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Abstract—Multi-objective problems with two or more conflict-
ing objectives are very common in every engineering fields, also
for antenna optimization. Evolutionary Optimization Algorithms
are important tools due to their effectiveness, flexibility and
applicability especially for multi-objective problems because they
can provide directly the non-dominated set. Among Evolutionary
Algorithms, Social Network Optimization (SNO) shows very good
optimization performance.

In this paper three different approaches for solving a multi-
objective problem are tested with SNO: the first one is the
weighted sum method, the second is the epsilon-constrained
method and the third one is the simultaneous search with a multi-
objective implementation of SNO. The analysed application is the
design of a sparse-array antenna.

I. INTRODUCTION

Evolutionary Optimization algorithms (EAs) are important
tools due to their flexibility and applicability: in fact, they
can work properly on several type of common benchmark
functions that can hardly managed by means of traditional
techniques, like multi-modal problems [1], constrained prob-
lems [2] and discontinuous problems.

In many engineering problems the performance of the sys-
tems can be expressed in terms of more than one parameters:
when these parameters are conflicting, the problem is called
multi-objective [3]. The aim of a multi-objective problem
is not just the identification of a single solution, but the
identification of the Pareto front. A solution belong to the
Pareto front if there is not any other feasible solution that has
better values for all the benchmarks [4].

In the field of antenna optimization, Evolutionary Opti-
mization Algorithms have been widely applied due to their
capability to face multimodal problems [5].

Among EAs, Genetic Algorithm (GA) is the most popular
one: it can be easily formulated either for real-coded (like
in the design of time-modulated linear arrays), binary-coded
(applied for also thinned antennas and wire antenna design)
and mixed integers problems (like for linear array design,
thinned subarrays, and circularly polarized patch antenna) [6].
Another important EAs is Particle Swarm Optimization (PSO):
this algorithm is native for real-coded problems [7] but it has
been also implemented and successfully adopted for binary-
coded problems [8].

In addition to these algorithms, recently other EAs has been
applied to antenna optimization. One of the most interesting
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is Differential Evolution that shows a very good convergence
rate even in very large-scale electromagnetic problems [9].
Another adopted algorithm is the Evolutionary Strategies that,
due to its high exploration capability, is able to overcome the
problem of local minima [10].

In this field, in [11] a new Evolutionary Optimization
algorithm has been introduced. This algorithm, named Social
Network Optimization (SNO), takes its inspiration from the
interaction of social network members and it has been success-
fully applied to several single objective optimization problems,
from the design of tubular permanent magnet linear generators
[12] to electromagnetic problems [13].

A very recent trend of the application of EAs in electromag-
netic is the design of all the optimization environment: this
can take into account the use of surrogate models, of several
optimization strategies and it can give very good performance
in terms of convergence rate and accuracy of the final solution.
The System-by-Design approach is one of the most applied
in antenna optimization [14], [15]. For what concerns multi-
objective optimization problems in antenna design, they are
often faced with different EAs, like PSO [16] or GA [17]

In this paper the optimization of a planar sparse array
is faced using Social Network Optimization. The problem
has been formulated with two objectives and it has been
faced with three different approaches: the first one is the
solution of several scalarized problems, the second one is the
epsilon constrained method in which many constrained single
objective problem are solved and, finally, the last approach is
the contemporaneous search of the entire non-dominated set.

The paper is organized as follows: Section II contains a
description of SNO and its modification for multi-objective
problems. This implementation has been also preliminary
tested on three standard multi-objective benchmarks in Section
1.

In Section IV the two approaches to multi-objective prob-
lems used in this paper are described and in Section SNO
has been tested on In Section V the optimization antenna
problem is described, the objectives defined and the results of
the optimization by means of SNO are shown and compared.
Finally, in Section VI some conclusions are drawn.



II. SOCIAL NETWORK OPTIMIZATION

Social Network Optimization (SNO) is a population-based
Evolutionary Optimization Algorithm that takes its inspiration
from the idea sharing mechanism of online social networks.

The basic data structure of SNO is the social network, the
virtual space in which the interactions take place and in which
people exchange ideas and opinions. It contains the two basic
elements: the users, that is the population of the algorithm,
and the posts, that are the structures that drive the interaction
between users. The population size of the algorithm is the
number of users in the Social Networks.

At each iteration, the users express their opinions by means
of posts. Each post contained the status, that is the real post
content, the name of the user that have posted it, the time in
which it is posted and a visibility value.

The process of passing from opinions to a post status is
called linguistic transposition. In the basic implementation of
SNO it is a gaussian mutation of the opinion vector.

The status correspond to the candidate solution of the
optimization problem, while the visibility value is created by
means of a proper mapping of the cost function associated to
the specific candidate solution, as shown in Figure 1.
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Fig. 1. Schematization of the basic interaction between SNO and the
optimization problem.

The visibility values of the entire population are used to
update the reputations of all the users of the social network.
This operation transfers global information among the entire
population.

The reputations are used for creating one of the two
interaction structures of SNO: the trust network.
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Fig. 2. Schematization of the process of reputation update and creation of
trust network.

The second interaction network is the friend network. These
two networks are very different one from the other: friend
network leads to more consistent interactions, its variability
is lower and its modifications are related to out-of-the-social
elements. On the other hand, trust network creates weaker
connections, it varies fast and it it modified according to the
visibility values.

From the interaction networks each user extracts some ideas
that composed the attraction point that is used for composing
the new opinions. The operator implemented emulates the
assumption of a complex contagion, that guarantees a better
tradeoff between exploration of the domain and the exploita-
tion of the acquired knowledge:

0,(t+ 1) =0,(t) + afo,(t) — 0, (t — 1)]+

+ Blau(t) —ou(t)] (1)

0, is the opinion of the u-th member of the social network
and it is function of the iteration, and a,, is its desired option.
« and (8 are two user-defined parameters.
This equation has been modified for the binary implemen-
tation using logical operators:
0,(t+1) =0,(t) Bw O [0,(t) ®0,(t — 1)
Dl a,(t)®o,(t)] (2)

where © represents the and, @ the or and ® is the operator
zor. w, c¢ are random vectors of 1s and Os where the proba-
bility of 1 is given by the user-defined parameters o and f.

All these operators makes SNO a quite complex algorithm,
but they give to it the possibility to work very well in different
kind of problems.

For example, it has been tested on the design of a thinned
array antenna [8], on the design of beam scanning reflectarray
[18], and on the design of a tubular permanent magnet linear
generator [12].

The structure of SNO can be easily extended to multi-
objective functions: in fact, just two modifications can be done
for obtaining a very effective algorithm. The first one is the
selection of the influencers in peer and trust groups, that is
performed with a non-linear selection based on a scalarization
of the cost values. The second one is the selection criterion
for the Social Network: in this case, the solutions have been
selected according to the dominance rank and with a greedy
algorithm for maximising the crowding distance [19].

In the following Section, the performance of the multi-
objective implementation of SNO is tested on some standard
benchmarks.

III. SNO TEST ON MULTI-OBJECTIVE PROBLEMS

For analysing the optimization capabilities of SNO in multi-
objective problems, three standard benchmarks have been here
used [20], [21]: the Fonseca-Fleming, the ZDT1, and the ZDT3
functions. Using these benchmarks, SNO has been compared
with two state-of-the-art multi-objective optimization algo-
rithms: the VEGA [22] and the NSGA-II [23].



VEGA 3
NSGA-II
SNO

Distance from true set
3
W

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

5}

VEGA
NSGA-1I
SNO

Diversity
°
@

3000 4000 5000 6000 7000 8000 9000 10000
Objective function calls

0
0 1000 2000

(a) Convergence curves

1

"

LY

0.9

0.8

0.7

0.6

| a2 %ep o %

0.5

0.4

0.3

02t True set J

® VEGA
NSGA-II

01 &  moSNO

0

0 0.1 02 03 04 05 06 07 08 09 1

(b) Non-dominated sets

Fig. 3. Results of the optimization of Fonseca-Flaming function: convergence curves (a) and best non-dominated set (b).
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Fig. 4. Results of the optimization of Zitzler-Deb-Thiele’s function 1: convergence curves (a) and best non-dominated set (b).

The solutions obtained have been compared according to
two quantitative criteria: the first one is the distance from
the true set, while the second is the diversity; both these two
metrics have been implemented as described in [24].

Figure 3 shows the results on the Fonseca-Flaming function.
In the convergence curves, the thick line is the average value
of 50 independent trials and the thin one the best trial. In
this function the NSGA-II has the best optimal solution, but
the average convergence of SNO is much better, showing the
reliability of this algorithm.

In ZDT1 function (Figure 4), the quality of the solution of
SNO is really clear, for both the distance from the true non-
dominated set and for the distribution of the solutions on it.

Same considerations can be done on the ZDT3 function
(Figure 5) in which SNO shows its capabilities to find also
discontinuous sets.

These results have proven the performance of SNO on some
standard benchmarks, in the next section the results of the
optimization of the sparse array will be shown.

IV. APPROACHES TO MULTI-OBJECTIVE OPTIMIZATION

Multi objective problems are defined as the simultaneous
solution of a set of problems [25]. The aim of this kind of
problems is the identification of the Pareto front.

Many classical methods are used to solve this kind of
problem. The most commons are the weighted sum method
and the epsilon-constraint methods. In both, the Pareto set
is reconstructed repeating several times a single objective
optimization problem: the solution of each of these problems
is one of the points of the non-dominated set.

The weighted sum method solves several single objective
problems in which the original performance parameters f;(x)
are combined in a single cost value:

NP
co(x) =D Nifi(x) 3)
i=1
where )\; are several scalarization parameters and N, is the
number of performance parameters.
On the other hand, the epsilon constrained problems solves
a single objective problem in which the cost is one of the
performance parameters and the other are used as constraints.
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Fig. 5. Results of the optimization of Zitzler-Deb-Thiele’s function 3: convergence curves (a) and best non-dominated set (b).

There are several disadvantages to these approaches, but
the most critical one is that they require the solution of a
very large number of scalar problems for finding the entire
non-dominated set, especially in problems with more than two
objectives.

EAs provide the possibility to have a simultaneous search in
which the output of the optimizer is directly the non-dominated
set.

All these three approaches are used in the next Section for
solving the sparse array problem.

V. SPARSE ARRAY OPTIMIZATION

In this section, the two methods described above will be
applied to the optimization of the array factor of a sparse
array.

A. Problem and objectives definition

In this section, the test case used to compare the two
approaches to multi-objective optimization by means of SNO
will be briefly described.

This problem is the optimization of the array factor of a
sparse array compose by a grid on 12 x 12 equal elements
in fixed position that can be turned on or off. Thus, it is
represented in the optimization frame as a set of boolean
variables that represent the presence or the absence of the
radiating element. The optimizer output is a candidate solution
with 144 elements that can be 0 or 1. The array factor has been
calculated accordingly to [26].

Given this data and knowing the position of the elements
turned on, it is possible to evaluate the array factor by means
of array theory as:

AF = Z Ze2j7rduk(k—1) . erﬂ'dvl(l—l) 4)
k l

where v and u indicates the position of the element in the
array. in the following manner:

u; = sin @; - cos ¢; (@)

v; = sind; - sin ¢; (6)
The two objective functions that should minimized are:

{ fi(x)=SLL
f2(x) =N

where SLL is the maximum values of the side lobe levels and
N is the number of elements in the array.

Due to the fact that the SLL objective shows an hard
convergence even solved alone, the first objective has been
implemented in the optimization process using a slightly
different approach: in fact, the minimization of the SLL has
been associated with the minimization of the radiation pattern
exceeding a mask with SLL equal to -20dB.

While dealing with multi-objective optimization problems,
it is important to verify that the objectives are really conflicting
and not linearly correlated otherwise the problem can be
rephrased in a single objective problem. To assess this point,
10,000 random points have been selected and evaluated.

To analyse the relation between the two objective, the
Pearson correlation coefficient has been evaluated: the linear
correlation coefficient is —0.17 and the p-value is 8.52-10737.
The p-value is almost zero: it means that the hypothesis of a
linear correlation between the variables is false, so the problem
cannot be simplified as a single-objective problems.

In the following, the single objective problem composed
by only the function f; has been analysed. Then the three
methods for finding the non-dominated set have been tested
and compared.

)

B. Solution of a single-objective problem

As a first analysis of the problem, the single objective
formulation with cost function f; has been solved using SNO.
5,000 objective function calls has been set as the termination
criterion and 20 independent trials have been performed.

Figure 6 shows the convergence curves of SNO: from these
curves, it is possible to see that the algorithm has a very stable
behaviour and its results are reliable.
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Fig. 6. Pareto front sound by the weighted sum method: each dot correspond
to a solution found by SNO and the bigger dots are the non-dominated set.

This is an important aspect for computationally intensive
problems because it means that a lower number of independent
trials are required for assessing the final solution. Moreover,
it shows the capabilities of SNO in solving the sparse array
design.

C. Weighted sum method

The first method used for solving the multi-objective prob-
lem is the weighted sum method. As described before, in this
approach the two objectives have been combined in a single
cost value by means of a scalarization coefficient.

In this problem, 36 scalarization coefficients have been
used for solving the entire non-dominated set: they have been
extracted uniformly from the interval [0.5, 1].

Each problem has been solved with SNO: the termination
criterion has been set to 5,000 objective function calls and
20 independent trials have been performed for each scalar
coefficient.

Figure 7 shows results of this optimization process: each
dot correspond to a solution found by SNO and the bigger
dots are the non-dominated set.

From this Figure, it is possible to see that with the scalar-
ization method is not possible to find a solution with less than
12 elements having a SLL reduction: this is due to the fact
that the antenna becomes too small.

It is possible to achieve -10dB of SLL reduction with
32 elements, for obtaining -15dB it is required to have 48
elements while it is not possible to achieve -20dB with less
than 104 elements.

D. Epsilon constrained method

The second method implemented is the epsilon constrained
method: in this approach, SNO has been used for solving a
set of scalar problems in f; with a constrain on the maximum
number of radiating elements (that are the function f5).

Due to the symmetries of the problem, 36 constrained
single-objective problems have been considered. Also in this
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Fig. 7. Pareto front sound by the weighted sum method: each dot correspond
to a solution found by SNO and the bigger dots are the non-dominated set.

case, the termination criterion of SNO has been set to 5,000
objective function calls and 20 independent trials have been
performed.

Figure 8 shows results of this optimization process: each
dot correspond to a solution found by SNO and the bigger
dots are the non-dominated set.

120

MNumber of elements

20 -18 16 -14 12 10 B8 5 -4 -2 0
SLL reduction

Fig. 8. Pareto front sound by the epsilon constrained method: each dot
correspond to a solution found by SNO and the bigger dots are the non-
dominated set.

This Pareto front is quite similar to the one obtained with
the weighted sum method, but in this case the points are more
equally distributed among the front.

In particular, it is possible to notice that it is able to find
a solution on the pareto set with 8 elements. As seen in the
previous non-dominated set, -10dB can be obtained with 32
elements, while in this case -15dB can be obtained with no
less than 56 elements. The solution with -20dB of SLL is the
same seen before.



E. Simultaneous search

Finally, the simultaneous search of the pareto front with
multi-objective SNO has been approached. 20 independent
trials have been done 150,000 fitness function calls. The
population of SNO has been set to 200 individuals, resulting
in 750 iterations of optimization.

The time required by this search is comparable to the
previous methods, and the final non-dominated set is shown
in Figure 9
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Fig. 9. Results of the simultaneous solution of the multi-objective problem.

The diversity of the non-dominated set is very good, even
if the reduction of the SLL is not as good as in the previous
optimization. This is due to the fact that the pressure toward
the SLL minimization is reduced with respect to standard
SNO. This behaviour can be shown better in the following, in
which the comparison between the three approaches is shown.

FE. Comparison between the approaches and solution analysis

In this Section, the three methods are compared and some
of the solutions found are compared.
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Fig. 10. Comparison between the two Pareto fronts.

Figure 10 shows the three non-dominated sets in the same
plot. In this way, the comparison is very easy.

The distribution of the solutions is very good for all the
three methods: the simultaneous search has more points in the
front because it has no constraint on the number of solutions.

The weighted sum method is generally better than the
others in reducing the SLL, even if it often coincide with
the epsilon constrained for high number of elements in the
antenna. As said also before, the simultaneous search has
lower performance.
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Fig. 11. Analysis of the solution found in the pareto front with -10dB SLL.

Three different solutions have been analysed from the pareto
front: the first one, shown in Figure 11 shows the solution with
SLL equal to -10dB. In the figure, it is possible to see the 3D
radiation pattern, the disposition of the elements of the array
and the two principal planes: here, the red dashed line is the
mask used for improving the convergence, while the grey line
is the SLL.

Figure 12 shows other two solutions: the one with -15dB
obtained with the scalarization method and the solution with
SLL -20dB.

VI. CONCLUSIONS

In this paper, three approaches to multi-objective formula-
tion of the problem of sparse array design are tested using
Social Network Optimization. The first two methods (the
weighted sum and the epsilon constrained) are based on the
solution of scalar single-objective problems, while the third is
based on the simultaneous search of the entire pareto front.

The test performed on standard benchmarks shows that
the multi-objective formulation of SNO is capable to find
effectively pareto fronts, but in the application to the thinned
array problem the solution is not very effective: this means that
the operators of this algorithms should be further improved for
multi-objective problems in which one of the two objectives
is much simpler than the other.
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