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Abstract—The structural analysis of proteins is an essential
step for understanding their biological function. However, the
process of the structural determination of these molecules is
expensive and time-consuming. In order to reduce these factors,
computational methods might be a provocative approach, despite
the complexity associated with it. Over the decades, different
computational approaches were proposed as well as different
energy force fields. As the force fields consider conflicting terms in
its composition, multi-objective optimization approaches showed
to be suitable to the Protein Structure Prediction problem. In
this way, the objective of the current work is to evaluate and
compare three multi-objective algorithms, the Non-Dominated
Sorting Genetic Algorithm in its second version, the Generalized
Differential Evolution in its third version, and the Differential
Evolution Multi-Objective. We split the score3 energy function
provided by Rosetta into a bi-objective problem. The first
objective considers only the non-bonded van der Waals, while
the second one is composed of bonded-terms and a secondary
structure reinforcement score. Moreover, structural information
provided by the Angle Probability List is considered, since this
kind of information proved to be reliable in single-objective
approaches. Results obtained are analyzed using GDT and RMSD
metrics, showing the better capability of Differential Evolution
based methods for the problem.

Index Terms—multi-objective optimization, protein structure
prediction, structural bioinformatics, evolutionary algorithms

I. INTRODUCTION

Proteins are vital molecules for every living organism since
these macromolecules act in different biological functions.
Their three-dimensional shape dictates which kind of biologi-
cal function it will assume, including harmful behaviors if the
misfolding process occurs [1]. In order to determine the three-
dimensional shape of a protein, and its function, there two
experimental techniques: X-ray crystallography and Nuclear
Magnetic Resonance (NMR). Despite the efficiency of these
techniques, they are expensive and time-consuming. In this
sense, different researchers have been working together to
predict the structure of the protein by computational means,
creating one of the most challenging problems in the Structural
Bioinformatics known as Protein Structure Prediction (PSP).

The prediction of proteins is mainly based on the Anfinsen
thermodynamics hypothesis [2], which states that the native
state (functional state) of a protein is reached only by the
sequence of its amino acids (primary structure) and environ-
mental conditions. In this way, the minimum possible free

energy represents the native structure (functional form). In
order to create a possible solver for the PSP problem, there
are needed three primary definitions: (i) the computational
representation of the molecule; (ii) a way to measure the
energy of these molecules; and (iii) an algorithmic way to
explore the conformational search space [3]. Although there
are different types of molecular representation and various
ways to measure the energy of a protein, there is no efficient
algorithm that can thoroughly explore the conformational
search space finding the global minimum possible energy.
This restriction is related to the increasing amount of possible
conformations accordingly to the protein’s size. From the
Computer Science perspective, the PSP problem is considered
an NP-Hard problem [4], turning it computationally expensive.

In light of this fact, metaheuristics became interesting
approaches to the problem due to their capability of finding
good solutions in a huge search space [5], even though
these methods do not guarantee the best solution at the end
of the optimization process. For the PSP problem, different
metaheuristics where explored [6] [7] [8] [9] [10], but it is still
not known whether algorithm can solve the problem entirely.
Moreover, recent studies have pointed that the PSP problem
might be a multi-objective problem, since there are conflicts
among the energy terms in the force fields [11], requiring
a more extensive exploration of the capabilities of different
multi-objective metaheuristics for the problem.

In order to provide a larger body of analysis regarding
multi-objective algorithms for the PSP problem, this work
evaluates three different multi-objective approaches (NSGA-
II [12], DEMO [13], and GDE3 [14]) using the centroid
(score3) energy function provided by the PyRosetta 1 [15],
something not yet covered by the literature. Besides, the Angle
Probability List (APL) [7] is used as a source of information to
enhance the generated solutions. Different studies pointed [7]
[9] [6] [16] the efficiency of APL for the problem. Results
obtained by our study showed that the Differential Evolution
(DE) variations achieved better results in comparison with the
Genetic Algorithm (GA) algorithm.

The overall structure of the current work takes the shape of
4 main sections. The Section II explores the main concepts

1http://www.pyrosetta.org
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regarding the problem and the algorithm used. Also, related
works are exposed and discussed. The methodology adopted
is then described in Section III, while in Section IV results are
explored and discussed. Finally, in Section V we conclude our
work, highlighting the main points of our research, the future
works, and the limitations of the current study.

II. PRELIMINARIES

A. Protein Structure Prediction

Proteins are macromolecules composed of a chain of amino
acids. This linear sequence of amino acids is known as the pro-
tein’s primary structure, and together with the environmental
conditions, it dictates the final functional structure of each
sequence [2]. During the folding process, the amino acids are
arranged into space, creating local geometrical shapes called
protein’s secondary structure. There are different secondary
structures, depending on the type of classification, but the
most common ones are the α-helices and β-sheets. At the
end of the folding process, the global adjustment of the
secondary structures forms the functional three-dimensional
shape, known as protein’s tertiary structure and native confor-
mation. In order to exert specific biological functions, proteins
can cooperate among themselves while forming what is called
the quarternary structure of proteins [1].

The main objective of the PSP problem is to find the tertiary
structure of a protein, using a determined molecular represen-
tation and a way of measuring the quality of the predicted
molecule. As explained in [3], it is possible to qualify the
types of predictions in four classifications accordingly to the
prediction method. The current work can be classified as a de
novo method since we follow the thermodynamic hypothesis
in combination with the APL as a source of information,
improving the quality of predicted structures.
Molecular Representation: For template-free approaches,
different degrees of molecular representation and energy mea-
sures can be used. Most of the works use the torsion angles
representations [10] [17] [18] [6] [11] [19] [8], allowing re-
duction of the computational cost while keeping the biological
plausibility. The torsion angles are found among the amino
acids. All amino acids have the same backbone structure with
three torsion angles: φ (N-Cα), ψ (Cα-C), and ω (C-N) as
shown in Fig. 1.

Fig. 1: Molecular Structure of an amino acid.

Additionally, there are the χ angles representing the side-
chain, which distinguishes each amino acid. The number of χ
angles differ from each amino acid, ranging from 0 to 4 angles.
Excepting the ω angle, usually set to +180.0° value due to its
bonding planarity, all other angles can assume values between
−180.0° and +180.0°. As in this work we use a centroid
energy function, χ angles are not taken in consideration.
Energy Function: In order to quantify the structure of a
protein, it is needed to use some energy function that describes
the different forces regarding atomic interactions. For this
purpose, it would be interesting to use quantum mechanics
measurements, but they are impracticable due to the high
computational cost of it. Instead of quantum mechanics, clas-
sical physics measurements are used in order to determine
the energy of a protein [11]. Different works have proposed
different force fields, but in general, they consider bonded
and non-bonded terms. Among all force fields, the Rosetta
force field [20] showed promising results and one of the most
used for high-performance predictors. The Rosetta force field
contains more than 18 terms, considering classical physics
measurements and knowledge-based terms.
Angle Probability List: The APL was proposed in [7] based
on the study of conformational preferences of amino acids,
further analyzed in [21]. Thus far, a growing number of
studies have shown that the APL improves the capability of
finding more accurate structures than pure ab initio (without
any source of information) approaches [6] [7] [22]. The APL
is composed by several high-quality structures found in the
Protein Data Bank (PDB2) [23], with resolution ≤ 2.5Å.
With this information, the APL creates a histogram matrix
of [−180, 180] × [−180, 180] of the angle preferences for
each amino acid and the secondary structure. Authors of
APL also provided a web interface for APL generation called
Neighbors Influence of Amino acids and Secondary structures
(NIAS3) [24], which is open and free to use.

B. Multi-Objective Optimization

Besides the importance of single-objective studies and
their benchmarks, most of them do not accurately describe
real-world problems. Real-world problems are better de-
picted by a multi-objective formulation, representing differ-
ent aspects of the problem that might conflict with each
other [25]. The multi-objective formulation can be defined
a minimization (or maximization) of m objective functions:
min(f(x)1, f(x)2, f(x)3, . . . f(x)m), with x ∈ X , where X
defines the set of feasible solutions (x) in the decision space.

As the m possible objectives are related to different as-
pects of the problem, they might conflict, leading to a non-
trivial decision of which solution is the best one in a set of
solutions (something that does not occur in single-objective
optimization). In this sense, the concept of Pareto dominance
is essential to multi-objective optimization, allowing the direct
comparison of two possible solutions for the problem [26]. In
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this sense, a solution is non-dominated if no other solution
in the data set offers a better value for one objective without
incurring a worse value for other objectives.

With the application of the Pareto dominance concept, it
is possible to select a set of feasible candidates that better
describe a solution for the problem. Thus, leaving the decision-
maker agent in a better position to choose which solution
should be selected [27].

C. Related Works

Over the years, different approaches have been proposed
to solve the PSP problem. Although substantial progress
was obtained, the PSP problem is still an open problem
in structural bioinformatics. Initial evidences regarding the
multi-objectiveness of the PSP problem was revealed in [11]
[28], where the CHARMM energy function was split into
two different objectives, one considering the bonded force
while the second considered the non-bonded. The optimization
method was the IPAES algorithm, an evolutionary strategy
for multi-objective problems enhanced with imuno-inspired
operators. Following the same approach for the energy func-
tion, an Adaptive Differential Evolution Multi-Objective based
on Decomposition (ADEMO/D) was proposed in [19] and
compared with the IPAES algorithm. Results obtained by
both works showed that the multi-objective formulation of
the problem could reach similar structures using different
evolutionary algorithms.

As the multi-objective formulation of the problem showed
to be interesting, other approaches appeared, considering more
than two objectives in their formulation. In [29] the NSGA-II
algorithm was used with a three-objective formulation of the
problem, considering bonded terms as the first objective, the
van der Waals as the second objective, and other non-bonded
terms as the third objective. Authors compared their work with
the IPAES approach used in [11], qualifying the NSGA-II, one
of the most well known multi-objective algorithms, as a com-
petitive algorithm with state-of-art approaches. Another three-
objective approach was proposed in [30], considering bonded,
non-bonded, and structural differences as three objectives, and
by [31] which considered the solvent information as one of the
objectives.

More recently, in [32] the DEMO algorithm was tested and
compared with other research works, including the IPAES [11]
and ADEMO/D [19] approaches. This work had the objective
of evaluating for the first time a multi-objective approach using
the APL information. Also, the DEMO algorithm was never
tested in the PSP problem. The results obtained by the authors
showed that DEMO could reach reasonable solutions regarding
RMSD and GDT metrics.

Although significant contributions were reported in different
works, only in [30] some structural information that did not
come from APL was explored. The structural information
has been employed in different single-objective works and
one multi-objective approach [32], showing their relevance
to the problem. Among different sources of information, the
APL showed to be a crucial source of information for better

final conformations. Evidences could be found in [7] with the
canonical versions of GA and Particle Swarm Optimization, in
[16] with different versions of the DE algorithm, and in [32]
where a multi-objective version of DE (DEMO) was used.

In general, it is possible to identify a gap between the
single and multi-objective approaches, where relevant sources
of information were barely used in multi-objective approaches.
Also, we did not found in the body of research some compar-
ative work that used the same energy approach with the three
algorithms used in this work (NSGA-II, DEMO, and GDE3),
showing another contribution of this paper.

III. METHODOLOGY

A. Energy Function

In order to evaluate the structures and guide the search
mechanisms, we have selected the Rosetta score3 as energy
function. Energy functions provided by the Rosetta modeling
software are the most used ones in high-resolution predictors.
As proposed in [32], and following the research line of other
works, we are going to split the energy function into two
objectives. One objective containing the van der Waals term,
while the second one considers the bonded and knowledge-
based terms. This definition follows the intuitive argument
presented in [11] and in [19], where bonded (local interaction)
and non-bonded (non-local) interactions are in conflict. In
addition to the second objective, we include the secondary
structure reinforcement score, promoting solutions with well-
formed secondary structures as determined by the DSSP [33]
included in the PyRosetta package.

f(1) = EvdW ,

f(2) = Ecenpack + Epair + Eenv + Ecbeta+

Erg + Ehs pair + Ess pair + Ersigma+

Esheet + SSreinforcement

(1)

where EvdW stands for van der Waals forces and composes
the first objective function. Other bonded and knowledge-
based terms (Ecenpack, Epair, Eenv , Ecbeta, Erg , Ehs pair,
Ess pair, Ersigma, and Esheet) compose the second objective
function. In order to benefit solutions with matching secondary
structures the SSreinforcement is add to the second objective
function. The same objective formulation was used in [32]
with the DEMO algorithm.

B. Molecular Representation

As the score3 is a centroid based energy function, our
computational representation of proteins is composed by the
dihedral angles related to the backbone of amino acids, in
other words, the φ and ψ angles must be optimized (Fig. 2),
while the ω fixed to +180° due to its planar characteristic,
and χ angles are not optimized.

In this sense, it is possible to determine the dimensionality
of each solution as 2N , where N is the size of the primary
structure (quantity of amino acids).



Fig. 2: Computational Representation.

C. Search Mechanisms

As the objective, and contribution, of the current work, is
to compare different multi-objective metaheuristics using APL
as a source of information, we have selected two versions
of the DE algorithms (GDE3 [14] and DEMO [13]), and
the well-known NSGA-II [12] as search mechanisms. It is
essential to state that only DEMO has been tested with the
score3 energy function in a bi-objective formulation using
APL [32]. At the same time, the NSGA-II and GDE3 were
not yet evaluated with it, neither with the score3 energy
function or with APL information. We used the jMetalPy
framework [34] to prototype this work since NSGA-II and
GDE3 were available. We have added the DEMO algorithm
and modeled the PSP problem inside of the framework. The
APL information is used only in the population initialization
procedure.

• NSGA-II:The NSGA-II algorithm [12] is one of the
most well-known algorithms applied to multi-objective
optimization. As the NSGA-II be a GA, it keeps all
the mechanisms such as selection, crossover, and muta-
tion. The main difference from the canonical GA and
the NSGA-II is related to the process of creating the
new population. At the first moment, all solutions are
evaluated and organized with the non-dominated sorting
algorithm. Each solution receives a ranking position ac-
cording to the non-dominated sorting algorithm without
replacing any solution during the recombination process.
In this way, the offspring is formed by the union of the
current population individuals and the newly generated
ones. After the recombination, mutation, and all solutions
have their ranking assigned, and the best solutions have
to be selected to create the next generation. For this
purpose, solutions from the best rankings are copied to
the next generation until the number of solutions is equal
to the predefined population size. As a tie-breaker for
solutions of the same ranking, the crowding distance
metric defines which solution will be discarded or not.
With this procedure, the algorithm keeps the elitism
characteristic by selecting the well-ranked solutions as
well as the diversity since the crowding distance metric is
used as a tie-breaker, maintaining solutions with different
characteristics.

• GDE3: To create an algorithm that works for constrained,

unconstrained, and many-objectives problem, the gener-
alized differential evolution (GDE) was proposed, mod-
ifying only the selection criterion in comparison with
the canonical DE [35]. In 2005 the third version of
the GDE [14] was launched, considering the NSGA-II
strategies for non-dominated sorting and crowding dis-
tance. As in NSGA-II, the offspring grows two times the
population size, requiring a selection of the individuals
that compose the next generation. It follows the same
step as the NSGA-II, where the individuals with the best
non-domination rank go to the next generation, using the
crowding distance as a tie-breaker. However, the GDE3
algorithm modified the diversity preservation technique,
where each time an individual is dropped from the
population, the crowding distance is re-calculated, some-
thing that does not happen in the NSGA-II or DEMO
algorithm. The GDE algorithm also uses the feasibility of
the generated solution, deciding if the solution dominates
or not the parent. However, in our case, all solutions
are feasible. In this sense, the definition of dominance is
only related to the objective space, and not the constraint
space.

• DEMO: The Differential Evolution Multi-Objective was
firstly proposed in [13] as a new DE version for multi-
objective problems. The DEMO is based in the NSGA-II
algorithm, but using the differential evolution mutation
and crossover operators. As the canonical version of
DE, a new individual is generated by the mutation and
crossover mechanism. What differentiates the DEMO and
the canonical DE proposed by Storn and Price [36] is the
replacement operator and a truncation mechanism. For the
replacement step, the algorithm takes into consideration
the dominance factor. Three different possibilities could
happen, (i) the new generated individual dominates the
parent, replacing the parent in the population; (ii) the
parent dominates the new individual, discarding the new
individual, and (iii) no dominance state. If there is no
dominance, the new individual is appended into the
population, enabling the mutation mechanism to choose
the new individuals in its process right away. As the
population can grow during the mutation process (being
possible of achieving the size of 2 times the population
size), the truncation step kicks in, ranking the solutions
with the non-dominated sorting algorithm and crowding
distance (as in NSGA-II). In this way, the best-ranked
solutions compose the population of the next generation.
The size of this set obeys the population size parameter.
This process goes through until a stop-criterion is met.

As exposed, the three algorithms are quite similar to each
other. As the NSGA-II be one of the most famous multi-
objective algorithms due to its efficiency, both GDE3 and
DEMO are based on its non-dominated sorting and crowding
distance strategies to determine the new generation of possible
solutions. Although GDE3 and DEMO being very similar, it
is essential to state that GDE was designed to work with more



than two objectives, and considering the constraint violation
as information to decide which solution will be discarded
or not. That is not the case of DEMO. The idea of using
newly generated individuals in the mutation mechanism, and
the immediate replacement of dominated parents, are the core
of the algorithm, as stated by their authors [13].

IV. RESULTS AND ANALYSIS

In order to compare different algorithms, we have selected
the same test set with eight proteins as in [32]. The selection
of the proteins took into consideration different sizes (ranging
from 29 to 73 amino acids) and secondary structures (Tab. I).
To keep it a fair comparison, the parameters of GDE3 and
DEMO were kept the same as in [32], with F = 0.5 and
CR = 0.9. The NSGA-II algorithm follows the number of
individuals of 100 and fitness evaluations of 1 million, such
as the GDE3 and DEMO. For DE approaches, the classical
rand/1/bin mutation (~vg+1

i = ~xgr1 +F · (~xgr2− ~x
g
r3)) version is

used. For NSGA-II, the mutation and crossover mechanisms
are the ones described in its original publication [12]. For each
protein, 30 runs were done because of the stochastic behavior
of the algorithms.

TABLE I: Target protein sequences [32].

PDB ID Size Secondary Structure
1ACW 29 α+ β
1ZDD 34 α
2MR9 44 α
2P81 44 α
1CRN 46 α+ β
1ENH 54 α
1ROP 63 α
1AIL 73 α

In order to compare the predicted structures with the ex-
perimental model, we have chosen two metrics, the Root
Mean Square Deviation (RMSD) and the Global Distance
Test (GDT). The RMSD is widely adopted in different works,
and it compares the Cα (central carbon atom that bond the
amino acid side-chain) positions between two structures. The
Equation 2 displays how the RMSD metric is calculated.

RMSD(a, b) =

√√√√√ n∑
i=1

| rai − rbi |2

n

(2)

where rai and rbi are the ith atom in a set of n atoms
from the compared structures (a and b). This RMSD equation
returns a distance measure in Å. The closer the value of 0,
the more similar the structures are. As the RMSD could be
very sensitive to coils (very flexible structures), we also used
the GDT index to qualify our results. The GDT compares two
structures by superimposing the Cα, as is done in the RMSD.
However, the GDT calculates different positions accordingly
to different distance cutoffs, reducing the sensitivity of loops
and coils. The GDT measurement returns a percentage value
describing how similar the structures are. In this way, the

higher the percentage obtained, the more similar the structures
are.

As the Pareto front could return multiple solutions, we
selected the best solution regarding the GDT index of each
run, leading us to evaluate 30 solutions for each protein, for
each algorithm. In addition, we run the FastRelax protocol
provided by the Rosetta package. This protocol makes small
backbone and sidechain movements, reducing possible steric
clashes within atoms, thus reducing energy.

The results obtained to compare the algorithms are found
in Tab. II with four columns. The first one indicates the
PDB identification of each predicted structure, followed by
the tested algorithms in the second column. Columns 3 and
4 bring the GDT and RMSD, respectively. Highlighted cells
express the best values accordingly to the measurement index
(GDT and RMSD).

TABLE II: Results obtained from the three algorithms: NSGA-
II, GDE3, and DEMO

PDB ID Algorithm GDT (%) RMSD (Å)

1ACW

NSGA-II 57.93(43.70± 7.94) 3.81(6.47± 1.58)

GDE3 65.51(50.75± 6.03) 3.63(6.56± 1.72)

DEMO 62.75(48.89± 6.07) 3.82(7.17± 1.81)Å

1AIL

NSGA-II 31.42(22.91± 3.54) 7.07(10.30± 1.38)

GDE3 67.14(48.10± 8.36) 3.25(6.77± 2.81)

DEMO 61.71(48.80± 6.97) 3.14(7.40± 2.55)Å

1CRN

NSGA-II 42.60(31.04± 4.58) 6.23(9.24± 1.50)

GDE3 56.52(40.55± 7.08) 5.13(9.62± 2.69)

DEMO 50.00(38.81± 4.71) 6.32(9.31± 2.79)Å

1ENH

NSGA-II 39.62(26.86± 3.79) 6.84(10.14± 1.31)

GDE3 73.70(46.22± 8.73) 3.10(8.09± 2.79)

DEMO 72.96(49.07± 7.82) 4.29(7.47± 1.67)Å

1ROP

NSGA-II 42.14(26.65± 5.33) 5.96(10.86± 1.85)

GDE3 68.92(45.22± 8.21) 2.74(7.05± 2.07)

DEMO 66.42(46.01± 6.96) 3.04(6.80± 1.61)Å

1ZDD

NSGA-II 61.17(41.50± 9.27) 3.47(6.04± 1.29)

GDE3 87.05(60.76± 9.58) 1.79(4.05± 1.16)

DEMO 93.52(62.72± 12.92) 1.19(4.01± 1.98)Å

2MR9

NSGA-II 43.18(32.34± 4.94) 6.16(8.29± 1.29)

GDE3 71.36(48.10± 8.41) 3.00(7.09± 1.87)

DEMO 70.45(48.57± 8.82) 2.62(7.21± 1.87)Å

2P81
NSGA-II 37.72(30.50± 4.12) 5.85(8.94± 1.30)

GDE3 69.09(53.51± 6.06) 4.78(7.10± 1.34)

DEMO 69.09(49.81± 6.61) 5.06(7.72± 1.44)Å

A. GDT and RMSD Analysis

When comparing the results among the three algorithms,
two aspects are relevant to the problem. In the first step,
it is possible to identify the superiority of DE approaches
in comparison with the NSGA-II. Although the NSGA-II be
one of the most used algorithms for different multi-objective
problems, GDE3 achieved better GDT and RMSD values for
all eight proteins. In comparison with NSGA-II, DEMO was
better in 6 of 8 proteins regarding RMSD and better in all



proteins regarding GDT. The only two proteins that NSGA-
II achieved competitive results are 1ACW and 1CRN, where
both structures have β-sheets in their compositions. For α-
helices structures, both GDE3 and DEMO achieved superior
performance.

The second comparison is between the two DE-based al-
gorithms. Although similar results were obtained when com-
paring both GDT and RMSD, the GDE3 algorithm found
more accurate structures in the majority part of the tested
proteins. This behavior can be related to the similarity of
the two algorithms, where the significant difference is in
the selection of individuals, with DEMO including newly
generated individuals in the process, and GDE3 does not.

In order to statistically validate the performance of the
GDE3 algorithm, the Wilcoxon Signed Rank Test is applied
considering the GDT value since it better describes the simi-
larity between the predicted and already determined structures.
The first column of Tab. III displays the PDB identification of
each predicted protein followed by the algorithm and p−value
in columns 2 and 3 respectively. With p − value lower than
0.05 indicates that there is a significant difference between
GDE3 and the compared method. Otherwise, the methods can
be considered as statistically equivalent.

TABLE III: Wilcoxon Rank Test comparing NSGA-II and
DEMO with GDE3 algorithm.

PDB ID Algorithm p− value (GDT)

1ACW
NSGA-II 0.0001

DEMO 0.1504

1AIL
NSGA-II 0.0000

DEMO 0.6288

1CRN
NSGA-II 0.0000

DEMO 0.3234

1ENH
NSGA-II 0.0000

DEMO 0.0460

1ROP
NSGA-II 0.0000

DEMO 0.4556

1ZDD
NSGA-II 0.0000

DEMO 0.3493

2MR9
NSGA-II 0.0000

DEMO 0.5769

2P81
NSGA-II 0.0000

DEMO 0.0256

With the results summarized in Tab. III, we have a clear
indication of the better performance achieved by GDE3 in
comparison with the NSGA-II algorithm in all eight proteins.
When comparing it with the DEMO algorithm, only two
cases (1ENH and 2P81) have p-value lower than 0.05, thus
qualifying them as equivalents in other 6 cases.

B. Visual Comparison

In addition to the analysis made considering RMSD and
GDT, the visual comparison among the predicted structures
found by each algorithm, and the structural one can be found
in Fig. 3 and Fig 4. In the figures there are four structures
aligned, the best structures in terms of GDT (red for NSGA-
II, blue for GDE3, and orange for DEMO) found by each
algorithm and the experimental one (green). It is also possible
to see that, in some cases, the NSGA-II did not aligned the
α-helixes (i.e. 1ROP, 2MR9, 2P81) as DE did, justifying the
results demonstrated in Tab. II. Another interesting fact is that
all approaches had problems identifying the β-sheet (depicted
in arrows in Fig.3) structures for 1ACW and 1CRN. This is
related to the difficulty of aligning the atoms properly in order
to form the required hydrogen bonding that composes the β-
sheet structure. This issue is observed in different works in
the literature [6] [11] [19] [32].

With the results obtained and discussed in this section,
it is possible to identify the capacity of the three different
algorithms (NSGA-II, GDE3, and DEMO) for the problem
regarding GDT, RMSD, and visual comparison. The Wilcoxon
rank test confirmed the superiority of GDE3 in comparison
with the NSGA-II algorithm with the proposed test scenario,
while statistically equivalent with DEMO.

V. CONCLUSIONS AND FUTURE WORKS

Proteins are essential molecules for every living being,
exerting different biological functions when in its tertiary
structure. Due to the importance of the structural understand-
ing of these molecules, and the high cost and complexity
associated with the experimental determination, computational
approaches became a possible solution for the problem. Al-
though different works made advances in the literature, the
prediction of protein structures is still an open problem in
structural bioinformatics. Furthermore, some studies exposed
the need for using the multi-objective formulation of the
problem due to the conflict between the different terms that a
force field can have.

In light of these facts, this work has the objective of compar-
ing three different multi-objective metaheuristics (NSGA-II,
GDE3, and DEMO) using the score3 energy function provided
by the Rosetta modeling software. Moreover, we used the
Angle Probability List as a source of information for the
population initialization procedure, providing a piece of better
comparison information for future works. Results obtained
by our simulations showed the superiority of GDE3 and
DEMO in comparison with the NSGA-II algorithm, something
very similar to what occurs in their canonical single-objective
approaches to the problem. The GDE3 and DEMO showed
to be very competitive between themselves in terms of GDT
and RMSD, as confirmed by the Wilcoxon rank test. When
comparing them visually with the crystallized structure, it
is possible to see that the methods could find very similar
structures. However, none of them could correctly identify the
β-sheets in 1ACW and 1CRN.



(a) 1ACW - β−sheets are shown as arrows

(b) 1AIL

(c) 1CRN - β−sheets are shown as arrows

(d) 1ENH

Fig. 3: Cartoon representation (part. 1)

(a) 1ROP

(b) 1ZDD

(c) 2MR9

(d) 2P81

Fig. 4: Cartoon representation (part. 2).



Notwithstanding the relatively limited number of algorithms
and test-set, this work offers valuable data about the capacity
of multi-objective algorithms enhanced with problem domain
knowledge. However, several improvements can be made in
order to find better solutions. For further works, it would
be interesting to test different energy function compositions,
including solvent surface information. Also, as these algo-
rithms being sensitive to parameter control, the development
of self-adaptive versions of them could be a way to avoid the
parameter generalization. Finally, the investigation of how to
better determine β-sheets, something not yet explored, could
be interesting for the research area.
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[4] C. Guyeux, N. M.-L. Côté, J. M. Bahi, and W. Bienie, “Is Protein
Folding Problem Really a NP-Complete One ? First Investigations,” J.
Bioinf. Comput. Biol., vol. 12, 2014.
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