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Abstract—We propose a fast air-conditioning temperature opti-
mization system using a surrogate solution evaluator. Simulation-
based evolutionary optimization does not require the formulation
of a mathematical model of the optimization problem and allows
the treatment of the problem by considering a black box.
However, the simulation-based solution evaluation is often time-
consuming. Because evolutionary algorithms need to generate
many candidate solutions for optimization, the time-consuming
solution evaluation will be a bottleneck, which is encountered in
air-conditioning temperature optimization. The building simu-
lator provides the thermal comfort level and the power usage
by inputting a candidate air-conditioning temperature setting
through a complicated simulation. Although the results are useful
compared with those obtained by a simple mathematical model,
it is time-consuming. To accelerate the optimization process, we
propose a surrogate evaluator based on the time-series predictive
long short-term memory, which is a recurrent neural network
architecture. Instead of the time-consuming building simulator,
the surrogate evaluator outputs the two time-series data of the
thermal comfort and power consumption, and schedules are
optimized with the multi-objective particle swam-based optimizer
OMOPSO. Experimental results show that the proposed system
could obtain practical schedule sets, and the optimization was
accelerated by using the surrogate evaluator.

Index Terms—multi-objective optimization, surrogate solution
evaluation, air-conditioning system

I. INTRODUCTION

The reduction of energy consumption and carbon dioxide
emission is essential for sustainable office building manage-
ment. Owners of office buildings are required to achieve long-
term energy reduction under regulations such as the Energy
Performance of Buildings Directive in the EU [1], Energy
Efficiency Resource Standard in the US [2], and Act on the
Rational Use of Energy in Japan [3]. The air-conditioning
system alone accounts for approximately 30 percent of the
total power consumption in typical office buildings [4], [5].
The total power consumption of the air-conditioning system
depends on its temperature setting, the outside air temperature,
room usage, and other variable disturbances. The control of
air-conditioning can significantly contribute to the reduction of
power consumption, and concern over optimal air-conditioning
control in office buildings has been increasing. Building man-
agers develop power consumption plans based on historical
power consumption data of their buildings with the goal of
not exceeding the set power consumption limit. When the

power consumption is likely to exceed the limit, the building
manager modifies the original plan to satisfy the target power
consumption, introducing measures such as controlling the
temperature setting and reducing the number of heat source
units. However, this deteriorates the thermal comfort of office
workers. It has been reported that power savings, which are
accompanied by comfort deterioration, are less economically
effective overall, because a lower thermal comfort affects the
productivity of the office workers [6], [7]. Therefore, it is desir-
able to reduce the power consumption without compromising
the thermal comfort of the office workers.

For the optimization of the air-conditioning schedule, math-
ematical programming techniques and evolutionary algorithms
have been employed so far [8]–[10]. For example, a multi-
objective air-conditioning optimization, which searches a so-
lution set to optimize the power consumption and the thermal
comfort simultaneously, has been proposed [11]. In our pre-
vious work, we proposed an evolutionary multi-objective air-
conditioning schedule optimization algorithm [12]. Our system
dynamically changes the temperature setting every hour while
most of the conventional systems employ a fixed temperature
setting for a whole day. The solution to be optimized is a time-
series temperature setting and can be input into the building’
s energy simulator EnergyPlus [13], which is widely used in
the construction industry. The simulator outputs the thermal
comfort level and the power consumption of the solution as
multiple objective values. Based on these objective values, in
this study, we improve the time-series temperature settings by
using an evolutionary algorithm. Our previous work showed
that the system could obtain temperature settings better than
conventional fixed temperature settings in terms of both power
consumption and human comfort level.

The simulator-based evolutionary optimization does not
require the development of a mathematical model of objective
functions and allows the treatment of the optimization problem
by considering a black box. However, it requires high com-
putational power to evaluate a solution. The simulator-based
air-conditioning optimization system [12] is no exception, and
the evaluation of a solution using the EnergyPlus simulation
evaluator is computationally expensive. Because this system
obtains a daily temperature schedule in a single run, we
repeat to run the system for tomorrow every day. As the
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Fig. 1. Air-conditioning temperature schedule optimization system

evaluation of each solution evaluation is time-consuming, and
the optimization time is limited to one day, the number of
solution evaluation runs must be decreased. Therefore, we may
not obtain an accurate result by evolutionary optimization.

In this work, we aim at accelerating the evolutionary air-
conditioning optimization by using a surrogate solution eval-
uator. We construct a surrogate evaluator that predicts the two
time-series data of the thermal comfort level and the power
consumption instead of using the time-consuming EnergyPlus
simulator. To predict the two time-series data of the thermal
comfort level and the power consumption, the surrogate eval-
uator employs the long short-term memory (LSTM), which
is a recurrent neural network (RNN) architecture. For the
optimization, we use OMOPSO, which is a particle swarm-
based optimizer for multi-objective continuous optimization.
Through computational experiments, we discuss the accuracy
of the LSTM-based surrogate evaluator, the optimized result,
its quality, and the optimization time.

II. OVERVIEW OF THE AIR-CONDITIONING TEMPERATURE
OPTIMIZATION SYSTEM

Fig. 1 show a process flow diagram of the air-conditioning
optimization systems. The left side of this figure shows the
solution evaluation part, and the right side shows the opti-
mization part. The two parts communicate by using the air-
conditioning temperature setting and its objective and con-
straint values. The outputs of this system are optimized air-
conditioning temperature schedules shown on the rightmost
side. Note that the evaluator is in the solution evaluation part,
which is the gray rectangle in the figure. The conventional
system [12] used the EnergyPlus simulation evaluator, which
is computationally expensive because it simulates additional
data that are not required. On the other hand, the proposed
system uses a surrogate evaluator that imitated the EnergyPlus
simulation and is computationally cheap. For both evaluators,
inputs are time-series air-conditioning temperature settings in
a day and the weather conditions. Outputs are two-kinds of
time-series data on the day. One is the predicted mean vote
(PMV) index value [14], [15], which is related to the human
thermal comfort, and the other is the air system electric energy
(ASEE) value, which is related to the power consumption.

III. SIMULATION-BASED SOLUTION EVALUATOR

In this section, we describe the EnergyPlus simulation
shown in Fig. 1, which is the solution evaluator used in the
conventional air-conditioning optimization system [12].

A. Building Model

Fig. 2 shows the target office building model considered
in this study. The building considered has eight floors above
the ground, and the total area of the floors is 11,781 [m2].
The building has office rooms on every floor, and a central
air-conditioning system with a water-cooled centrifugal chiller
with a coefficient of performance (COP) of 5.96 is employed
as the heat source machine. The air-conditioning system
supplies cooled and heated air through the air handling unit
(AHU) and the variable air volume (VAV) unit to each floor.
The other specifications of the building are the same as in
[12].

We constructed the building model by using the EnergyPlus
building energy simulator [13], which is widely used in the
construction industry to precisely simulates the air movement
in the building. However, the simulation is computationally
expensive because it simulates additional data that are not
useful in some cases. In the air-conditioning optimization
system, we use the two time-series data of the human thermal
comfort level and power consumption from the simulation
results.

B. Input

Because weather conditions affect the simulation results, as
shown in Fig. 1, the evaluator needs two time-series data of
the outdoor temperature and the outdoor humidity, which are
obtained from weather forecast data. Furthermore, we input a
time-series air-conditioning temperature setting. This system
optimizes an hourly time-series air-conditioning temperature
setting and dynamically changes the temperature settings dur-
ing the day, unlike most of the conventional systems, which
use a constant temperature setting throughout the day.

The temperature setting is represented as the design variable
vector x. Each element xt is a setting temperature at a setting
time t ∈ Tset, where Tset is a set of setting time. Because our
target is an office building, the time period to be optimized
is set to 5:00–23:00. Therefore, the design variable vector is
x = (x5:00, x6:00, . . . , x23:00), and it has n = 19 elements.



Fig. 2. Appearance of target office building model

The temperature setting has the lower limit xmin and the upper
limit xmax, i.e., xmin ≤ xt ≤ xmax (t ∈ Tset). In this work,
the same temperature setting schedule x is applied to all rooms
in the building.

C. Output

As shown in Fig. 1, the outputs of the evaluator are two
time-series data.

The first one is a time-series PMV [14], [15] related to the
human thermal comfort in the building. The PMV evaluates
the average thermal sensation of the people in the indoor space
by using the dry-bulb temperature, relative humidity, wind
speed, mean radiation temperature (MRT), metabolic rate, and
number of clothes. The value range of the PMV is between
-3 (cold) and +3 (hot). A PMV of zero corresponds to the
most comfortable environment, and a PMV with a large abso-
lute value corresponds to an uncomfortable environment. For
an air-conditioning temperature schedule x, the EnergyPlus
simulator outputs a time-series PMV every hour within the
possible working time between 7:00 and 22:00. Specifically,
the first time-series outputs are PMV (x, t) (t ∈ T1 = {7 :
00, 8 : 00, ..., 21 : 00, 22 : 00}).

The second one is a time-series ASEE value, which is
the electric power consumed [J]. For an air-conditioning
temperature schedule x, the EnergyPlus simulator outputs
time-series ASEE values every hour between 0:00 and 24:00.
Specifically, the second time-series outputs are ASEE(x, t)
(t ∈ T2 = {0 : 00, 1 : 00, . . . , 23 : 00, 24 : 00}).

D. Objectives and Constraints

This system has two objectives to be optimized.
The first objective, the human thermal comfort level, is

formulated as the aggregation of the time-series PMVs output
by the evaluator as follows:

Minimize f1(x) =
1

|T1|
∑
t∈T1

|PMV (x, t)|, (1)

where PMV (x, t) is the PMV of the air-conditioning system
at time t.

The second objective, the power consumption, is formulated
as the aggregation of the time-series ASEE values output by
the evaluator as follows:

Minimize f2(x) =
∑
t∈T2

ASEE(x, t) , (2)

where ASEE(x, t) is the electric power consumption [J] of
the air-conditioning system at time t.

Moreover, this system has two constraints to satisfy.
The first is related to the PMVs. A PMV range of

[−0.5,+0.5] is recommended by ISO to obtain a comfortable
environment. To avoid an excessively uncomfortable environ-
ment with a large PMV, we introduce the first constraint on
the PMV. A feasible schedule x is

Subject to g1,t(x) = |PMV (x, t)| ≤ 0.5 (∀t ∈ T1). (3)

Solutions satisfying the above constraint for all times t ∈ T1
are feasible, and solutions that do not satisfying every one
of them are infeasible. The first constraint violation value is
formulated as follows:

v1(x) =
∑
t∈T1

max{0, g1,t(x)− 0.5}. (4)

The second constraint is related to a dynamic change in the
temperature setting. To avoid a rapid increase in the power
consumption due to drastic changes in the air-conditioning
temperature setting, the maximum difference in the temper-
atures between two consecutive hours is limited to 2.0 [◦C].
We introduce the second constraint on the dynamic change of
the air-conditioning temperature. Feasible schedule x is

Subject to g2,t(x) = |xt − xt−1:00| ≤ 2.0

(∀t ∈ Tset\5 : 00). (5)

Solutions satisfying the above constraint condition at all times
t ∈ Tset except the first time (t = 5 : 00) are feasible, and
solutions that do not satisfy every one of them are infeasible.
The second constraint violation value is formulated as follows:

v2(x) =
∑

t∈Tset

max{0, g2,t(x)− 2.0} (6)

IV. PROPOSAL: LSTM-BASED SURROGATE EVALUATOR

In this section, we describe the LSTM-based surrogate
evaluator shown in Fig. 1, which is the solution evaluator
in the proposed air-conditioning optimization system. The
EnergyPlus simulation evaluator in the conventional system
is replaced by the LSTM-based surrogate evaluator in the
proposed system.

A. Overview

For each air-temperature setting schedule x, the conven-
tional system obtains the two time-series data of the ther-
mal comfort level PMV (x, t) and the power consumption
ASEE(x, t) by using the EnergyPlus simulation evaluator.
Then, the two objective values f1(x) and f2(x) are calculated
from the two time-series data. However, the EnergyPlus based
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simulation is computationally expensive because the evolution-
ary algorithm generates many candidate schedules during the
optimization process.

The proposed system replaces the time-consuming Ener-
gyPlus simulation evaluator with a computationally cheap
surrogate evaluator. The surrogate evaluator outputs the ther-
mal comfort level PMV (x, t) and the power consumption
ASEE(x, t) by inputting the air-temperature setting schedule
x. Then, the proposed system calculates the two objective
values f1(x) and f2(x) from the two time-series data ob-
tained by the surrogate evaluator. Thus, the proposed system
accelerates the air-conditioning temperature optimization by
replacing the time-consuming EnergyPlus simulation with the
computationally cheap surrogate evaluator.

B. LSTM-Based Surrogate Evaluator

In this work, to build the surrogate evaluator to obtain the
two time-series data of the thermal comfort level and the power
consumption, we utilize the LSTM, which is one of the RNNs
[16]. The LSTM, which includes a memory cell, receives state
inputs of the previous time-steps and maintains and utilizes the
previous states with input, forget, and output gates to forecast
the next incoming data. It has been known that LSTM is one
of the promising ways to learn time-series and has successfully
been applied to real-world problems, such as natural language
processing [17].

Fig. 3 shows the neural network structure of the surro-
gate evaluator used in the proposed system. Here, Ii (i =
1, 2, . . . ,mI) and Oj (j = 1, 2, . . . ,mO) are input and output
values, respectively, mI is the number of input values and units
in the input layer, and mO is the number of output values and
units in the output layer. The hidden layer between the input
and output layers is the LSTM layer, and all units in the LSTM
layer are fully connected to all units in the input and output
layers. The number of units in the LSTM layer is mH .

Fig. 4 shows the LSTM unit structure used in this work,
which was employed from [16]. The figure represents k-th
LSTM units. Here, It, Ht

k, and Ct
k are the input vector to the

LSTM layer, the state of the k-th LSTM unit, and the state
of the memory cell in the k-th LSTM unit at time step t,
respectively; gf is the forget gate, gc is the memory cell gate,
gi is the input gate, and go is the output gate. The output value

gf

gc

gi

go
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�

�

Ck
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Fig. 4. LSTM unit used in the proposed system

on each gate in the k-th unit at time step t is calculated by

OGt
k = fG

(
mI∑
i=1

wG
ki · Iti +

mH∑
h=1

uG
kh ·Ht−1

h + θGk

)
(k = 1, 2, . . . ,mH), (7)

where G is the gate type (gf , gc, gi, or go), w is the weight
value for the input It, u is the weight value for the previous
state of the LSTM unit Ht−1, θ is the bias term, and fG

is the activation function for the gate G. For the activation
function fgc , we employed the hyperbolic tangent function.
For the other gates, we employed the sigmoid function as the
activation function. The state of memory cell Ct

k is calculated
by

Ct
k = Ogit

k ·Ogct
k +O

gf t
k · Ct−1

k . (8)

Then, the state of the k-th LSTM unit Ht
k is calculated by

Ht
k = Ogot

k · tanh(Ct
k). (9)

The output value on each unit in the output layer is calculated
by

Oj = fO

(
mH∑
k=1

wk ·Hk + θj

)
(j = 1, 2, . . . ,mO), (10)

where Hk is the output of the k-th unit in the LSTM layer, wk

is its weight coefficient, θj is the bias term to the j-th output
unit, and fO is the activation function.

C. Input and Output

For the network shown in Fig. 3, we input air-temperature
setting xt at time-step t and obtain two time-series data of the
thermal comfort level PMV (x, t) and the power consumption
ASEE(x, t) as outputs. Because these outputs are affected by
the weather conditions, we also input the outdoor temperature
and outdoor humidity.

Note that the input of Fig. 3 is data only at time-step t and
the output of Fig. 3 is its result. Therefore, to obtain time-
series outputs, we repetitively input time-series input data to
the network of Fig. 3. During the repetition, the LSTM units
shown in Fig. 4 maintain the previous states.

In the proposed system, the total number of input values and
units is mI = 3, I1 is the air-temperature setting xt at timestep
t, I2 is the outdoor temperature, and I3 is the outdoor humidity.
The total number of output values and units is mo = 2, O1
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is thermal comfort level PMV (x, t), and O2 is the power
consumption ASEE(x, t).

D. Training

We trained the LSTM-based surrogate evaluator with seven-
day training data. Fig. 5 shows the process flow diagram of
the training process. As input data, we randomly generated
air-conditioning temperature settings to satisfy the second con-
straint and used the actual outdoor temperature and humidity
from the weather records matched to the target period. To
obtain target data, we used the EnergyPlus simulator with the
training input data.

V. EVOLUTIONARY OPTIMIZATION

A. Particle Swarm-Based Multi-Objective Optimization

For the optimization with the proposed LSTM-based sur-
rogate evaluator, we use the particle swarm-based multi-
objective optimizer OMOPSO [18], which is a promising
evolutionary algorithm for solving multi-objective continuous
optimization problems. Our previous system [12], [19] also
employed this algorithm. This section briefly introduces the
OMOPSO algorithm.
Step 1: Initialize the particles (schedules) P as random real

value vectors, the archive set A as the empty set, and the
generation counter as g = 1.

Step 2: Evaluate each particle xg ∈ P by using the evaluator,
obtain objective values of the thermal comfort level f1,
the power consumption f2, and two constraint violation
values v1 and v2, and set them as the personal best xpbest.

Step 3: Perform the non-dominated sorting to the combined
set P ∪A. Update both the archive particle set A and the
leader particle set L with the top non-dominated particles
in the combined set P ∪ A.

Step 4: Update the velocity and position of each particle in
P by

vg+1 = w · vg + c1 · r1(xpbest − xg)

+ c2 · r2(xgbest − xg) (11)

xg+1 = xg + vg+1, (12)

where vg is the velocity of the particle; xg is the position
of the particle in the continuous variable space at the
g-th generation; w, c1, and c2 are user-defined weight
values; and r1 and r2 are uniform random values in [0, 1).
Position xpbest is the best position of the particle found

so far, and xgbest is the position of a particle selected
from L based on the binary tournament selection. When
the updated variable xg+1 exceeds the variable value
range [xmin, xmax], it is returned on the boundary, and
its velocity vg+1 is multiplied by -1.

Step 5: Divide P into three particle sets: Q, R, and S.
Step 6: Perform the uniform mutation to particles in R,

and the non-uniform mutation to particles in S. No
mutation is applied to particles in Q. The uniform mu-
tation adds uniform random values in [−0.25(xmax −
xmin), 0.25(xmax−xmin)) for each variable with a mu-
tation probability pm. The non-uniform mutation changes
the mutation range at every generation for each variable
with a mutation probability pm [20]. In this work, its
range is as follows:

x′g+1
i =

{
xg+1
i +∆(g, xmax − xg+1

i ), if r3 < 0.5

xg+1
i −∆(g, xg+1

i − xmin), otherwise,
(13)

where x′g+1
i is the i-th element of the design variable

vector xg+1, gmax is the total number of generations,
and r3 is a uniform random value in [0, 1); ∆(g, y) is
the range of variation and is calculated by

∆(g, y) = y ·
(
1− r

(1− g
gmax )

b

4

)
, (14)

where r4 is a uniform random value in [0, 1), b is a
parameter used to adjust the range of variation. When
the mutated variable exceeds the range [xmin, xmax], it
is returned on the boundary.

Step 7: Combine the three particle sets Q, R, and S to make
the new particle set P (=Q∪R ∪ S).

Step 8: Evaluate each particle in P with the evaluator and
obtain objective values and constraint violation values.
When each particle constrain-dominates [21] its personal
best xpbest, update it with the current particle.

Step 9: Perform the non-dominated sorting to the combined
set P ∪ A. Update the leader particle set L with the top
non-dominated particles in the combined set P ∪ A. In
the same way, update the archive particle set A with the
top non-dominated particles in the combined set P ∪ A.
When the size of the leader particle L exceeds its limit
NL, maintain only the top NL particles based on the
crowding distance [21].



TABLE I
LEARNING PARAMETERS OF THE LSTM NETWORK

Parameter Value
Minibatch size 200

Number of train 2000
Unit size of LSTM layer mh 250

Optimization method Adam
Learning rate α 0.001

Gradient decay rate β1 0.9
Squared gradient decay rate β2 0.999

TABLE II
PARAMETERS OF THE OMOPSO

Parameter Value
Number of base particles |P| 35

Number of leader particles |L| 100
Number of archived particles |A| Unlimited

ϵ 0.0075
Number of generations gmax 500

Number of variables n 19
Mutation probability pm 1/n

Coefficient of non-uniform mutation b 5 [20]

Weight w Uniform random
values in [0.1, 0.5)

Weight c1, c2
Uniform random

values in [1.5, 2.0)

Step 10: If the generation counter g meets the termination
condition gmax, output the archive particle set A as the
optimization result. Otherwise, increment the generation
counter g and go to Step 4.

VI. EXPERIMENTAL SETTINGS

A. Experiments

First, we confirm the accuracy of the proposed LSTM-based
surrogate evaluator by comparing the outputs of the LSTM-
based surrogate evaluator and the conventional EnergyPlus
simulation evaluator for the same input. Next, we perform
the proposed air-conditioning schedule optimization with the
LSTM-based surrogate evaluator and discuss its results.

B. Building

As weather condition data, we use the expanded automated
meteorological data acquisition system (AMeDAS) records
[22] from Tokyo, Japan. The air-conditioning is set to cooling
mode, the lower limit of the temperature is set to xmin = 18
[◦C], and the upper limit is set to xmax = 30 [◦C]. We assume
that the occupancy of the office workers, and the usage of
lightings and equipment in the office rooms are the same as
those in [12].

C. Learning

Table I shows the learning parameters set to obtain the
LSTM network used in the proposed system. To evaluate the
prediction error, we employed the mean squared error (MSE).
The value ranges of input and output data were normalized
to [0,1]. We use the LSTM-based surrogate evaluator imple-
mented by the programming language Python on a computer
with Windows 10 (64 bit), Intel Core i7-3770K (3.5 GHz),
and 16 GB RAM.
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Fig. 6. Time-series outputs of the EnergyPlus simulation evaluator and the
proposed LSTM-based surrogate evaluator

D. Optimization

Table II shows the parameters of the OMOPSO used in
our proposed system. For weight and random values, we
employ the same setting used in [18]. We implement the
OMOPSO by the programming language Java on the computer
described above. To reduce the optimization time, the particle
(schedules) evaluations are parallelized into eight threads at
the same time.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

A. Accuracy of Proposed LSTM-based Surrogate Evaluator

First, we verify the accuracy of the proposed LSTM-based
surrogate evaluator. We trained the LSTM-based surrogate
evaluator with the training data mentioned above and checked
the error between the true values and the output values of the
surrogate evaluator by using the validation data.

Fig. 6 shows the two time-series data of the thermal comfort
level and the power consumption obtained by the EnergyPlus
simulation evaluator and the LSTM-based surrogate evaluator
for a one-day time-series validation data.

We see that two errors are sufficiently small because the
error on the power consumption is approximately 1%, and
the error on the thermal comfort level is lower than 1% in
its possible value range [−3, 3]. Furthermore, we see that
the values obtained by the proposed LSTM-based surrogate
evaluator could estimate the hourly transitions of these values.
These results confirm the validity of the proposed LSTM-
based evaluator as a surrogate model of the EnergyPlus
simulator.
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B. Schedules Obtained by Multi-Objective Optimization

Fig. 7 shows all solutions (air-conditioning schedules) ob-
tained by the proposed system using the LSTM-based sur-
rogate evaluator at the final generation. The horizontal and
vertical axes indicate the thermal comfort index and power
consumption of the air-conditioning system to be minimized,
respectively. Each point indicates the objective values of an air-
conditioning temperature schedule, which are the time-series
temperature settings in one day. From the results, we see that
the proposed system could obtain solutions that approximate
the trade-off between thermal comfort and power consump-
tion in the air-conditioning system of the target building. A
comfortable temperature setting with a small f1 compromises
the power consumption f2 to operate the air-conditioning
system, and an eco-friendly temperature setting with a small
f2 sacrifices the environmental comfort f1 of office workers
in the building.

Next, we observe the time-series data of schedules obtained
by the proposed system. For each of three schedules A, B,
and C in Fig. 7, its time-series data of the temperature setting,
thermal comfort as PMV index, and power consumption are
shown in Fig. 8. The figures of the thermal comfort and power
consumption show the outputs of both the proposed LSTM-
based surrogate evaluator and the EnergyPlus simulation eval-
uator.

The results show that the thermal comfort levels are within
[−0.5,−0.5], and feasible schedules satisfying the minimum
comfort level g1,t could be obtained. Furthermore, the tem-
perature setting changes between two consecutive hours are
less than 2.0 [◦C], and feasible schedules satisfying g2,t
could also be obtained. As shown in Fig. 6, in the case of
schedule A, the difference between the two outputs of the
proposed LSTM-based surrogate evaluator and the EnergyPlus
simulation evaluator is relatively small. Because the proposed
surrogate evaluation is accurate, we can accelerate the evo-
lutionary optimization by using the proposed LSTM-based
surrogate evaluator instead of using a time-consuming Ener-
gyPlus simulation evaluator. However, the difference is larger
in schedules B and C because the training data for the LSTM

TABLE III
COMPUTATIONAL TIME COMPARISON

Conventional system Proposed system
(EnergyPlus simulation) (LSTM-based surrogate)

One evaluation time 37.3 [seconds] 2.79 [seconds]
Optimization time 23.4 [hours] 2.77 [hours]

are not enough for these cases. We can expect to decrease the
difference and improve the accuracy of the surrogate evaluator
by including training data with PMVs close to 0.5, which
corresponds to the border of the thermal comfort constraint
g1,t, or through concurrent learning of the LSTM model
during the evolutionary air-conditioning optimization. Because
the optimization system may face unexpected situations, it
will be effective for the EnergyPlus simulation evaluator for
some schedules and updating the LSTM-model during the
optimization, while the LSTM-based surrogate evaluates most
of the schedules.

We also confirmed that the proposed LSTM-based surrogate
evaluator could obtain feasible and useful temperature settings
in this experiment.

C. Computational Time

Table III shows the average evaluation time of one schedule
and the total computational time of the optimization. From the
results, we see that the evaluation of one schedule with the
proposed LSTM-based surrogate evaluator is approximately
13 times faster than that with the conventional EnergyPlus
simulation evaluator. Furthermore, the total optimization time
of the proposed system is 2.77 h, which is 1/8 of that with
the conventional system. Thus, the proposed system could
accelerate the evolutionary optimization of the air-conditioning
schedule settings.

The acceleration achieved by the proposed surrogate evalu-
ator allows us to use more generations and a large population
to improve the schedule quality further. Furthermore, to obtain
a one-day air-conditioning schedule, the conventional system
needed almost a day, so we needed to execute the system one
day before. However, the accuracy of the weather forecast
data of the outdoor temperatures and the outdoor humidity is
improved during the day, improving the optimization result.
Therefore, it is desirable to use their forecasts just before the
operation of the air-conditioning schedule. The acceleration
of schedule evaluation by the proposed surrogate evaluator not
only speeds up the optimization but also improves the schedule
quality by using highly accurate weather condition data.

VIII. CONCLUSIONS

To accelerate the air-conditioning temperature optimization,
we proposed a surrogate evaluator based on the time-series
predictive LSTM. The LSTM-based surrogate evaluator out-
puts the two time-series data of the thermal comfort and the
power consumption instead of the time-consuming EnergyPlus
simulation evaluator, and the schedules are optimized with the
OMOPSO based on the objective values calculated by the
obtained two time-series data. Experimental results showed
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Fig. 8. Time series data of schedules obtained by the OMOPSO optimizer

that the proposed system using the LSTM-based surrogate
evaluator obtained the non-dominated practical schedule set
showing the tradeoff between the thermal comfort level and
the power consumption. Furthermore, we showed that the
air-conditioning temperature optimization was accelerated by
using the surrogate evaluator. The proposed surrogate evaluator
speeds up the optimization and improves the quality of the
obtained schedule by using high accurate weather forecasts of
the outdoor temperature and humidity.

As future works, we are building a concurrent learning
method using an LSTM-based evaluator during evolutionary
optimization. We are also designing an efficient evolutionary
search method that can obtain quality schedules with fewer
schedule evaluations using the surrogate model.
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