we set 𝑞𝑚𝑎𝑥 = 2 and 𝑘𝑚𝑎𝑥 = 2. As shown in Fig. 1, the 
initial solution is obtained by the FRB5 constructive heuristic 
[27], which is an extended version of the NEH heuristic [28]. 
Then, the initial parameter values of the algorithm are 
determined randomly. In the shaking part, insertion and 
exchange operators are employed in the outer loop. For the 
inner loop of VND, two powerful algorithms, namely, 𝑉𝐼𝐺𝐴𝐿𝐿  
and VBIH algorithms are used. In the proposed GVNS-QL, if 
the new solution is better than the incumbent solution, it is 
accepted and the Q-values of the performed actions are updated 
in the Q-value table for the parameters according to a Q-learning 
function. Otherwise, a simulated annealing-type acceptance 
criterion [29] with a temperature 𝑇  is employed to decide 
whether the new permutation is accepted or not.  𝑇 is calculated 
by equation (4), where 𝜏𝑃 is a parameter to be adjusted: 

𝑇 =
∑ ∑ 𝑝𝑗𝑘

𝑚
𝑘=1

𝑛
𝑗=1

10𝑛𝑚
× 𝜏𝑃                                           () 

𝐺𝑉𝑁𝑆 − 𝑄𝐿 

𝜋 = 𝐹𝑅𝐵5, 𝜋𝑏𝑒𝑠𝑡 = 𝜋, 𝑘𝑚𝑎𝑥 = 2 

𝐷𝑜{   
     𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑓𝑟𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 
      𝑘 = 1 

     𝐷𝑜{ 

                𝐼𝑓 (𝑘 = 1) 𝑡ℎ𝑒𝑛 𝜋1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝜋) 

                𝐼𝑓 (𝑘 = 2) 𝑡ℎ𝑒𝑛 𝜋1 = 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒(𝜋) 

                𝜋2 = 𝑉𝑁𝐷(𝜋1) 

                𝐼𝑓 𝑓(𝜋2) < 𝑓(𝜋) 

                     𝜋 = 𝜋2 

                     𝑘 = 1 

                    𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑄-𝑣𝑎𝑙𝑢𝑒 𝑡𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 (1/𝑓(𝜋))  

               𝐸𝑙𝑠𝑒 

         𝑘 = 𝑘 + 1 

                    𝐼𝑓 (𝑈(0,1) < 𝑒𝑥𝑝{−(𝑓( 𝜋2) − 𝑓(𝜋))/𝑇}) 

        𝜋 = 𝜋2    

                   𝐸𝑛𝑑𝑖𝑓 

            𝐸𝑛𝑑𝑖𝑓                

          }𝑊ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥) 

     𝐼𝑓 (𝑓(𝜋) < 𝑓(𝜋𝑏𝑒𝑠𝑡))  

           𝜋𝑏𝑒𝑠𝑡 =  𝜋      
    𝐸𝑛𝑑𝑖𝑓    
}𝑊ℎ𝑖𝑙𝑒(𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 
𝑅𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡 

Fig. 1. GVNS through Q-learning 

The VND algorithm of the proposed GVNS-QL is explained 
in Fig. 2. As shown in Fig. 2, the parameter values are selected 
at each iteration using a QL strategy. Namely, the actions are 
determined for the parameters either randomly with a jumping 
probability 𝜖 or according to the Q-values of the actions, i.e., 
the actions with the maximum Q-values are selected. As seen 
in Fig. 2, 𝑉𝐼𝐺𝐴𝐿𝐿  and VBIH algorithms are employed in the 
VND. Then, a similar acceptance procedure as in the main 
GVNS-QL is employed, where Q-values of the performed 
actions are also updated for the parameters according to a Q-
learning function. FRB5 constructive heuristic, 𝑉𝐼𝐺𝐴𝐿𝐿 , VBIH 
and QL procedures are explained in the following subsections. 

𝑉𝑁𝐷 (𝜋) 

𝑞 = 1, 𝑞𝑚𝑎𝑥=2  

𝐷𝑜{ 

𝐼𝑓(𝑈(0.1) < 𝜖)          

       𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑓𝑟𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡 

𝐸𝑙𝑠𝑒     
      𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑄-𝑣𝑎𝑙𝑢𝑒𝑠        
      𝑖𝑛 𝑄-𝑣𝑎𝑙𝑢𝑒 𝑡𝑎𝑏𝑙𝑒  

𝐸𝑛𝑑𝑖𝑓 

  𝐼𝑓 (𝑞 = 1) 𝑡ℎ𝑒𝑛 𝜋1 = 𝑉𝐼𝐺𝐴𝐿𝐿(𝜋, 𝑑𝑚𝑎𝑥) 

  𝐼𝑓 (𝑞 = 2) 𝑡ℎ𝑒𝑛 𝜋1 = 𝑉𝐵𝐼𝐻(𝜋, 𝑑𝑚𝑎𝑥) 

  𝐼𝑓 𝑓(𝜋1) < 𝑓(𝜋) 

          𝜋 = 𝜋1 

          𝑞 = 1 

         𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑄-𝑣𝑎𝑙𝑢𝑒 𝑡𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 (1/𝑓(𝜋))  

   𝐸𝑙𝑠𝑒 

         𝑞 = 𝑞 + 1 

         𝐼𝑓 (𝑈(0,1) < 𝑒𝑥𝑝{−(𝑓( 𝜋1) − 𝑓(𝜋))/𝑇}) 

             𝜋 = 𝜋1 

         𝐸𝑛𝑑𝑖𝑓 

   𝐸𝑛𝑑𝑖𝑓 

}𝑊ℎ𝑖𝑙𝑒(𝑞 ≤ 𝑞𝑚𝑎𝑥) 

𝑅𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 2. VND Algorithm 

A. Constructive Heuristic 

The developed GVNS-QL uses the well-known FRB5 
heuristic [27] as a constructive heuristic. The FRB5 heuristic 
contains an extra local search compared to the NEH heuristic. 
In the FRB5 heuristic, initially, jobs are sorted in decreasing 
order of their total processing times and a partial solution is 
initialized with γ

1
 similar to the NEH. Then, the rest of the jobs 

in γ are sequentially inserted into the partial solution, where an 
insertion local search is employed on the partial solution at each 
iteration. The FRB5 heuristic is explained in Fig. 3. 

𝐹𝑅𝐵5 Heuristic 

γ = 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟(∑ 𝑝𝑗𝑘
𝑚
𝑘=1 )  

𝜋1 = γ1   

𝑓𝑜𝑟 𝑧 = 2 𝑡𝑜 𝑛 𝑑𝑜  

 𝜋 = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋, γ𝑧)   
 𝜋 = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜋) 

𝑒𝑛𝑑𝑓𝑜𝑟  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 3. FRB5 heuristic 

B. 𝑉𝐼𝐺𝐴𝐿𝐿  and VBIH Algorithms 

Recently, the traditional IG [30] has been successfully 
extended to an 𝐼𝐺𝐴𝐿𝐿  algorithm by [31]. Similar to the IG 
algorithm, a destruction-construction procedure is employed in 
the 𝐼𝐺𝐴𝐿𝐿  as follows. In the destruction part, 𝑑  jobs are 

randomly removed from the permutation 𝜋  and kept in 𝜋𝑑 , 
while the rest of the jobs are kept in 𝜋𝑝. In the construction part, 

the removed jobs in 𝜋𝑑 are sequentially inserted into the partial 
solution 𝜋𝑝 according to the best insertion approach. Unlike the 
IG, the 𝐼𝐺𝐴𝐿𝐿  applies an insertion local search (Fig. 4) to the 
partial solution before the construction part, as long as the 
solution is improved. As shown in Fig. 4, the insertion local 
search removes the job 𝜋𝑗  from the solution 𝜋 randomly, and 

inserts it into all positions of 𝜋. Once the best insertion is found, 
the job 𝜋𝑗 is inserted into that position. These steps are repeated 

for all jobs. If an improvement is found, the local search is 
restarted until no improving solution is generated. 



𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝜋) 

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜  

 𝜋∗ = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋, 𝜋𝑗) 

       𝑖𝑓 𝑓(𝜋∗) < 𝑓(𝜋) 

         𝜋 = 𝜋∗ 

 𝑒𝑛𝑑𝑖𝑓 

𝑒𝑛𝑑𝑓𝑜𝑟  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 4. Insertion local search 

In this paper, we propose a variable 𝐼𝐺𝐴𝐿𝐿  algorithm, named 
as 𝑉𝐼𝐺𝐴𝐿𝐿 , as one of the strategies of the VND algorithm. As 
shown in Fig. 5, the 𝑉𝐼𝐺𝐴𝐿𝐿  algorithm takes the solution and the 
maximum destruction size (𝑑𝑚𝑎𝑥 ) from the VND procedure, 
where the 𝑑𝑚𝑎𝑥  parameter is determined through a QL 
mechanism. In the beginning, the destruction size is set as 𝑑 =
1, and increased by one if the solution is not improved until the 
𝑑 reaches at 𝑑𝑚𝑎𝑥. Note that, if the solution improves at any 𝑑 
value, the destruction size 𝑑  is reset to one. The 𝑉𝐼𝐺𝐴𝐿𝐿  
algorithm applies destruction-construction and local search 
procedures to the solution, respectively. While the insertion 
local search is employed on the partial solution 𝜋𝑝 as long as it 
is improved, the referenced insertion scheme (RIS) and insertion 
local search procedures are employed on the complete solution 
𝜋1 in another VND loop, i.e. 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷 (Fig. 7). 

𝑉𝐼𝐺𝐴𝐿𝐿(𝜋, 𝑑𝑚𝑎𝑥) 

𝑑 = 1 
    𝑑𝑜  

   𝜋𝑑 , 𝜋𝑝 = 𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜋, 𝑑) 
              𝜋𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝜋𝑝)                                   

                𝜋1 = 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝜋𝑑 , 𝜋𝑝)  

    𝜋2 = 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷(𝜋1)               
    𝑖𝑓 (𝑓( 𝜋2) < 𝑓(𝜋)) 

     𝜋 = 𝜋2,  𝑑 = 1 
    𝑒𝑙𝑠𝑒 
             𝑑 = 𝑑 + 1        
    𝑒𝑛𝑑𝑖𝑓  

    𝑤ℎ𝑖𝑙𝑒(𝑑 ≤ 𝑑𝑚𝑎𝑥) 
𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 5. 𝑉𝐼𝐺𝐴𝐿𝐿 algorithm 

Another strategy of the VND is the VBIH algorithm, which 
takes the solution and the maximum block size (𝑑𝑚𝑎𝑥) from the 
VND procedure, where the 𝑑𝑚𝑎𝑥  parameter is determined 
through a QL mechanism.  The VBIH algorithm employs block 
insertion and local search procedures on a solution as shown in 
Fig. 6, where 𝑑 denotes the block size. At the beginning, the 
block size is set as 𝑑 = 1. In the VBIH algorithm, 𝑑 consecutive 
jobs (𝜋𝑑), i.e. block, are removed from the order 𝜋, where the 
rest of the jobs construct a partial solution  (𝜋𝑝) . Then, an 
insertion local search (Fig. 4) is employed on the partial solution, 
as long as the solution is improved. Then, block insertion moves 
are applied to the partial solution and the best move is chosen. 
Afterward, similar to the 𝑉𝐼𝐺𝐴𝐿𝐿  algorithm, two local search 
procedures are applied to the complete solution in a VND loop, 
i.e. 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷, which is explained in Fig. 7. If the new 
solution after the local search procedures is better than the 
current one, the VBIH replaces the current solution and the 
block size is reset to one. Otherwise, the block size is 
incremented by one. These steps are reiterated until the 
maximum block size is reached.  

𝑉𝐵𝐼𝐻(𝜋, 𝑑𝑚𝑎𝑥) 

𝑑 = 1 
          𝑑𝑜  
              𝜋𝑑, 𝜋𝑝 = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑡ℎ 𝑑 𝑗𝑜𝑏𝑠 𝑓𝑟𝑜𝑚 𝜋  
              𝜋𝑝 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ (𝜋𝑝)           
              𝜋1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑙𝑜𝑐𝑘𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝜋𝑑 , 𝜋𝑝)  
              𝜋2 = 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷(𝜋1)     
              𝑖𝑓 (𝑓(𝜋2) < 𝑓(𝜋)) 𝑡ℎ𝑒𝑛 𝑑𝑜   
           𝜋 =  𝜋2,  𝑑 = 1 
              𝑒𝑙𝑠𝑒  
    𝑑 = 𝑑 + 1   
             𝑒𝑛𝑑𝑖𝑓      
        𝑤ℎ𝑖𝑙𝑒(𝑑 ≤ 𝑑𝑚𝑎𝑥)  
𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 6. VBIH algorithm 

     Local Search_VND procedure of the 𝑉𝐼𝐺𝐴𝐿𝐿  and VBIH 
algorithms are outlined in Fig. 7. As seen in Fig. 7, the RIS and 
insertion local search procedures are employed in the Local 
Search_VND, where the RIS refers to a Referenced Insertion 
Scheme [32], which is explained in Fig. 8. 

𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ_𝑉𝑁𝐷 (𝜋) 

𝑢𝑚𝑎𝑥 = 2 , 𝑢 = 1  

𝑑𝑜{  

      𝐼𝑓 (𝑢 = 1) 𝑡ℎ𝑒𝑛 𝜋1 = 𝑅𝐼𝑆(𝜋, 𝜋𝑏𝑒𝑠𝑡) 

      𝐼𝑓 (𝑢 = 2) 𝑡ℎ𝑒𝑛 𝜋1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ(𝜋) 

      𝐼𝑓 𝑓(𝜋1) < 𝑓(𝜋) 

                 𝜋 = 𝜋1,  𝑢 = 1 

      𝑒𝑙𝑠𝑒 

𝑢 = 𝑢 + 1 

      𝑒𝑛𝑑𝑖𝑓 

}𝑤ℎ𝑖𝑙𝑒(𝑢 ≤ 𝑢𝑚𝑎𝑥) 

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 7. Local Search_VND procedure 

In the RIS, 𝜋𝑅 represents the reference order, which is the 
best permutation obtained so far. As shown in Fig.8, the RIS 
chooses the first job in 𝜋𝑅 and finds the best position for this job 
in the current solution 𝜋 , by inserting it into all possible 
positions of the solution 𝜋. Then, it chooses the second job in 
𝜋𝑅 and finds the best position for this job in the current solution 
𝜋. The iteration counter (c) is reset to one if an improvement 
occurs. Otherwise, it is incremented by one. These steps are 
applied until the iteration counter exceeds n. 

𝑅𝐼𝑆(𝜋, 𝜋𝑏𝑒𝑠𝑡) 

𝜋𝑅 = 𝜋𝑏𝑒𝑠𝑡, ℎ = 1, 𝑐 = 1 

𝑤ℎ𝑖𝑙𝑒(𝑐 ≤ 𝑛)𝑑𝑜 

        𝑘 = 1 

         𝑤ℎ𝑖𝑙𝑒 (𝜋𝑘 ≠  𝜋ℎ
𝑅)  

               𝑘 =  𝑘 +  1 
         𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒 
        ℎ = (ℎ + 1)(𝑚𝑜𝑑)𝑛 

        𝑟𝑒𝑚𝑜𝑣𝑒 𝑗𝑜𝑏 𝜋𝑘 𝑓𝑟𝑜𝑚 𝜋        

        𝜋1 = 𝑖𝑛𝑠𝑒𝑟𝑡 𝑗𝑜𝑏 𝜋𝑘 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝜋   

        𝑖𝑓(𝑓(𝜋1) < 𝑓(𝜋))𝑡ℎ𝑒𝑛 

 𝜋 = 𝜋1, 𝑐 = 1 

         𝑒𝑙𝑠𝑒 

 𝑐 = 𝑐 + 1 

        𝑒𝑛𝑑𝑖𝑓 

𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒 

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋 𝑎𝑛𝑑 𝑓(𝜋) 

Fig. 8. RIS local search 



C. Q-Learning Procedure 

The Q-learning (QL) is one of the widely used reinforcement 

learning algorithms. The QL aims to choose an appropriate 

action based on experience by interacting with the environment. 

Once the agent (learner) performs a chosen action, it obtains a 

reward or penalty.  Then, it learns to choose the best action to 

perform by assessing the action alternatives using the 

cumulative rewards (Q-values).  

The Q-value can be calculated for each state-action pair by a 

Q-learning function given in equation (5) [33]. Then, Q-values 

are kept for all state-action pairs in a Q-value table. Let 𝑆 =
[𝑠1, 𝑠2, … 𝑠𝑝] be the set of states, 𝐴 = [𝑎1, 𝑎2, … 𝑎𝑝] be the set of 

actions, 𝑟𝑡+1  be the reward, 𝑙𝑓 ∈ [0,1] be the learning factor, 

𝑑𝑓 ∈ [0,1] be the discount factor and 𝑄(𝑠𝑡 , 𝑎𝑡) be the Q-value 

at time t. The learner aims to maximize its total reward. 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 

𝑄(𝑠𝑡 , 𝑎𝑡) + 𝑙𝑓[𝑟𝑡+1 + 𝑑𝑓 ∗ 𝑚𝑎𝑥𝑎𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] () 

In the GVNS-QL algorithm, we assume that there is only one 

state for each parameter, where the reward is the 1/𝐶𝑚𝑎𝑥 value. 

As mentioned at the beginning of Section 3, we determine the 𝜖, 

𝜏𝑃 , 𝑑𝑚𝑎𝑥 , 𝑙𝑓 and 𝑑𝑓  parameters of the GVNS-QL algorithm 

using a QL approach. Namely, at each iteration, we update the 

Q-values of the chosen actions for the parameters through the 

Q-learning function. Then, in the next iteration, the algorithm 

chooses the best action (value) for each parameter with the 

maximum Q-value. Note that, in the GVNS-QL algorithm, we 

also choose the actions of the parameters randomly with a small 

𝜖 jumping probability. The action list of each parameter is given 

in Table 1. 

TABLE I.  ACTION LIST OF THE PARAMETERS 

Parameter Action List 

𝜖 {0.05, 0.10, 0.15, 0.20} 

𝜏𝑃 {0.1, 0.2, 0.3, 0.4, 0.5} 

𝑑𝑚𝑎𝑥 {2, 3, 4, 5} 

𝑙𝑓 {0.2, 0.4, 0.6, 0.8, 1} 

𝑑𝑓 {0.2, 0.4, 0.6, 0.8, 1} 

D. IG Algorithm 

The IG algorithm is one of the state-of-the-art heuristic 
algorithms in the literature, and it has been applied effectively to 
various scheduling problems such as permutation flowshops 
[30], hybrid flowshops [32, 34] and no-idle flowshops [11]. In 
this paper, we compare the proposed GVNS-QL algorithm with 
the well-known IG algorithm. In the traditional IG algorithm 
[30], the initial solution is generated using the NEH heuristic 
[28]. Afterward, a destruction-construction procedure is 
employed on the solution as follows. In the destruction part, 𝑑 
jobs are randomly removed from the permutation 𝜋 and kept in 

𝜋𝑑 , and in the construction part, the removed jobs in 𝜋𝑑  are 
sequentially inserted into the partial solution 𝜋𝑝 . Then, an 
insertion local search is applied to the complete solution, as 
explained in Fig. 4.  If an improvement is found, the local search 
is restarted until no improving solution is generated. Finally, the 
new solution is accepted using a simulated annealing-type 
acceptance criterion with a constant temperature 𝑇 [29].  

IV. COMPUTATIONAL RESULTS 

In this paper, we present a novel GVNS-QL algorithm for 
the NIFSP with the makespan criterion. In order to assess the 
performance of the developed GVNS-QL, we use the 
benchmark set provided by [11] at http://soa.iti.es/rruiz. There 
are 250 problems in the set, containing all combinations of 𝑛 =
{50, 100, 150, 200, 250, 300, 350, 400, 450, 500}  and 𝑚 =
{10, 20, 30, 40, 50} , where there are five problems for each 
combination of n and m.  

In this paper, we compare the developed GVNS-QL 
algorithm with the well-known IG  algorithm. Both IG and 
GVNS-QL algorithms are coded in C++ programming language 
on Microsoft Visual Studio 2013 and run on an Intel Core-i9 
3.10 GHz computer with 32 GB memory. For each algorithm, 
five independent replications are conducted for each instance. In 
each replication, both algorithms are run for 30nm milliseconds, 
where n represents the number of jobs and m indicates the 
number of machines. In the IG algorithm, we use 𝑑 = 4 and 
𝜏𝑃 = 0.4 settings as proposed by the authors in [30]. For each 
algorithm, the relative percentage deviation (RPD) is computed 
for each instance by equation (6): 

 RPD =  
𝐻−𝐵𝑆

𝐵𝑆
× 100 () 

where 𝐻 indicates the makespan obtained by any of the heuristic 
algorithms for a given instance, and 𝐵𝑆 is the best-known result 
provided by [16]. The average RPD values over five replications 
are computed for each heuristic, along with the minimum, 
maximum, and standard deviation values. Afterward, the 
average relative percentage deviations (ARPD) are calculated 
for each instance group with the same instance size. Table 2 
provides the ARPD values for each heuristic, classified by n and 
m, over five instances.  

As shown in Table 2, the GVNS-QL outperforms the IG 
algorithm in terms of the maximum, minimum, and average 
ARPD values. The overall average ARPD value is 0.25% for the 
IG algorithm, whereas it is 0.09% for the GVNS-QL over 250 
benchmark problems. In Table 2, the best average ARPD values 
among the two algorithms is denoted in bold for each instance 
set. The GVNS-QL has better average ARPD values than the IG 
algorithm for 42 out of 50 instance classes, where both 
algorithms have the same average ARPD values for the rest of 
the instance classes. 

To evaluate the performance of the two algorithms 
statistically, we carried out a Wilcoxon signed-rank test with the 
significance level of α= 0.05, based on the results in Table 2. Let 
𝑚𝐷 denotes the median of the difference between the average 
ARPDs of the two algorithms. The null hypothesis 𝐻0: 𝑚𝐷 = 0 
indicates that there is no statistically significant difference 
between the average ARPDs of the two compared algorithms 
and the alternative hypothesis 𝐻1 : 𝑚𝐷 ≠ 0 indicates that there 
is a statistically significant difference between them. Since the 
p-value of the Wilcoxon signed-rank test is zero, it can be said 
that the difference between the IG and GVNS-QL algorithms is 
statistically significant at the α= 0.05 level. We also provide the 
interval plot of the two algorithms in Fig. 9. As shown in Fig. 9, 
the GVNS-QL is statistically better than the IG algorithm, since 
their confidence intervals do not overlap. 

http://soa.iti.es/rruiz


Furthermore, Table 3 reports the best results found by the 
heuristic algorithms for each instance, where the BS column 
represents the current best-known results provided by [16]. As 
seen in Table 3, the IG algorithm obtains a makespan result that 
is less than or equal to the current BS value for 129 instances. 
However, the GVNS-QL finds a makespan result that is less than 
or equal to the current BS value for 207 instances. The GVNS-
QL improves the current BS results for 104 instances, whereas 
the IG improves the current BS results for 39 instances. In Table 
3, the new best results found by the IG and GVNS-QL are 
emphasized in bold. Consequently, it can be said that the 
developed GVNS-QL is very effective to solve the NIFSP with 
the makespan criterion.  

Fig. 9. Interval plot of the algorithms 

TABLE II.  COMPUTATIONAL RESULTS OF IG AND GVNS-QL 

n m 

IG   GVNS-QL 

ARPD (%)  ARPD (%) 

Avg.  Min. Max. Std. Dev.   Avg. Min. Max. Std. Dev. 

50 10 0.01 -0.01 0.05 0.02  -0.01 -0.01 -0.01 0.00 
 20 0.16 0.02 0.28 0.11  0.06 0.01 0.10 0.04 
 30 0.40 0.06 0.82 0.31  0.24 0.14 0.34 0.09 
 40 0.95 0.53 1.28 0.31  0.41 0.03 0.79 0.28 
 50 2.59 1.75 3.28 0.61  1.18 0.92 1.57 0.27 

100 10 0.07 0.01 0.13 0.06  0.03 0.02 0.08 0.03 
 20 0.17 0.01 0.36 0.17  0.03 0.00 0.04 0.02 
 30 0.15 -0.01 0.38 0.15  0.05 -0.03 0.22 0.11 
 40 0.94 0.27 1.65 0.51  0.26 -0.01 0.64 0.28 
 50 0.68 0.26 1.23 0.41  0.17 -0.03 0.46 0.20 

150 10 0.01 0.01 0.01 0.00  0.01 0.01 0.01 0.00 
 20 0.11 0.03 0.27 0.09  0.02 -0.01 0.07 0.03 
 30 0.20 0.09 0.39 0.13  0.04 -0.01 0.15 0.07 
 40 0.33 0.18 0.57 0.16  0.11 -0.04 0.26 0.13 
 50 0.35 0.11 0.76 0.26  0.09 -0.01 0.27 0.12 

200 10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 
 20 0.06 0.03 0.13 0.04  0.03 0.01 0.06 0.02 
 30 0.29 0.01 0.52 0.22  0.16 0.08 0.31 0.10 
 40 0.37 0.20 0.64 0.19  0.12 0.04 0.24 0.09 
 50 0.40 0.12 0.72 0.24  0.08 -0.02 0.21 0.09 

250 10 0.00 0.00 0.00 0.00  0.00 0.00 0.01 0.00 
 20 0.06 0.01 0.14 0.06  0.03 0.00 0.08 0.04 
 30 0.17 0.08 0.33 0.11  0.08 0.01 0.15 0.06 
 40 0.21 0.02 0.42 0.15  0.08 0.01 0.16 0.06 
 50 0.28 0.03 0.53 0.21  0.09 -0.01 0.22 0.10 

300 10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 
 20 0.04 0.01 0.07 0.03  0.01 -0.01 0.02 0.01 
 30 0.10 0.04 0.19 0.07  0.03 -0.01 0.06 0.03 
 40 0.28 0.12 0.51 0.17  0.09 0.02 0.18 0.07 
 50 0.43 0.11 0.82 0.28  0.11 0.01 0.24 0.10 

350 10 0.01 0.01 0.03 0.01  0.01 0.00 0.01 0.00 
 20 0.06 0.04 0.11 0.03  0.01 0.00 0.03 0.01 
 30 0.08 0.01 0.14 0.05  0.03 -0.01 0.10 0.05 
 40 0.27 0.14 0.41 0.12  0.06 0.00 0.16 0.07 
 50 0.23 0.10 0.39 0.12  0.07 -0.02 0.22 0.10 

400 10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 
 20 0.10 0.06 0.16 0.04  0.04 -0.01 0.09 0.04 
 30 0.16 0.08 0.27 0.09  0.07 0.03 0.13 0.04 
 40 0.16 0.07 0.27 0.08  0.04 -0.02 0.09 0.04 
 50 0.28 0.06 0.50 0.19  0.08 -0.01 0.19 0.08 

450 10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 
 20 0.09 0.03 0.15 0.06  0.02 0.00 0.07 0.03 
 30 0.17 0.05 0.28 0.10  0.06 -0.01 0.13 0.06 
 40 0.19 0.06 0.38 0.13  0.04 -0.01 0.10 0.05 
 50 0.24 0.07 0.37 0.12  0.13 0.02 0.22 0.08 

500 10 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 
 20 0.02 0.00 0.03 0.01  0.01 0.00 0.02 0.01 
 30 0.12 0.04 0.23 0.08  0.03 -0.01 0.06 0.03 
 40 0.20 0.05 0.34 0.12  0.05 0.01 0.08 0.03 

  50 0.21 0.03 0.37 0.14   0.03 -0.03 0.12 0.06 

Average  0.25 0.10 0.42 0.13  0.09 0.02 0.18 0.06 



TABLE III.  BEST RESULTS FOR THE BENCHMARKS 

Instance BS [16] IG GVNS-QL  Instance BS [16] IG GVNS-QL  Instance BS [16] IG GVNS-QL  Instance BS [16] IG GVNS-QL 

50-10-1 4127 4127 4127  150-40-1 15956 15999 15955  300-20-1 18837 18836 18833  400-50-1 37778 37832 37774 

50-10-2 4283 4283 4283  150-40-2 18075 18140 18074  300-20-2 22032 22032 22032  400-50-2 38211 38213 38210 

50-10-3 3262 3262 3262  150-40-3 16351 16348 16347  300-20-3 20229 20228 20227  400-50-3 37651 37715 37641 

50-10-4 3217 3216 3216  150-40-4 14555 14580 14533  300-20-4 19483 19490 19483  400-50-4 40436 40450 40441 

50-10-5 3470 3470 3470  150-40-5 17208 17225 17208  300-20-5 20705 20705 20705  400-50-5 35426 35412 35418 

50-20-1 5646 5646 5646  150-50-1 20298 20347 20315  300-30-1 26487 26487 26487  450-10-1 23987 23987 23987 

50-20-2 5814 5814 5814  150-50-2 19115 19103 19104  300-30-2 24260 24291 24260  450-10-2 26277 26277 26277 

50-20-3 5793 5793 5793  150-50-3 19306 19305 19301  300-30-3 24363 24368 24368  450-10-3 25849 25849 25849 

50-20-4 5795 5795 5799  150-50-4 20131 20181 20131  300-30-4 23705 23710 23688  450-10-4 26910 26910 26910 

50-20-5 4869 4874 4869  150-50-5 19241 19270 19235  300-30-5 22544 22549 22542  450-10-5 25191 25191 25191 

50-30-1 7223 7220 7235  200-10-1 12155 12155 12155  300-40-1 26572 26588 26569  450-20-1 27512 27539 27512 
50-30-2 7330 7330 7337  200-10-2 12227 12227 12227  300-40-2 29158 29250 29166  450-20-2 27924 27924 27924 

50-30-3 6844 6869 6868  200-10-3 12595 12595 12595  300-40-3 25261 25268 25268  450-20-3 28769 28779 28769 

50-30-4 7571 7571 7578  200-10-4 12301 12301 12301  300-40-4 27438 27456 27442  450-20-4 28446 28446 28446 

50-30-5 7333 7333 7333  200-10-5 12076 12076 12076  300-40-5 28760 28791 28771  450-20-5 28539 28539 28539 

50-40-1 9130 9215 9126  200-20-1 14846 14864 14854  300-50-1 31522 31547 31513  450-30-1 35123 35153 35123 

50-40-2 10094 10105 10107  200-20-2 14086 14086 14086  300-50-2 29357 29349 29351  450-30-2 32492 32492 32477 

50-40-3 9765 9861 9767  200-20-3 16115 16115 16115  300-50-3 30634 30688 30633  450-30-3 31950 31977 31959 
50-40-4 9495 9504 9498  200-20-4 15972 15972 15972  300-50-4 32202 32193 32192  450-30-4 33691 33722 33691 

50-40-5 8904 8951 8904  200-20-5 14174 14178 14170  300-50-5 28965 29073 29006  450-30-5 33614 33603 33610 

50-50-1 11064 11715 11533  200-30-1 17034 17021 17031  350-10-1 19297 19302 19300  450-40-1 39547 39547 39535 

50-50-2 10857 10934 10854  200-30-2 16952 16984 17033  350-10-2 21316 21316 21317  450-40-2 35939 35958 35937 

50-50-3 10841 10915 10847  200-30-3 17420 17412 17416  350-10-3 21330 21330 21330  450-40-3 37794 37807 37792 

50-50-4 9858 9912 9899  200-30-4 19986 19983 19981  350-10-4 21759 21759 21759  450-40-4 37596 37668 37594 

50-50-5 11316 11422 11304  200-30-5 17966 17968 17962  350-10-5 20591 20591 20591  450-40-5 35681 35681 35680 

100-10-1 6570 6570 6575  200-40-1 19895 19890 19889  350-20-1 25413 25417 25413  450-50-1 37287 37311 37274 

100-10-2 5798 5802 5798  200-40-2 21637 21682 21690  350-20-2 27185 27185 27185  450-50-2 43323 43358 43330 

100-10-3 6533 6533 6533  200-40-3 20542 20605 20544  350-20-3 22880 22880 22880  450-50-3 44010 44073 44074 

100-10-4 6158 6158 6158  200-40-4 17322 17394 17305  350-20-4 22968 22968 22968  450-50-4 41014 41013 41006 

100-10-5 6654 6654 6654  200-40-5 21194 21213 21209  350-20-5 22746 22787 22745  450-50-5 40923 40944 40922 

100-20-1 8606 8606 8606  200-50-1 22580 22699 22579  350-30-1 25192 25184 25184  500-10-1 28839 28839 28839 

100-20-2 8217 8220 8217  200-50-2 23410 23430 23406  350-30-2 27739 27743 27738  500-10-2 27923 27923 27923 

100-20-3 9043 9043 9043  200-50-3 22276 22276 22271  350-30-3 27638 27657 27638  500-10-3 27349 27349 27349 
100-20-4 8970 8970 8970  200-50-4 23918 23916 23904  350-30-4 29295 29295 29295  500-10-4 27575 27575 27575 

100-20-5 9109 9109 9109  200-50-5 24275 24274 24274  350-30-5 25209 25212 25205  500-10-5 27457 27457 27457 

100-30-1 11200 11203 11198  250-10-1 16639 16639 16639  350-40-1 29020 29081 29008  500-20-1 35948 35948 35948 

100-30-2 10938 10934 10934  250-10-2 15476 15476 15476  350-40-2 28950 28946 28949  500-20-2 34129 34129 34129 

100-30-3 10523 10523 10515  250-10-3 14872 14872 14872  350-40-3 36247 36252 36247  500-20-3 31064 31064 31064 

100-30-4 11089 11086 11087  250-10-4 15247 15247 15247  350-40-4 34644 34702 34659  500-20-4 30887 30887 30883 

100-30-5 10983 10983 10981  250-10-5 15026 15026 15026  350-40-5 29742 29832 29738  500-20-5 33768 33776 33768 

100-40-1 12551 12616 12550  250-20-1 17577 17577 17577  350-50-1 32065 32065 32060  500-30-1 36337 36349 36327 

100-40-2 13117 13117 13112  250-20-2 17683 17683 17683  350-50-2 32760 32923 32750  500-30-2 39346 39365 39346 

100-40-3 12411 12424 12410  250-20-3 17487 17487 17485  350-50-3 34682 34674 34672  500-30-3 39226 39251 39240 

100-40-4 11680 11763 11681  250-20-4 17639 17646 17639  350-50-4 36957 36960 36948  500-30-4 33890 33900 33875 

100-40-5 12877 12877 12877  250-20-5 17274 17273 17273  350-50-5 35343 35352 35334  500-30-5 38340 38356 38340 

100-50-1 15998 15994 15996  250-30-1 21918 21920 21918  400-10-1 25238 25238 25238  500-40-1 40685 40721 40716 

100-50-2 14761 14774 14756  250-30-2 21814 21838 21814  400-10-2 23001 23001 23001  500-40-2 44099 44131 44136 

100-50-3 17514 17617 17513  250-30-3 20077 20080 20083  400-10-3 23665 23665 23665  500-40-3 40313 40309 40296 

100-50-4 16569 16646 16563  250-30-4 19744 19787 19744  400-10-4 23275 23275 23275  500-40-4 41886 41882 41868 

100-50-5 14746 14772 14740  250-30-5 20881 20891 20884  400-10-5 21956 21956 21956  500-40-5 36037 36075 36026 

150-10-1 10404 10404 10404  250-40-1 22743 22770 22740  400-20-1 27686 27686 27686  500-50-1 46175 46164 46154 

150-10-2 8824 8824 8824  250-40-2 24082 24056 24076  400-20-2 28088 28088 28088  500-50-2 43272 43301 43267 

150-10-3 9180 9180 9180  250-40-3 24314 24313 24314  400-20-3 26224 26227 26224  500-50-3 45147 45146 45134 

150-10-4 10032 10032 10032  250-40-4 24741 24768 24762  400-20-4 25105 25162 25104  500-50-4 42343 42341 42334 

150-10-5 9866 9870 9870  250-40-5 23443 23435 23449  400-20-5 24675 24686 24667  500-50-5 43000 43046 42991 

150-20-1 10758 10757 10755  250-50-1 28511 28529 28507  400-30-1 29405 29447 29399      
150-20-2 11696 11699 11696  250-50-2 24241 24271 24244  400-30-2 29180 29252 29235      
150-20-3 12046 12060 12046  250-50-3 26351 26347 26345  400-30-3 28633 28632 28630      
150-20-4 10887 10887 10887  250-50-4 25410 25406 25407  400-30-4 31276 31276 31270      
150-20-5 13210 13210 13210  250-50-5 27332 27331 27327  400-30-5 34533 34539 34533      
150-30-1 15497 15496 15492  300-10-1 17498 17498 17498  400-40-1 37426 37448 37418      
150-30-2 13667 13683 13667  300-10-2 17350 17350 17350  400-40-2 33805 33812 33797      
150-30-3 14650 14651 14647  300-10-3 18627 18627 18627  400-40-3 34450 34455 34448      
150-30-4 14544 14550 14548  300-10-4 16941 16941 16941  400-40-4 35245 35263 35235      
150-30-5 15245 15288 15242  300-10-5 17521 17524 17521  400-40-5 32727 32800 32716      

V. CONCLUSION 

In this paper, a novel GVNS algorithm through Q-learning 
was presented for the NIFSP with the makespan criterion. In the 
outer loop, insertion and exchange operators are employed, 
while, in the inner loop of VND, 𝑉𝐼𝐺𝐴𝐿𝐿  and VBIH algorithms 

are used. Effective insertion and RIS local searches are also 
employed in another VND loop, in the developed 𝑉𝐼𝐺𝐴𝐿𝐿  and 
VBIH algorithms. The parameters are determined through a Q-
learning approach in the proposed GVNS-QL algorithm, 
instead of using constant parameter values.  



The developed GVNS-QL algorithm was compared with the 
widely known IG algorithm using the benchmark set of [11]. 
The results indicate that the GVNS-QL outperforms the 
traditional IG algorithm in terms of RPD values. Additionally, 
the results of IG and GVNS-QL were compared with the current 
best-known results provided by [16]. The results state that the 
developed GVNS-QL algorithm improves the current best-
known results for 104 out of 250 benchmark instances.  

In future research, other metaheuristic algorithms can be 
developed for the problem. Other performance measures can 
also be studied for the problem such as total completion time and 
total tardiness. Additionally, developed GVNS-QL can be 
employed to solve other scheduling problems. 
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