
A Hybrid Surrogate Model for Evolutionary
Undersampling in Imbalanced Classification

Hoang Lam Le, Dario Landa-Silva, Mikel Galar, Salvador Garcia, I. Triguero

Abstract—Data preprocessing is a key stage in data mining
that allows machine learning algorithms to obtain meaningful
insights. Many preprocessing problems such as feature selection
or instance selection can be modelled as optimisation/search
problems. Evolutionary algorithms have traditionally excelled in
this task when dealing with data of a moderate size. However,
their application to large datasets typically involves very high
computational costs. In this work, we propose a hybrid surrogate
model for evolutionary undersampling in imbalanced classifica-
tion problems. These are characterised by having a highly skewed
distribution of classes in which evolutionary algorithms aim to
balance the training data by selecting only the most relevant
data. The proposed technique combines a two-stage clustering-
based surrogate method with a windowing approach to quickly
approximate fitness values of the chromosomes and accelerate the
search. The experiments carried out in 44 standard imbalanced
datasets show that the proposed hybrid surrogate model highly
reduces the computational cost of the evolutionary algorithm
without a considerable loss of performance.

Index Terms—Data Preprocessing, Evolutionary undersam-
pling, Surrogate models, Imbalanced classification, Fitness ap-
proximation, Windowing

I. INTRODUCTION

In data science, preprocessing techniques [1] aim to trans-
form raw data into the so-called Smart Data [2], which is data
in a usable shape to allow the subsequent machine learning
to be successful. Among others, data preprocessing includes
data cleaning, dimensionality reduction, instance reduction and
discretisation. Many of these strategies have been formulated
as optimisation problems, so that, a search algorithm finds a
preprocessed dataset that enables machine learning to extract
useful knowledge from the data [3]. Evolutionary algorithms
have widely been used in data preprocessing problems such
as feature selection [4] or instance selection [5] with very
promising results.

In this work, we are interested in the class imbalance
problem for classification, which is a recurrent issue in data
science, in which the input data has a severely skewed dis-
tribution of classes [6]. Considering two-class datasets, the
problem happens when the number of positive class examples
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(typically the class of interest) is very limited with respect
to the negative ones. Under these circumstances, canonical
classification techniques may be biased towards the majority
class and may also have to deal with another series of
difficulties such as overlapping, small sample size, or small
disjuncts. Several approaches have been designed to tackle this
problem, which can be divided into three main groups: data
sampling, algorithmic modifications and cost-sensitive solu-
tions [7]. These models have also been successfully combined
with ensemble learning algorithms [8].

Evolutionary undersampling (EUS) [9] is a data sampling
technique, based on instance selection, that performs a binary
search to balance the distribution of classes of the original
dataset by removing examples of the negative class. This
search is carefully guided by the CHC algorithm [10] that aims
to increase the performance on the two classes of the problem
while reducing the number of negative examples. However,
when dealing with large datasets, the search may become
very time-consuming due to the cost associated to fitness
evaluation (consisting of classifying the entire training set with
the resulting preprocessed dataset). Recently, the processing
time of EUS has been reduced using distributed approaches
in big data platforms [11] that require larger computational
infrastructures.

This work is focused on reducing the computational cost of
EUS by means of fitness approximation approaches [12], such
as surrogate models [13], [14]. These methods may reduce the
computational cost of search algorithms by accelerating fitness
evaluation of each chromosome, as opposed to parallelisation
techniques that merely focus on reducing processing time.
Whilst there are many surrogate models for continuous search
problems, methods for combinatorial domains remain under-
explored [15]. Two simple solutions based on partitioning
the training set can be used to reduce the runtime of EUS:
stratification [16] and windowing [17]. While the former helps
reduce the processing time, the latter actively reduces the com-
putational cost of the fitness evaluation considering subsets of
training data for fitness evaluation. In [18], we proposed a
clustering-based surrogate model for EUS, called EUSC. As
opposed to windowing or stratification, EUSC considers the
entire training data when computing fitness values. However,
EUSC only performs real evaluations for a limited number of
chromosomes.

In this paper, we propose a hybrid surrogate model, called
a hybrid surrogate model for EUS (EUSHC), that integrates
windowing with EUSC to highly reduce the computational
cost of the fitness function without misleading the search
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for accurate solutions. First, a two-stage clustering process
allows us to transform binary chromosomes into real coding
chromosomes, so that, distances between solutions can be
computed effectively [18]. Then, the proposed hybrid method
uses windowing to estimate the fitness value of a reduced
number of chromosomes, and the fitness values of the rest
of solutions are approximated based on their similarity and
imbalanced ratio. Thus, the entire search is guided by ap-
proximate fitness values. In our experiments with 44 standard
imbalance datasets, we show how this greedy surrogate model
allows for a massive reduction of computational costs without
considerably reducing accuracy.

The paper is organised as follows: Section II introduces the
background of the research topic, consisting of EUS and its
specification. In Section III, we describe the proposed hybrid
surrogate model for EUS. Section IV analyses the empirical
results. Finally, Section V summarises the conclusions.

II. BACKGROUND

In this section we briefly describe the topics covered in
this paper. Section II-A presents related work on imbalanced
classification. Then, Section II-B details the EUS algorithm.
Finally, Section II-C discusses different techniques to acceler-
ate evolutionary algorithms.

A. Imbalanced classification

In binary classification, a problem is classed as imbalanced
when it is significantly composed of more instances from one
class than from the other. Standard classification algorithms
usually measure success based on accuracy rate (percentage
of correctly classified examples), which neglects the predic-
tion performance of the minority class. The most common
alternatives in this scenario are the Area Under the ROC
Curve (AUC) and the g-mean. The AUC (Area Under the
ROC-Curve) measures how well the trade off between true
positive (TPrate) and false positive rates (FPrate). A popular
approximation [6] of this measure is given by

AUC =
1 + TPrate − FPrate

2
. (1)

The g-mean computes the geometric mean between the true
positive rates and true negative rates (TNrate):

GM =
√
TPrate · TNrate (2)

Both measures are usually considered interchangeably and
extensively used in numerous experimental studies with im-
balanced datasets.

Solutions tackling the class imbalanced problem can be
grouped into data preprocessing [2], [19] and algorithmic mod-
ification [20]. Those operating at the algorithmic level update
existing learning algorithm to acknowledge the imbalanced
situation, while those at data-level preprocessing modify the
data to make the class distribution less critically unequal. Cost-
sensitive learning [21] is a kind of algorithm-level modification
that aims to learn more characteristics of the minority class
examples by adding a higher penalty for their misclassification.

Ensemble-based methods are gaining momentum, combining
an ensemble learning algorithm (e.g. Bagging, Boosting) [22]
with data preprocessing or cost-sensitive techniques.

Data-level preprocessing strategies allow us to use any
classifier after their application. They can be roughly split into
undersampling or oversampling. Undersampling focuses on
the majoirty class samples, eliminating redundant examples.
Conversely, oversampling aims at creating arficial data for the
minority class. Hybrid methods combine both approaches [23].
Although all of these approaches are proved effective in many
studies, oversampling and hybrid methods tend to generate
additional data, which result in a higher computational cost.
Undersampling is particularly interesting when dealing with
large and big dataset as it reduces the size of the data. Hence,
the corresponding classifier can be applied faster.

EUS [9] is an interesting alternative for undersampling that
carefully select the majority class samples (as opposed to
Random undersampling), so that, we obtain a more balanced
dataset that preserve or even improve the final performance.
As such, EUS is an instance selection algorithm that acts only
on the majority class samples. Despite its performance, it is
well known that its practical application is typically limited to
relatively small datasets. To address this situation, researchers
have focused on designing big data solutions to enable EUS
to tackle big datasets in a reasonable time [11], [24]. Whilst
these solutions are needed to handle really big datasets, they do
not reduce the computational cost of EUS, but they distribute
the computation across a number of computers. In this work,
we are interested in reducing the computational cost of EUS,
which could later be integrated with distributed solutions to
handle big datasets.

B. Evolutionary undersampling for imbalanced classification

This section presents the details of EUS algorithm. Let
N− and N+ be the number of majority and minority class
samples in a two-class dataset. Each instance xi has m-
dimensions and belongs to a class given by xiω , xi =
(xi1 , xi2 , xi3 , ..., xim , xiω ). EUS performs a search using an
evolutionary algorithm, namely CHC [10], to optimise the
resulting reduced set RS of training samples that are later
used by a classifier. EUS encodes the selection of majority
class samples with a binary representation {1, 0}. Thus,
the size of a chromosome is N− as only instances in the
majority class are examined for elimination. All minority class
samples are always part of RS. A chromosome is expressed
as: chrj = (vx1 , vx2 , vx3 , , vxN− ) where vxi ∈ {1, 0} indicates
whether sample xi is included or not.

EUS keeps a population of NP chromosomes that are
assessed and ranked based on their quality. To do so, a fitness
function is used to evaluate the quality of the chromosome
based on how well the chromosome balances the class distri-
butions and an expected performance of the selected instances.
To do so, a RS is constructed based on the selection of
majority class samples determined by the chromosome plus
all minority class examples. Then, the entire training dataset
is classified based on RS as training data. Similarly to most



previous works, in this paper we adopt the Nearest Neigh-
bour (NN), k=1, [25] rule as base classifier. As performance
measure, the g-mean is applied (defined in Eq. (2)).

The complete fitness function looks like this:

fchrj =

GMchrj −
∣∣∣1− N+

s−

∣∣∣ · P if s− > 0

GMchrj − P if s− = 0,
(3)

where s− is the number of selected negative instances and
P is a penalisation factor that focuses on the balance between
both classes. P is typically set to 0.2 as recommended by
the authors, since it provides a good trade-off between both
objectives.

Thus, evaluating the quality of each chromosome may
become a long operation when the size of the training set
grows. Therefore, our research question is: Can we develop
a fast EUS that quickly approximates the fitness value of
chromosomes without misleading the search?

C. Surrogate models for fitness approximation

In the optimisation field, many studies have investigated the
acceleration of fitness evaluations. We can find solutions such
as delta evaluation (based on only computing changes in the
solution and estimate cost) or fitness inheritance (which is
inspired by the idea that an offspring can also inherit a fitness
value from its parents, not only its own genes) [12].

Machine learning techniques such as clustering and super-
vised learning have also been used to approximate fitness
values. Clustering algorithms aim to decrease the number of
fitness evaluations by splitting the entire population (based
on the chromosome representation) into a number of groups.
Then, the chromosomes closest to the clusters’ centres are
evaluated by the exact function, while other cluster members
are approximated according to their distance to the evaluated
solutions [26]. Supervised learning techniques aim to create a
predictive model that can approximate the fitness function. The
model is adjusted based on the data points accumulated from
the evaluation history. Such a data-driven model is built under
the assumption that there is continuity among data points,
at which a small variation in decision variables will cause a
smooth change in the fitness value. Both solutions work well
on continuous optimisation problems but their application to
combinatorial search spaces is currently under-explored.

III. EUSHC: HYBRID SURROGATE MODEL FOR
EVOLUTIONARY UNDERSAMPLING

This section presents the proposed hybrid method for EUS
that combines windowing and a clustering-based surrogate
model. Section III-A discusses the motivation behind this
approach. Section III-B describes the windowing component
and Section III-C details the hybrid approach.

A. Motivation

As stated before, EUS has demonstrated to be a very
effective solution to determine the best subset of majority
class elements that tackles the imbalanced situation in a clas-
sification problem. The cost associated to its fitness evaluate

motivates the use of approximations to assess the quality of a
chromosome. The main problem lies in the size of the training
data that needs to be classified to measure the classification
performance of a given solution.

The use of approximate fitness values might seem linked
to a reduction of the performance. However, we postulate
that for the problem of instance selection (undersampling) in
classification problems, using the training data to compute
the fitness value is in itself an approximation of how well
the solution (the resulting RS) allows us to learn a concept
(which may affect how well we can predict the test set).
In addition, the search algorithm may end up overfitting the
training data. Hence, these are well-known general weaknesses
of any existing instance selection algorithm [27].

The main goal of the proposed EUSHC is to drastically
reduce the computational cost of EUS and investigate whether
this misleads the search or not. To do so, we integrate two
different approaches to approximate fitness values: Windowing
and a clustering-based surrogate model. The motivation as to
why we add the two different components together is given
below.

B. Windowing for EUS
The idea of windowing was originally proposed in [17] to

accelerate a genetic-based machine learning algorithm. The
key idea is to use partial data instead of the entire dataset
for each fitness evaluation. This approach begins with splitting
the training set into multiple disjoint strata (W1,W2, ...,Wnw).
For each generation of the search, each stratum takes a turn to
be used in evaluating candidate solutions. Due to the reduction
of data quantity at each evaluation, the computational cost
decreases accordingly.

In the context of EUS for imbalance classification, window-
ing was first used in [24]. However, dividing the entire training
set into several disjoint windows with equal class distribution
produce an important loss of information of the positive class.
Therefore, to apply windowing for EUS, minority class sample
will be kept to evaluate a chromosome. However, the set of
majority class instances is split into several disjoint strata. The
size of each subset of majority examples is set to the number
of minority class instances to avoid setting a fixed value for
the number of strata. Thus, the number of strata is dependant
on the imbalanced ratio.

This simple yet effective approach has proven to highly
reduce the cost of fitness evaluations without significant loss
in classification performance. Although the training data is
not classified at once to evaluate one chromosome, during the
evolutionary process the algorithm utilises all existing training
data. The main drawback of this technique lies in the fact that
its reduction of computational cost depends on the imbalanced
ratio. For this reason, we will use this technique within the
proposed hybrid surrogate model to speed up the fitness
computation of only some chromosomes of the population.

C. A hybrid windowing-clustering surrogate model for EUS
Fitness approximation based on surrogate models is an

under-explored area in binary/combinatorial optimisation. For



Fig. 1. Workflow of EUSHC: Phase 1 conducts chromosome transformation; in the illustration 1 element out of 3 is selected from T0 cluster, 2 out of 3 in
T1 cluster, and 2 out of 4 in T2 cluster. Phase 2 performs fitness inference based on similarities between the transformed chromosomes. Only a representative
chromosome from each cluster is evaluated using a windowing approach.

EUS, the main challenge lies at computing distances between
different binary chromosomes, so that, fitness values can be
either inherited or approximated based on similarity between
chromosomes. In [18], we recently proposed a clustering-
based surrogate model for EUS (EUSC) that allows us to com-
pute distances between binary chromosomes by transforming
them into an real-coding representation. The main advantage
of such a model is the ability to very quickly infer the fitness
value of a chromosome based on the distance to others without
computing any classification. In this work, we extend that
approach by hybridising EUSC with a windowing approach.
Figure 1 presents the workflow of the entire hybrid model,
which consists of the following two phases:

1) Phase 1: Chromosome transformation: The key point
of EUSC is related to transforming the binary representation
into a real-coding one. This process should be very quick
to really take advantage of a surrogate model (rather than
using the real fitness evaluation). The main issue with the
binary representation is that does not represent well the real
phenotype of the chromosome, which is the actual position of
the selected instances of the algorithm.

• Step 1: Before starting the evolutionary cycle, all the

training samples that belong to the majority class are
grouped into k1 clusters {T0, T1, ...Tk1

}. In our exper-
iments, we use the well-known k-means algorithm. The
goal of this step is to quickly split the instance space into
different regions based on the actual position (i.e. using
their feature values) of the majority class examples. Note
that this step is the most time-consuming one, but it is
only applied once.

• Step 2: During the evolutionary cycle, we will transform
binary chromosomes into an intermediate form using the
previous clusters. This intermediate forms will have k1
genes. Firstly, we count the number of selected instances
(i.e. genes with a 1) that fall into each of the clusters.
Each gene of the intermediate chromosome will be a
real value which is computed as the division between
the number of selected instances of this cluster and the
original number of elements in the cluster. These values
produce an intermediate form that tells us approximate
information about the location in the instance space of
the selected instances.

2) Phase 2: Fitness inference: When binary chromosomes
have been transformed into real-coding ones, we can use



similar ideas as implemented in the literature for continuous
optimisation problems [28].

• Step 1: The population of chromosomes in their new
intermediate form is fed into a clustering algorithm,
which splits the different solutions into k = k2 clusters,
C0, C1, ..., Ck2

. In this way, the clustering task conducted
in the intermediate forms will also indirectly separate the
chromosomes in the binary space.

• Step 2: Compute the fitness value of only k2 chromo-
somes. To accelerate this step, we incorporate here the
windowing approach. This means that for those chro-
mosomes a subset of the training set is classified (as
describe in the previous subsection) with the RS set. We
tested different approaches to decide which chromosomes
should be evaluated with the fitness function. In this
contribution we pick the centroid chromosome chrRi

from each cluster {C0, ..., Ck2
} as a set of representative

chromosomes {chrR0, ..., chrRk2
}.

• Step 3: Infer the fitness value of the remaining chromo-
somes. The g-mean values of the {chrR0, ..., chrRk2

}
has been calculated in the previous step. To compute the
fitness of the rest of the chromosomes, Equation 3 uses
the g-mean value GMchrj of the centroid of the cluster.
This means that all the members of a cluster simply
inherit the same g-mean value. However, the component
of the balance between classes of the fitness function is
calculated based on the number of elements selected by
the particular solution. We acknowledge that transferring
the same g-mean to all members of a cluster may be an
oversimplification, and more elaborated solutions could
be adopted; however, our experiments show that this
simple approach achieves good results.

In the experiments presented in the next section, the above
fitness approximation is applied to all fitness evaluations,
including the evaluation of the initial population.

IV. EXPERIMENTAL STUDY

This section establishes the experimental set-up (Section
IV-A) and discusses the results achieved (Section IV-B).

A. Experimental framework

This empirical study considers 44 two-class imbalanced
datasets, commonly used in the literature, from the KEEL
dataset repository [29]. All used datasets and their properties
are summarised in Table I. For each dataset, the table shows
the number of attributes (Att), the number of samples (Samp),
the percentage of examples of each class (%Class(min,maj))
and the imbalanced ratio (IR). In our experiments we consider
a 5-fold cross validation approach, and the averaged g-mean
values and runtimes are reported.

To compare the effectiveness of the EUSHC, we will
compare the results again three benchmarks: (1) the original
EUS, which is expected to be the upper-bound in terms of
g-mean, but the slower approach; (2) EUS using windowing
to evaluate its fitness function; (3) EUSC, the clustering-
based surrogate model without using windowing. Table II

TABLE I
SUMMARY OF DATASETS

Dataset Att Samp %Class(min,maj) IR
shuttle-c2-vs-c4 9 129 (0.05, 0.95) 20.5
iris0 4 150 (0.33, 0.67) 2.0
glass-0-1-6 vs 5 9 184 (0.05, 0.95) 19.44
glass-0-1-6 vs 2 9 192 (0.09, 0.91) 10.29
glass-0-1-2-3 vs 4-5-6 9 214 (0.24, 0.76) 3.2
glass0 9 214 (0.33, 0.67) 2.06
glass2 9 214 (0.08, 0.92) 11.59
glass4 9 214 (0.06, 0.94) 15.46
glass1 9 214 (0.36, 0.64) 1.82
glass6 9 214 (0.14, 0.86) 6.38
glass5 9 214 (0.04, 0.96) 22.78
new-thyroid1 5 215 (0.16, 0.84) 5.14
new-thyroid2 5 215 (0.16, 0.84) 5.14
ecoli-0 vs 1 7 220 (0.65, 0.35) 0.54
ecoli-0-1-3-7 vs 2-6 7 281 (0.02, 0.98) 39.14
habermanImb 3 306 (0.26, 0.74) 2.78
ecoli1 7 336 (0.23, 0.77) 3.36
ecoli4 7 336 (0.06, 0.94) 15.8
ecoli3 7 336 (0.10, 0.90) 8.6
ecoli2 7 336 (0.15, 0.85) 5.46
yeast-1 vs 7 7 459 (0.07, 0.93) 14.3
page-blocks-1-3 vs 4 10 472 (0.06, 0.94) 15.86
yeast-2 vs 8 8 482 (0.04, 0.96) 23.1
yeast-2 vs 4 8 514 (0.10, 0.90) 9.08
yeast-0-5-6-7-9 vs 4 8 528 (0.10, 0.90) 9.35
wisconsinImb 9 683 (0.35, 0.65) 1.86
yeast-1-4-5-8 vs 7 8 693 (0.04, 0.96) 22.1
abalone9-18 8 731 (0.06, 0.94) 16.4
pimaImb 8 768 (0.35, 0.65) 1.87
vehicle2 18 846 (0.26, 0.74) 2.88
vehicle3 18 846 (0.25, 0.75) 2.99
vehicle0 18 846 (0.24, 0.76) 3.25
vehicle1 18 846 (0.26, 0.74) 2.9
yeast-1-2-8-9 vs 7 8 947 (0.03, 0.97) 30.57
vowel0 13 988 (0.09, 0.91) 9.98
yeast3 8 1484 (0.11, 0.89) 8.1
yeast1 8 1484 (0.29, 0.71) 2.46
yeast4 8 1484 (0.03, 0.97) 28.1
yeast6 8 1484 (0.02, 0.98) 41.4
yeast5 8 1484 (0.03, 0.97) 32.73
shuttle-c0-vs-c4 9 1829 (0.07, 0.93) 13.87
segment0 19 2308 (0.14, 0.86) 6.02
abalone19 8 4174 (0.01, 0.99) 129.44
page-blocks0 10 5472 (0.10, 0.90) 8.79

summarises the parameters used in the experiments. Note that
the NN rule (k=1) has been used as base classifier).

TABLE II
PARAMETERS USED FOR THE INVOLVED ALGORITHMS.

Algorithm Parameters

EUS Population Size = 50, Number of Evaluations = 10000,
Probability of inclusion HUX = 0.25,
Evaluation Measure = g-mean,

EUS windowing same as above, but using windowing

EUSC Same as EUS, plus k1 = 6, k2 = 6

EUSHC same as above, but using windowing

B. Analysis of results

First of all, we compare the runtime required by each one
of the methods in every single dataset. Figure 2 plots this
comparison. For the sake of clarity, we sort the datasets by
the runtime of EUS, and also apply logarithmic scale (base
10) on the vertical axis. We present two subplots, grouping
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Fig. 2. Comparison of the runtime (in seconds, base 10 logarithmic scale) of
the different algorithms over 44 imbalanced datasets, sorted by the runtime
of EUS. Runtime of the first 22 datasets (Top), last 22 datasets (Bottom). On
average in the 44 datasets, EUS takes 26.44s, EUS windowing 9.03s, EUSC
6.68s and EUSHC 3.15s.

44 datasets into two halves. Looking at that figure, we can
observe that:

• Overall, all the approximation methods consumed an
insignificant amount of time to perform undersampling
compared to the time demanded by the original EUS.

• Windowing spent a mostly equivalent amount of time
to EUS in small datasets, but the time is dramatically
reduced in larger ones. As stated above, the windowing
approach is also affected by the imbalance ratio.

• Both EUSC and EUSHC show a very low runtime
across the 44 examined datasets. As expected the hybrid
approach is always faster than EUSC, and it is clearer on
larger datasets. On average, EUSHC is roughly 52.84%
faster than EUSC (3.15s vs. 6.68s, respectively).

In addition to runtimes, we report the reduction of eval-
uations provided by the surrogate models. Figure 3 displays
a histogram with the total number of evaluations of EUSC
and EUSHC compared to the 10000 evaluations performed by
EUS for each dataset.

• The two surrogate assisted schemes use a significant
lower number of evaluations which is roughly a 20% of
the 10000 evaluations used by EUS. The number of real
evaluations avoided by the surrogate model varies among
datasets. When we use fitness approximation (windowing
and/or a surrogate model), the behaviour of the CHC
algorithm is also changed. The diversity in the population
may be affected, so that, the proportion of chromosomes

TABLE III
G-MEAN OBTAINED BY ALL COMPARISON METHODS IN 44 IMBALANCED

DATASETS

Dataset EUS EUS windowing EUSC EUSHC

shuttle-c2-vs-c4 0.9577 0.6449 0.9414 0.7365
iris0 1.0000 1.0000 1.0000 1.0000
glass-0-1-6 vs 5 0.9214 0.9151 0.9160 0.9501
glass-0-1-6 vs 2 0.6383 0.6164 0.6651 0.5815
new-thyroid2 0.9865 0.9773 0.9831 0.9746
new-thyroid1 0.9882 0.9809 0.9859 0.9653
glass6 0.8889 0.9071 0.9156 0.9054
glass5 0.8105 0.9076 0.9600 0.9103
glass4 0.8700 0.8513 0.8613 0.8531
glass2 0.7194 0.6525 0.7262 0.6173
glass1 0.7773 0.7010 0.7941 0.7367
glass0 0.8009 0.6176 0.8047 0.6595
glass-0-1-2-3 vs 4-5-6 0.9525 0.9385 0.9647 0.9546
ecoli-0 vs 1 0.9583 0.9312 0.9581 0.9615
ecoli-0-1-3-7 vs 2-6 0.6700 0.7048 0.6625 0.6865
habermanImb 0.5475 0.5635 0.5521 0.5497
ecoli4 0.8984 0.9362 0.8857 0.9645
ecoli3 0.8348 0.8153 0.8500 0.8097
ecoli2 0.9000 0.8663 0.9034 0.8772
ecoli1 0.8634 0.8306 0.8554 0.8424
yeast-1 vs 7 0.7176 0.7079 0.7068 0.6669
page-blocks-1-3 vs 4 0.9674 0.9399 0.9471 0.9294
yeast-2 vs 8 0.7931 0.7496 0.7656 0.7668
yeast-2 vs 4 0.9042 0.8774 0.9156 0.8930
yeast-0-5-6-7-9 vs 4 0.7685 0.7663 0.7901 0.7535
wisconsinImb 0.9690 0.9652 0.9600 0.9590
yeast-1-4-5-8 vs 7 0.6569 0.6088 0.6604 0.6149
abalone9-18 0.7269 0.6772 0.7224 0.6559
pimaImb 0.6943 0.6749 0.6957 0.7145
vehicle0 0.9164 0.9027 0.9103 0.9016
vehicle1 0.6729 0.6624 0.6512 0.6926
vehicle2 0.9259 0.9175 0.9265 0.9173
vehicle3 0.7280 0.7142 0.7165 0.7204
yeast-1-2-8-9 vs 7 0.6721 0.6078 0.6704 0.6500
vowel0 0.9897 0.9719 0.9877 0.9831
yeast3 0.8728 0.8740 0.8752 0.8550
yeast1 0.6533 0.6501 0.6600 0.6600
yeast4 0.8050 0.7799 0.8288 0.7970
yeast6 0.8357 0.8080 0.8034 0.8031
yeast5 0.9634 0.9494 0.9455 0.9653
shuttle-c0-vs-c4 0.9960 0.9968 0.9960 0.9960
segment0 0.9881 0.9870 0.9876 0.9858
abalone19 0.6258 0.6061 0.7214 0.6556
page-blocks0 0.9117 0.9038 0.9096 0.9085
Wins 18 4 18 8

for which we infer the fitness may be changed in every
generation.
Note that CHC does not necessarily create an offspring
of NP elements in every generation. Hence, if the number
of chromosomes to be evaluated in a generation is very
low (less or equal than k2), we would not take much
advantage of the surrogate model. In the experiments,
this effect is more noticeable on datasets with either a
very small size or high imbalanced ratio.

• It is important to observe that there is a slight difference
in the number of objective function calls between EUSC
and EUSHC, and the EUSHC consistently saved more
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Fig. 3. The number of fitness function calls in the original EUS, EUSC and EUSHC

real evaluations in most of the datasets. This behaviour
may seem unexpected as both methods are using a
clustering-based surrogate model to reduce the number
of evaluations, so that, both should report a similar num-
ber. However, the hybrid approach introduces windowing
that changes the behaviour of EUS, and the search.
Including windowing may also affect the quality of the
chromosomes and, as explained above, the number of
chromosomes to be evaluated in each generation.

Until now, it is clear the advantage of the fitness approxi-
mation approaches with respect to EUS in terms of efficiency.
However, reducing the runtime would not be of any value if the
classification performance is massively deteriorated. Table III
shows the average g-mean performance of all the algorithms
in test data. Values in bold indicate that the algorithm at the
column achieves the highest g-mean in the dataset at the row.
Additionally, an extra row at the end displays the number
of times that each algorithm wins over 44 datasets. We also
compare the number of wins, ties and losses of EUSHC against
each reference undersampling algorithm, displayed in Figure
4. Looking at the above table and figure, we can observe that:
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Fig. 4. Comparison of EUSHC and reference undersampling algorithms with
respect to the number of wins, ties, and losses over 44 imbalanced datasets.

• Despite using about 80% more evaluations, EUS does not
always provide the best classification performance. This
result shows that the use of approximations may result
in even better results, reducing overfitting of the training
set. As stated in Section III-A, using the training data is
already an approximation of how well this data represents
the concept to be learned.

• In this experiment, we can highlight EUSC, which seems
to be very competitive with respect to EUS, obtaining the
same number of wins out of the 44 datasets. EUSHC also
finds the best solution in 8 out of 44 datasets.

• Over 44 datasets, EUSHC shows a greater number of
wins with respect to EUS windowing. It is predicted that
EUSHC loses EUS and EUSC frequently as it applies
two stages of approximation. However, figures in Table
III show a very reduced difference in g-mean between
our hybrid approach and the other algorithms. Note that
the difference in g-mean is only more noticeable in those
datasets either having high IR or low number of samples
with high IR.

In summary, the proposed EUSHC highly reduces the
computational cost of the EUS algorithm (about an 88.08%
on average - from 26.44s to 3.15s), and the classification
performance seems comparable to EUS and the other ap-
proximation methods. Looking at all the results presented in
this contribution, when the number of instances is low, it is
reasonable not to use a surrogate or windowing approach as
the original EUS will not suffer from a high computational
cost. However, in larger datasets, the benefits of the proposed
approach are promising.

V. CONCLUSION

In this paper we have presented a hybrid surrogate model
to accelerate evolutionary undersampling for imbalanced clas-
sification problems. The proposed approach approximates
fitness values of the chromosomes using a clustering-based
surrogate model together with a windowing approach. The



entire search is guided by approximate fitness values aiming
to highly reduce the computational cost. In our experiments
in 44 standard imbalanced datasets we show that we can
highly reduce the runtime required to perform evolutionary
undersampling, especially in larger datasets, without incurring
in a noticeable classification performance loss. As such, the
proposed approach contributes towards the design of fitness
approximation models based on surrogate models in evolution-
ary algorithms for instance selection/undersampling. As future
work, we plan to incorporate the proposed approach to big data
frameworks and analyse the effect of fitness approximation in
bigger datasets.
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