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Abstract—Exploiting patterns within a solution or reusing
certain functionality is often necessary to solve certain prob-
lems. This paper proposes a new method for identifying useful
modules. Modules are only considered if they are prevalent in
the population and they are seen to have a positive effect on an
individual’s fitness. This is achieved by finding the covariance of
an individual’s fitness with the presence of a particular subtree
in the overall expression.

While there are many successful systems that dynamically
add modules during Genetic Programming (GP) runs, doing so
is not trivial for Grammatical Evolution (GE), due to the fact
that it employs a mapping process to produce individuals from
binary strings, which makes it difficult to dynamically change
the mapping process during a run.

We adopt a multi-run approach which only has a single stage
of module addition to mitigate the problems associated with
continuously adding newly found functionality to a grammar.
Based on the well-known Price Equation, our system explores
the covariance between traits to identify useful modules, which
are added to the grammar, before the system is restarted. Gram-
mar Augmentation through Module Encapsulation (GAME) was
tested on seven problems from three different domains and was
observed to significantly improve the performance on 3 problems
and never showing harmful effects on any problem. GAME found
the best individual in 6 of the 7 experiments.

Index Terms—Grammatical evolution, Modularity, Encapsula-
tion

I. INTRODUCTION

Many problems involve patterns, repeating structures or
necessary components to be present in order to obtain their
solutions. A human programmer will often write classes or
functions and repeatedly use them to solve a problem. GP [1]
is an evolutionary computation (EC) [2] technique for evolving
computer programs and, therefore, a principal goal of GP has
been to devise procedures to identify these structures or build-
ing blocks (typically in the form of sub-trees) and investigate
how to best utilise them and protect them from the potentially
harmful effects of the evolutionary procedures of crossover and
mutation. Pinpointing and exploiting this modularity has been
shown to greatly increase the effectiveness in finding solutions
and has become a necessary feature to solve some problems
in automatic programming [3].

However, the benefits of subtree discovery are not limited
to finding optimum solutions. They have also been shown
to reduce bloat in final programs, mitigate bias and as a

means to transfer knowledge from one problem to another in
the same domain. This would reduce the need for processes
such as post-run intron removal [4]. More recently it has
been put forward as a key ingredient for GP to enter the
domain of model interpretability, a field of growing interest
in academia, governance and business, and of which there has
been very little written to date in GP or EC in general [5].
Decomposability, the capacity to fragment a large solution into
smaller pieces, has been highlighted as a very desirable trait
of any explainable model [6]. Thus, perhaps unique to this
domain, identification of these subprograms or routines both
helps in the search for the best program while also potentially
boosting the interpretability of the solution generated.

Grammatical Evolution (GE) [7] is another very popu-
lar evolutionary computation search technique which uses a
grammar, generally a context free grammar (CFG) written in
Backus-Naur form (BNF), to find syntactically correct exe-
cutable programs which solve a given problem. GE individuals
are binary strings which are mapped onto derivation trees using
the grammar, [8], so the search operators are performed on the
strings, like standard genetic algorithms (GAs), and not the
actual programs. This separation between the search space, at
the genome level, and the program space, at the phenotype
level, is seen as one of GE’s many advantages over regular
GP as it greatly simplifies the search operation and makes the
addition of other search techniques, such as particle swarm [9],
possible. One of the most desirable and important advantages
GE has over other search techniques is its ability to produce
programs for any arbitrary language.

Many approaches for identifying useful modularity rely
on the evolution itself to find useful substructures [3]. The
hypothesis being if a particular subtree exists in many solutions
it must be useful, however, for many techniques the best
selection method for finding subtrees has been random choice.

This paper introduces a novel approach to subtree identifi-
cation. The selection procedure assigns a fitness to a subtree
by finding its frequency in the population. If the covariance
between the subtree being present in a full tree and the full
tree’s fitness is negative this fitness is changed to 0. Covariance
takes into account both the fitness of the trees it is present
in but also the fitness of the tree it does not appear in. This
approach, uniquely, would also allow for the identification and
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removal of harmful substructures in the population. In the case
of GE, this could mean the complete removal of a terminal
from the grammar.

The separation between the search and program space
can mean the genetic operators are particularly destructive
to expressions in GE. This phenomenon is known as ripple
crossover [10] and creates a further imperative to encapsulate
and save useful functionality once it is found. This creates
difficulties when new terminals (in the shape of encapsulated
sub-trees) are added to the grammar, specifically, the meaning
of codons may change when an individual is remapped.
The previous attempt at GE encapsulation overcame this by
implementing two new procedures [11]:

• keeping the genotype the same and remapping to new
trees using the new grammar;

• keeping the same tree and repairing the genotype to return
this tree using the new grammar.

Our approach overcomes the need for remap and repair by
adopting a multi-run method, inspired by a similar approach
in GP [12]. Not only does it reduce the complexity of
implementation but, importantly, it also guarantees valuable
information found during the run is not needlessly lost through
regular remap or repair.

The many successful applications of GE have been well
documented in the past but the motivation in this paper is
to further highlight its potential in the area of automatic
programming, an area of criticism of GP/GE recently [13].
This paper creates a new module identification technique
which contains a more controlled method for selection inspired
by biological evolution, further enhancing the capabilities of
artificial evolution.

The paper is structured as follows: section 2 gives back-
ground on the various attempts at module discovery in GP and
GE, section 3 details our new method and sections 4 and 5
give the details and results of our experiments and discussion.

II. BACKGROUND

The identification, storage and reuse of useful functionality
has been a key challenge in GP for many years. The most well
known of these methods was pioneered by Koza [14], which
he named Automatically Defined Functions (ADFs). The aim
was to find reusable, parameterised subprograms during a GP
run which can exploit the regularity in a problem to help solve
it. They have been shown to greatly increase the power of GP
when they are equipped.

Module Acquisition (MA) [15] and Subtree Encapsulation
(SE) [16] are other popular variants of this concept. Subtrees
of a larger expression are collapsed, their output stored and
represented as a node in the program tree. In MA this
process is known as compression while it is referred to as
encapsulation in SE. Both highlight how fruitful the addition
of modules can be.

Adaptive Representation Through Learning (ARTL) [17]
was introduced to overcome the perceived limitations of ADFs
and MA. ADFs are randomly modified through crossover and
MA randomly select subtrees for compression, which can lead

to many redundant or useless modules being created. ARTL
tries to find helpful functionality by giving blocks of code a
fitness, specified by the user. This enables the system to find
good routines.

Run Transferable Libraries (RTL) [18], are a sub-process
and exploitation algorithm. They were originally used to
pass knowledge fragments from one GP run to another by
discovering useful domain functionality [19]. These fragments
are stored in a library and reused in subsequent experiments.
It has also been used to fight against premature convergence in
GP [20]. The elements of the library are simple tree structures,
which could be set to be a maximum depth and arity. It is
also possible to incorporate some domain knowledge into the
library, as they can be seeded with functionality known to be
useful [21].

There have previously been attempts to exploit modularity
in GE. An early investigation was undertaken by the inventors
of GE [22]. In a similar approach to Koza’s ADF’s, they
introduce a parameterised function which is evolved by a
grammar alongside and may be used in the main program.
The program may recursively call this ADF. This approach
showed improvement over standard GE, solving their problem
in 100% of runs while standard GE only found the solution
in 35% of runs.

Dynamically defined functions were next proposed by [23].
As the name suggests the user does not need to specify any
architecture or constraints as they are found during the run.
They showed that this approach out performed both GE and
GE equipped with ADFs.

The most comprehensive work done on modularity in GE
is seen in [11], [24], [25]. They introduce a novel context
aware subtree selection procedure, inspired by context aware
mutation [26]. A random node is chosen and everything below
it encapsulated. Randomly created subtrees replace it in the
tree and the tree’s fitness recalculated. If the fitness of the
tree, including the selected subtree, is better than 70% of
the random subtrees which replaced it, it is deemed useful
and added to a library. The grammar is augmented with
these subtrees, with a maximum of 20 added at a time.
This procedure is repeated and the library updated at defined
generation steps.

Due to the unique separation between the genotype and the
actual executed program, simply adding the new subtrees into
the grammar is not a trivial task. The addition of even a single
extra non-terminal or production rule can have severe effects
on the current genotype-phenotype mapping. To overcome this
[11] introduce a repair operator which maps the phenotype
back to a new genotype using the update grammar. That is
to say, this operator returns the identical population of pheno-
types, not genotypes, before grammar augmentation occurred.

III. METHOD

The aim of this work is to investigate a new method of
subtree identification in GE and explore its effect on GE’s
performance across a variety of problem types.



The main issues associated with module encapsulation are
the high number of non-useful or potential harmful subtrees
which are encapsulated. In GE there is also the harm caused by
the addition of modules into the grammar due to the mapping
and sizeable effort needed to reduce or mitigate this.

Multi-run subtree encapsulation (MRSE) offers a potential
solution to this second problem [12]. MRSE is an extension
of SE which encapsulates subtrees across numerous, parallel
runs. It splits the run into two parts, the first part searches for
subtrees to encapsulate and the second part is a regular GP
run with the ability to use the subtrees encapsulated in the
first part. An example run may look like:

1) Run GP for 5 generations
2) Encapsulate subtrees
3) Add new subtrees to terminal set
4) Initiate new GP run
5) Run until stopping criteria
This allows the system to best take advantage of the early

gains in fitness often seen at the start of evolutionary runs.
An approach such as this would suit GE, because a new
population is initialised after the modules have been added
to terminal set, so the problems associated with augmenting
the grammar would disappear as would the need to repair
existing individuals. A multi run approach which re-initialises
the population means no extra care in grammar construction
is needed, the modules are simply added to the grammar as
any other terminal would be.

The proposed system, GAME, also goes one step further
and attempts to project what traits are likely to be important
in future generations. This is achieved by considering the
Price equation, a mathematical equation used to describe
generational changes in populations [27].

The Price equation states:

∆zi ∝ cov(wi, zi) (1)

where ∆z is the change in the average frequency a trait
present in the population, wi is the fitness of the individual
and zi is the trait. Covariance is a measure of the relationship
between two variables. The sign of the covariance indicates
the whether this relationship is positive (cov > 0) or negative
(cov < 0). According to the Price equation, if the covariance
between some trait (subtrees in our case) and fitness is positive
the amount of that trait in the future generations is expected to
increase. Conversely, if the covariance is negative we expect
that trait to disappear.

We therefore define fitness of some subtree, or module, x,
where wi is the fitness of each expression and zi is the number
of times the subtree x appears in the expression, as:

fitness =

{
0 cov(wi, zi) < 0

Freq of x
Total Expressions cov(wi, zi) ≥ 0

Ranking trees in this way also leads to possible identifi-
cation of harmful subtrees. Subtrees with high frequency but
very negative covariance may be structures that need removal.

< exp >::= < exp > ∗ < exp > | < exp > / < exp > |
< exp > + < exp > | < exp > − < exp > |
x | − 1 | 1

Figure 1: Grammar before augmentation

< exp >::= < exp > ∗ < exp > | < exp > / < exp > |
< exp > + < exp > | < exp > − < exp > |
x | − 1 | 1| < encap >

< encap >::=Module0|Module1....|Module15

Figure 2: Grammar after augmentation

That investigation will not be in the scope of this paper, as
we focus only on positive covariance for now, but future work
discusses some of the implications and advantages of this.

The process of adding the newly encapsulated functionality
to the grammar is quite simple. A new non-terminal is created
and each rule within this is a subtree. An example basic
grammar is seen in Figure 1. A grammar which has been
augmented with subtrees is seen in Figure 2.

IV. EXPERIMENTS

The goal of these experiments was to investigate if this new
subtree encapsulation method would improve the performance
of a GE run on a selection of problems. The subtree iden-
tification and grammar augmentation process is as follows:
The population of individuals across 30 parallel runs is first
initialised and evolved for 5 generations, as would occur in
standard GE. Running 30 parallel experiments and combining
them after 5 generations was found to produce fitter and
more diverse subtrees that running 1 experiment of 30x500
individuals for 5 generations.

After 5 generations the evolution is stopped and the popula-
tions from all 30 runs are amalgamated. The individuals of this
new, large population, are broken up and every possible subtree
greater than depth 0 isolated. The frequency and the covariance
between the frequency of that subtree in an individual and that
individual’s fitness is calculated. Only subtrees with a positive
covariance and frequency above 2 are selected.

To identify functionally identical but morphologically differ-
ent subtrees, the remaining subtrees are then quickly tested, by
considering them as complete individuals, on a sample of 10
test points and subtrees with identical semantics are grouped
together. The smallest subtree in this group is then added as the
representative of this group. Subtrees which return constants
were also omitted from encapsulation. There is much work
in constant creation in GE [28], and this is a future avenue
for research on different problems, but was omitted from this
work.

A maximum of 15 modules, those with the highest fitness,
are added to the grammar so as to not bloat the grammar exces-
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Figure 3: The multi-run grammar augmentation process

sively. The remaining modules are discarded. 15 was chosen to
be consistent with [24] but future work will consider different
numbers, including dynamically selecting a number based on
problem/grammar size or complexity. After the subtrees are
added to the grammar the populations are reinitialised in the
independent runs and allowed evolve for the remaining 45
generations. An illustration of this scheme is seen in Figure
3.

Seven benchmark problems were chosen from the literature;
four symbolic regression problems (Kepler’s Law, Quintic
Polynomial and two taken from [29], Keijzer-6 and Nguyen-
7), one classification (Intertwined Spirals) and two navigation
tasks (Santa Fe and Los Altos Ant Trails). The experimental
set up for each problem is seen in Table 1. Due to the relative
simplicity of the Kepler’s Law problem, an additional, random
variable was added to the terminal set in order to increase the
complexity of the problem. The fitness score for the symbolic
regression problems is 1/(Error + 1). The maximum fitness
for the Santa Fe Ant Trail, Los Altos Ant Trail and Intertwined
Spirals is 89, 157 and 194, respectively.

Table I: GE experimental setup

Parameter Value
Runs 30
Total Generations 50
Gens before Encapsulation 5
Population 500 (100 for Ant Trails)
Selection Tournament
Crossover 0.9 (Effective)
Mutation 0.01
Elitism Yes
Initialisation Sensible

V. RESULTS

The results from the experiments are seen in Figures 4-7
and a summary of the results in Table 2. Figures 4-6 show the
evolution of the best individual found, averaged per run. GE
with GAME was never significantly outperformed by standard
GE in any experiment; and standard GE was only able to find a
better solution than GE with GAME in one problem, Keijzer-6,
although GE with GAME achieved a higher mean final fitness
for that problem. Neither approach found the global maximum
in any run of that experiment. The Kepler’s law problem shows

drastic improvement with both the Quintic Polynomial and
Los Altos Ant Trail also undergoing significant improvements
in performance. The introduction of the modules immediately
solved the problem for every run of Kepler’s Law, where
previously only 23/30 runs had found the solution. GE with
GAME found the global optimum for the Quintic Polynomial
where standard GE was unable to. The Los Altos Ant Trail
saw an increase in the best individual from 105 to 110 with the
introduction of the subtrees. A small improvement was seen
in the Intertwined spirals problem, with an increase in mean
final fitness from 119.7 to 121.1 and best fitness from 127 to
142. However, neither technique was able to find a solution to
correctly class every point in the two spirals.
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Figure 4: Results of the Keijzer-6 experiment, GE (black
squares) and GE with GAME (red circles)

There was no significant difference between GE with gram-
mar augmentation and GE in the Santa Fe Ant Trail: standard
GE solved the maze in 18/30 runs, while GE with GAME
solved the maze 20/30 times. Mean final fitness was nearly
identical, 84.4 and 84.2 respectively.

Keijzer-6, Quintic Polynomial, Nguyen-7 and the Santa Fe
problem all exhibit a drop of fitness at generation 5 caused
by the grammar augmentation and re-initialisation, a trend
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Figure 5: Results of the Kepler’s Law and Quintic Polynomial experiments. Each problem was run on GE (black squares) and
GE with GAME (red circles).

Table II: Experimental Results

Problem Experiment Mean Final Fitness Found Global Optimum p-value

Keijzer-6: GE 0.562 0 (Best 0.817) 0.61∑x
i

1
i

GE & GAME 0.604 0 (Best 0.808)
Kepler’s Law GE 0.884 23 <0.01

GE & GAME 1.0 30
Quintic Polynomial: GE 0.626 0 (Best 0.808) <0.01

x5 − 2x3 + x GE & GAME 0.773 1
Nguyen-7: GE 0.954 0 (Best 0.986) 0.79

log(x2 + 1) + log(x+ 1) GE & GAME 0.949 0 (Best 0.987)
Intertwined GE 119.7 0 (Best 127) 0.28

Spirals GE & GAME 121.1 0 (Best 142)
Santa Fe GE 84.4 18 0.82
Ant Trail GE & GAME 84.2 20
Los Altos GE 98.8 0 (Best 105) <0.01
Ant Trail GE & GAME 101.2 0 (Best 110)

observed in [11], as the population loses all the information it
has found when it is remapped to new individuals.

This loss of fitness highlights the problem with the con-
tinual augmentation of the grammar with new subtrees, the
destruction and loss of information already in the population.
However, the new populations and grammar recovered and
outperformed or performed as well as standard GE by the
final generation.

This new technique, adding frequently used subtrees tree
with positive covariance to the grammar, can have a very
positive effect on the outcome of a GE run. More work is
need on examining why it has a drastic positive effect on some
problems but a neutral effect on others.

Table 2 shows the summary of the experimental results. The
mean final fitness and number of times the global optimum was
found is shown for both regular GE and GE with GAME. If
neither technique was able to find the global optimum, the best
individual fitness from the 30 independent runs was reported.
The final column shows the results of significance tests for
the two techniques. Results highlighted in bold indicate a

statistically significant difference in the techniques. This shows
that GE with GAME significantly outperformed standard GE
on three of the problems and that there was no difference
on the others meaning that at it either helps or makes no
difference, but doesn’t ever harm GE.

VI. CONCLUSION & FUTURE WORK

Our proposed technique of module identification for GE
was investigated and the results highlighted the positive effect
it has on finding the problem’s solution. It was found to have
a very positive effect on three problems while never having a
harmful effect on any of the problems examined. Next steps
will involve benchmarking our system against other attempts
at module encapsulation in GE, although this is a non-trivial
task as previous methods are not freely available. Our system,
which is integrated into an existing popular GE system, will
be made available online upon publication.

The usefulness of the modules chosen in this new approach
must be investigated to see if it does indeed reduce the number
of useless modules chosen. Only taking subtrees from the
highest performing independent runs or individuals seen to be



0 10 20 30 40 50

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Generation

F
itn
e
ss

GE
GE+GAME

(a) Nguyen-7

0 10 20 30 40 50

1
1
5

11
6

1
1
7

1
18

1
1
9

1
2
0

1
2
1

1
2
2

Generation

F
itn
e
ss

GE
GE+GAME

(b) Intertwined Spirals

Figure 6: Results of the Nguyen-7 and Intertwined Spirals experiments. Each problem was run on GE (black squares) and GE
with Grammar Augmentation (red circles).
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Figure 7: Results of the two navigation experiments, Santa Fe and Los Altos ant trails. Each problem was run on GE (black
squares) and GE with GAME (red circles).

very fit is another possibility. GE can produce programs in any
arbitrary language, looking into which types of representation
are best suited to this new approach is also an avenue for
research.

Once modules are added to the grammar they are unable
to be altered. Adding the ability for these to be mutated, or
indeed removed, in future generations or multi-run stages is
another area to be investigated.

This paper attempted identify modules which were useful
in finding the optimal solution for the problems considered,
not in identifying modules which are reused. Running this
technique on problems which require reuse, such as program
synthesis, rather than symbolic regression or classification is
another interesting avenue for future work.

Adding modules while at the same time pruning sub-

trees/terminals from the grammar would no longer fall in
the domain of module acquisition and instead be somewhere
between automatic grammar design and encapsulation [30].
Removing terminals from the grammar would not help guide
the search but would instead reshape the search space. This
comes with many other considerations and will be outside
the scope of this paper, but does leave open an intriguing
possibility.

It is also possible that this technique could be used in
conjunction with a probabilistic CFG to tune the probabilities
or in conjunction with an attribute grammar to tune or create
new attributes.
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