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Abstract—In the Particle Swarm Optimization (PSO) method,
the behavior of particles depends on movement parameters.
Effective application of the PSO method in real-world problems
requires stable behavior of particles in the swarm. In the stochas-
tic particle stability analysis, recurrent formulas of expected value
and variance of particle location are used. An explicit formula
for the variance can also be obtained, however, it cannot be
applied in practice due to its complexity. In our research, we
propose assumptions guaranteeing a simple explicit formula for
location variance. For the formula and given assumptions, we
show stability areas in the particle configuration space, which
guarantee order-2* stability of particles also for probability
distributions of movement parameters other than uniform. The
areas are verified in simulations.

Index Terms—Particle Swarm Optimization, PSO with inertia
weight, order−2 stability, stagnation

I. INTRODUCTION

Particle Swarm Optimization belongs to a family of modern
heuristic techniques of optimization. It is a population-based
stochastic method developed in [1] and originally addressed
to the problems of numerical optimization. For the last twenty
years, PSO has been successfully applied to solve numerous
real-world optimization problems. The growing popularity of
the method started to be accompanied by the appearance of
alterations proposed to PSO algorithms aimed to improve its
performance and control. One of the versions, namely PSO
with inertia weight (IPSO), became a subject of particular
interest, both in the domain of applications and theoretical
analysis of its properties and behavior.

The PSO behavior depends on values assigned to its control
parameters. Early works about PSO reported that the system
was prone to entering a state of explosion, where incorrect
parameter settings caused velocities and thus particle posi-
tions to increase rapidly, approaching infinity. The convergent
behavior of particles has a significant impact on algorithm
performance. For example, in [2], for a wide range of test
cases, the authors experimentally showed that swarms with
unstable parameter configurations perform worse than random
search. Therefore, analysis of swarm and particle convergence,
stagnation, and stability conditions having regard to the values
of the parameters remains vital.

In the presented research, we focus mainly on particle
convergence in the stochastic model of the IPSO particles.

Specifically, we study the particle location’s variance. Under
some reasonable assumptions, we obtain a simple explicit
formula for the second moment of particle’s location in the
stochastic model. Then we directly apply the formula to
investigate and visualize stability areas in the particle’s config-
uration space. Finally, we empirically confirm the theoretical
findings of this paper in simulations.

The text consists of 7 sections. Section II presents a brief
review of selected areas of PSO theoretical analysis concerning
stability in the PSO method with inertia weight (IPSO). In
Section III, a stochastic model of the particle movement
is recalled, and an analysis of the model is conducted. In
Section IV, under some assumptions, an explicit formula for
particle location’s variance is obtained. In section V the for-
mula is used to derive and visualize stability areas with respect
to inertia weight and acceleration coefficients. In Section VI,
an experiment is set up, and simulations are conducted in
reference to the theoretical findings. Section VII summarizes
the presented research.

II. RELATED WORK

Particles are the primary elements of a swarm, each repre-
senting a certain proposition of a solution, intending to find an
optimal solution. Their movement can be generally described
by the equation

xi(t+ 1) = xi(t) + vi(t+ 1), (1)

where xi is the location of the particle, vi — velocity of the
particle.

The movements of a particle depend only on its velocity and
so-called attractors. The attractors represent locations where
good solutions have already been found by the particle itself
or other particles of the swarm. This is an analogy to, e.g.,
a bird flock, where individuals make their decisions based
on cognitive aspects (modeled by the influence of particle
attractors) and social aspects (modeled by the influence of the
swarm attractor). Each particle keeps track of the coordinates
in the search space, which are associated with the best solution
it has found so far. Another value that is tracked by each
particle is the best value obtained so far by the swarm.

At each iteration, the velocity of each particle is changed to-
wards the two attractors mentioned above: personal and global
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best locations. Also, some random component is incorporated
into the velocity update. In the case where the attractors remain
unchanged for a sufficiently long time, we talk about the so-
called stagnation. The swarm becomes stagnant when none of
the particles can find a better position anymore. As a direct
result, the swarm is not capable of further optimization.

When a particle no longer deviates from a particular solu-
tion, it reaches a so-called stable behavior, and thus we talk
about the stability of the particle. When the above situation
happens for every particle, then we talk about the stability of
the swarm.

Particle velocity is an essential factor to consider in terms of
swarm optimization. The velocity sets the size of consecutive
steps, thus influences the stability of particles and the swarm.
The decrease of the velocity is mandatory for a particle, and
thus a swarm, to stabilize. Lack of decrease and especially
uncontrolled velocity increase makes the particle unstable, or
in some cases, even explode.

The first stability analysis publications dates back to years
2002-2006, when the authors usually did not assume the
random behavior of the particles, thus agreeing on the deter-
ministic model. They defined stability as a simple convergence
of particle locations xt to a certain vector of constants y:

lim
t→∞

xt = y. (2)

In 2009, Poli [3] used the expected value of particle locations
and presented a new stability definition

lim
t→∞

E[xt] = y, (3)

which he named order-1 stability, or first-order stability.

Both Jiang [4] and Poli [3] agreed in their works that
the order-1 stability alone is not sufficient to ensure the
convergence of the particles’ locations. They correctly
observed that the variances of particles’ locations have to be
convergent as well. In 2007 Jiang came up with a following
condition:

lim
t→∞

E[xt − y]2 = 0, (4)

where y = limt→∞E[xt]. In 2009 Poli proposed another
condition for the convergence of variance:

lim
t→∞

E[xt]2 = β0, lim
t→∞

E[xtxt−1]2 = β1, (5)

where β0, β1 are vectors of constant values. Poli was also
the first to use the terminology of order-2 stability, or
second-order stability

The third proposition by Cleghorn, maybe the most intuitive
one, was proposed in [5]. It says that the variance of locations
of particles should be convergent, that is

lim
t→∞

V ar[xt] = β, (6)

where β is a vector of constant values. It is easy to imagine
the proposition above — particles converge to a point in
space and reach the stability only when they do not stray

away from that point too much anymore.

In [6], second-order stability is defined as:

lim
t→∞

V ar[xt] = 0. (7)

In contrary to the previous propositions, this one is much
stronger — convergence of the variance to zero forces the
particles to entirely seize their oscillating movement.

The first analysis of the variance convergence to zero
was carried out in [3]. It was shown that the only way
of reaching such state would be to associate the global
attractor y∗ with an individually found best solutions vector
y, or simply when y∗ = y (so called "weak stagnation
assumption"). More general results for second order stability,
including Bare Bones PSO, were obtained in [7]. Another
argument showing that the first-order and the second-order
stability do not imply the convergence of variance to zero
comes from [8]. The term of order-2* stability or second-
order stability with a star, to which we will relate in this
paper, was also used in [8].

A. Particle swarm optimization with inertia method

In the IPSO (Inertia Particle Swarm Optimization) method
movement of particles is described by the set of equalities{

vt+1 = w · vt + ϕt,1 ⊗ (yt − xt) + ϕt,2 ⊗ (y∗t − xt)
xt+1 = xt + vt+1,

(8)
where vt is a vector of particle velocities, xt is a vector of
particle locations, yt is the best location that the particle has
found so far, y∗t - the best location found by particles overall,
w is an inertia weight, ϕt,1 and ϕt,2 are random variables, ⊗
is a Hadamard product.

Furthermore, we assume ϕt,1 = Rt,1c1, ϕt,2 = Rt,2c2,
where c1, c2 are acceleration coefficients, Rt,1 and Rt,2 are
vectors of numbers generated from a uniform distribution
over an interval of [0, 1].

B. IPSO stability areas

The primary purpose of the inertia weight w is to help
control the velocities of the particles and to prevent the
swarm from exploding. Nevertheless, the coefficient itself
is not sufficient — an analysis of the behavior of the
swarm concerning all the particle parameters is required. In
other words, we need to establish a domain of parameters
guaranteeing a stable behavior of particles. In the further text,
we relate to such a domain as to the stability area.

1) Assumptions: In theoretical analysis of particle swarm
optimization the following assumptions are used:

a) Deterministic assumption [9]: ϕt,1 = Rt,1c1 = R1c1 =
ϕ1, ϕt,2 = Rt,2c2 = R2c2 = ϕ2 for all t,

b) Stagnation assumption [9]: yt = y, y∗t = y∗ for suffi-
ciently large t,



c) Weak chaotic assumption [10]: yt, y∗t will occupy an
arbitrarily large finite number of unique positions,

d) Weak stagnation assumption [11]: yit = y∗it for large
enough t, where i is an index of the particle, which has
found the best location of all particles,

e) Stagnant distribution assumption [6]: yit and y∗it are
random variables sampled from a fixed distribution and
have well-defined expected value and variance.

Notice that the objective behind the assumptions listed
above is to simplify PSO in order for the mathematical
analysis of its properties to become more approachable.

2) Stability under the deterministic assumptions: Defini-
tion (2) of stability in IPSO appeared in [12]–[14]. Under the
deterministic assumption each of authors consequently reached
a similar stability area:

0 < c1 + c2 < 2(1 + w), − 1 < w < 1 (9)

in [12], [13] and

0 < c1 + c2 < 2(1 + w), 0 < w < 1 (10)

in [14].

3) Order-1 stability: In 2009, Poli [3] used expected value
of particle locations to assess stability in IPSO:

lim
t→∞

E[xt] = y. (11)

He updated the stability area as well:

0 < E[ϕt,1] +E[ϕt,2] =
c1
2

+
c2
2
< 2(1 +w), − 1 < w < 1,

(12)
or, equivalently,

0 < c1 + c2 < 4(1 + w), − 1 < w < 1. (13)

Recall that c12 ,
c2
2 are expected values of ϕt,1, ϕt,2 respectively.

4) Order-2 stability: In 2007, Jiang presented condition (4)
together with the following stability area:

5c−
√

25c2 − 336c+ 576

24
< w <

5c+
√

25c2 − 336c+ 576

24
,

(14)
where c = c1 = c2. In 2009, Poli used condition (5), while
assuming c = c1 = c2, to reach another area

c <
12(1− w2)

7− 5w
. (15)

As shown in [11], (14) and (15) are in fact equivalent.

5) Order-2* stability: In [3] the following equation for
variance of each particle was derived:

V ar[xi] =
c(w + 1)

4c(5w − 7)− 48w2 + 48
(y∗i − yi)2 (16)

where c = c1 = c2. It follows that the limit of each particle
variance would be zero if and only if every particle should
find a global optimum (i.e. y = y∗). Similar conclusions were
made in [8].

III. IPSO STOCHASTIC MODEL STABILITY ANALYSIS

Effective analysis of the IPSO method requires additional
assumptions imposing constraints on the variability of attrac-
tors. The majority of theoretical research is based on several
variants of stagnation. In the analysis given below, we also
assume that personal and global attractors are held constant.

A. IPSO stochastic model

Let’s assume stagnation in IPSO method as defined in
subsection II-B1, point b). In this case the velocity equation
is as follows:

vt+1 = w · vt + ϕt,1 ⊗ (y− xt) + ϕt,2 ⊗ (y∗ − xt). (17)

Substituting vt+1 = xt+1 − xt:

xt+1−xt = w · (xt−xt−1)+ϕt,1⊗ (y−xt)+ϕt,2⊗ (y∗−xt),
(18)

xt+1 = xt+w·xt−(ϕt,1+ϕt,2)⊗xt−w·xt−1+ϕt,1⊗y+ϕt,2⊗y∗.
(19)

Furthermore, limiting (19) to a single dimension allows us to
rewrite it as

xt+1 = (1+w−ϕt,1−ϕt,2)xt−wxt−1+ϕt,1y+ϕt,2y
∗. (20)

In [14], it is shown that the equilibrium point for a particle
is a weighed average of y, y∗ and is equal to ϕ1y+ϕ2y

∗

ϕt,1+ϕt,2
.

Still, without loss of generality, we can assume y = y∗ and
reformulate (20) as

xt+1 = (1 + w− φt)xt − wxt−1 + φty, (21)

where φt = ϕt,1 + ϕt,2. From now on we will relate to
(21) as the stochastic model where xt is a random variable
representing particle location in time t.

B. Model analysis

Recall that w ∈ (−1, 1) (inertia weight) is a constant. We
also assume that random variables φt, for t = 1, 2, 3..., are
independent and identically distributed.

Let et = E[xt], mt = E[x2t ], ht = E[xtxt−1], f = E[φt],
g = E[φ2t ]. According to theory of probability, if X,Y are
independent random variables, then E[X · Y ] = E[X] ·E[Y ].
We should exercise this fact when applying the expected value
operator to both sides of equation (21):

et+1 = (1 + w − f)et − wet−1 + fy. (22)

Let’s then raise both sides of (21) to the second power:

x2t+1 =(1 + w + φt)
2x2t + w2x2t−1 + φ2ty

2

− 2(1 + w − φt)wxtxt−1
− 2wyφtxt−1 + 2yφt(1 + w − φt)xt

(23)

and again apply the expected value operator to both sides:

mt+1 =mt((1 + w)2 − 2(1 + w)f + g) +mt−1w
2

− ht2w(1 + w − f) + et2y(f(1 + w)− g)

− et−12wyf + y2g

(24)



Ultimately, let’s multiply both sides of equation (21) by xt

xt+1xt = (1 + w + φt)x
2
t − wxtxt−1 + φtyxt (25)

and apply the expected value operator to both sides for the
last time:

ht+1 = (1 + w − f)mt − wht + fyet. (26)

Let zt = (et, et−1,mt,mt−1, ht)
T . Equations (22), (24), (26)

can be collected and presented as

zt+1 = Mzt + b, (27)

where

M =


m1,1 −w 0 0 0

1 0 0 0 0
m3,1 m3,2 m3,3 w2 m3,5

0 0 1 0 0
fy 0 m5,3 0 −w

 , (28)

is a square matrix with terms of

m1,1 = 1 + w− f,
m3,1 = 2y(f(1 + w)− g),
m3,2 = −2wyf,
m3,3 = (1 + w)2 − 2(1 + w)f + g,
m3,5 = −2w(1 + w− f),
m5,3 = 1 + w− f

and b is a vector of free expressions:

b = (fy, 0, y2g, 0, 0)T . (29)

We will now show that without any loss of generality we can
assume y = 0. Notice that:

xt = xt − y + y = zt + y

for some zt ∈ R. Substituting into (21) we get

zt+1 + y = (1 + w− φt)(zt + y)− w(zt−1 + y) + φty,

zt+1 + y = (1 + w − φt)zt + y + wy − φty + wzt−1

− wy + φty, (30)

which evaluates to

zt+1 = (1 + w − φt)zt + wzt−1. (31)

A simple translation of xt by vector y can be always done,
hence the models described by (21) and (31) are equivalent.
Let’s set y = 0. It follows that b = 0 and

M =


m1,1 −w 0 0 0

1 0 0 0 0
0 0 m3,3 w2 m3,5

0 0 1 0 0
0 0 m5,3 0 −w

 , (32)

where

m1,1 = 1 + w− f,
m3,3 = (1 + w)2 − 2(1 + w)f + g,

m3,5 = −2w(1 + w− f),
m5,3 = 1 + w− f.

Observe that M is a block matrix. Let

M1 =

[
m1,1 −w

1 0

]
, M2 =

 m3,3 w2 m3,5

1 0 0
m5,3 0 −w

 .
(33)

The analysis of eigenvalues of matrix M1 is relatively simple
and was done in [15]. On the other hand, the analysis of
eigenvalues of matrix M2 is very complicated. Therefore, it
is justified to search for ways of making the analysis more
viable. One way is to make appropriate assumptions, and we
should choose this path in this paper.

IV. AN EXPLICIT FORMULA

The level of complexity of calculation of eigenvalues of the
matrix M2 is very high. Therefore, we look for assumptions or
any kind of relations that could simplify the analysis. Observe
the following elements of the matrix M2: m1,1,m3,5 and m5,3

have the same factor of 1 +w− f in common. Let’s consider
a relation f = w + 1. As w ∈ (−1, 1) and thus f ∈ (0, 2),
it implies that we do not stray away from the values of the
order-1 stable region: f = E[φ] < 2(w + 1) = 2f .

Let’s assume f = w+1. Eventually, we get m1,1 = m3,5 =
m5,3 = 0 and m3,3 = g − f2. We can also notice that
V ar[φt] = g − f2. Let’s set γ = V ar[φt]. Now:

M2 =

 γ w2 0
1 0 0
0 0 −w

 . (34)

Current state of the matrix M2 allows us to proceed with the
analysis of its eigenvalues:

λ1 =− w,

λ2 =
1

2
(γ − α),

λ3 =
1

2
(γ + α).

where α =
√
γ2 + 4w2. In result we can easily calculate

(M2)t = P∆tP−1 = (35) 0 λ2 λ3
0 1 1
1 0 0

 λ1 0 0
0 λ2 0
0 0 λ3

t  0 0 1
−1
α

λ3

α 0
1
α

−λ2

α 0

 .
(36)

After brief calculations we get

(M2)t =

 λt
3−λ

t
2

α
λ3λ

t
2−λ2λ

t
3

α 0
λt−1
3 −λt−1

2

α
λ3λ

t−1
2 −λ2λ

t−1
3

α 0
0 0 λt1

 . (37)

Using the fact that mt

mt−1
ht

 = (M2)t

 m1

m0

h1

 (38)



we are able to obtain an explicit formula for mt

mt = Aλt2 +Bλt3 (39)

where

A =
1

α
(λ3m0 −m1), B =

1

α
(m1 − λ2m0). (40)

V. ANALYSIS OF STABILITY AREAS

The explicit formula for mt is key to further investigation
of the stability of the stochastic model. Until now, the analysis
of variance was too complex to perform. Previous papers con-
cerning this area of research usually restricted their analysis to
the expected value only, which, according to the order-2 and
order-2* stability forms, is not sufficient. The explicit formula
for mt also allows us to calculate the areas of stability directly.

A. Stability areas

Before proceeding to analysis of the stability areas, let’s ob-
serve that the first-order stability condition is always satisfied:

1 + w = f = E[φt] = E[ϕt,1] + E[ϕt,2]. (41)

Substituting into inequality (12) describing the area of order-1
stability we get

0 < E[ϕt,1] + E[ϕt,2] = 1 + w < 2(1 + w), (42)

which always holds true as 0 < 1 + w < 2.

Another observation is the fact that the order-2* stability
implies order-2 stability. Notice that:

V ar[xt] = E[x2t ]− (E[xt])
2 = mt − e2t . (43)

Remembering limt→∞ et = y = 0 we obtain

lim
t→∞

V ar[xt] = lim
t→∞

mt − e2t = lim
t→∞

mt. (44)

We can rewrite conditions (6) and (7) in relation to the
stochastic model:

order-2: lim
t→∞

V ar[xt] = lim
t→∞

mt = β, (45)

order-2*: lim
t→∞

V ar[xt] = lim
t→∞

mt = 0. (46)

By setting β = 0 in (45) we obtain (46), therefore (46) implies
(45). Thus, it suffices to show only the stronger condition.
Remembering that

E[x2t ] = mt = Aλt2 +Bλt3,

the order-2* stability holds if and only if

lim
t→∞

Aλt2 +Bλt3 = 0.

Observe that the above equation is true only in the case
of limt→∞ λt2 = 0 and limt→∞ λt3 = 0, or equivalently
|λ2| < 1 and |λ3| < 1. Let’s review the priorly found
eigenvalues.

Knowing that v > 0 and −1 < w < 1, we get

|λ1| = | − w| = |w| < 1,

|λ2| =
∣∣∣∣12(γ − α)

∣∣∣∣ < ∣∣∣∣12(γ + α)

∣∣∣∣ = |λ3|,

|λ3| =
∣∣∣∣12(γ + α)

∣∣∣∣ < 1 ⇐⇒ γ ∈ (0, 1− w2).

Hence we conclude that the second-order stability with a star
holds if and only if

γ ∈ (0, 1− w2). (47)

Notice that we also obtain the convergence area, within which
all of the stability types hold true. We can present the area in
several ways. Substituting g − f2 for γ and keeping in mind
that γ > 0, we get

γ = g − f2 = g − (w + 1)2 > 0 =⇒ g > (w + 1)2,

|λ3| =
∣∣∣∣12 ((g − (w + 1)2

)
+
√

(g − (w + 1)2)2 + 4w2)

∣∣∣∣ < 1

=⇒ g ∈ (0, 2(w + 1)) ,

which results in

g ∈
(
(w + 1)2, 2(w + 1)

)
, (48)

as 0 < w + 1 < 2.

B. Stability areas visualized

1) Stability areas with respect to inertia weight: The anal-
ysis of the stability areas resulted in conditions (47) and (48).
As w ∈ (−1, 1), we get the following stability areas: with
respect to w and γ (Fig. 1)

{−1 < w < 1 ∧ 0 < γ < 1− w2} (49)

and with respect to w and g (Fig. 2):

{−1 < w < 1 ∧ (w + 1)2 < g < 2(w + 1)}. (50)
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2) Stability area with respect to acceleration coefficients —
uniform distribution: Let’s recall that the IPSO method as-
sumes ϕt,1 and ϕt,2 are random variables of uniform distribu-
tion over [0, c1] and [0, c2] respectively. Thus E[ϕt,1] = c1

2 and
E[ϕt,2] = c2

2 , as well as V ar[ϕt,1] =
c21
12 and V ar[ϕt,2] =

c22
12 .

Remembering the independence of the variables we calculated
the distribution of φt:

f = E[φt] = E[ϕt,1] + E[ϕt,2] =
c1 + c2

2
,

g − f2 = γ = V ar[φt] = V ar[ϕt,1] + V ar[ϕt,2] =
c21 + c22

12
,

w = f − 1 =
c1 + c2

2
− 1

Observe the impact on the stability area:

−1 < w =
c1 + c2

2
− 1 < 1 =⇒ 0 < c1 + c2 < 4,

γ =
c21 + c22

12
< 1−

(
c1 + c2

2
− 1

)2

= 1− w2

=⇒ 2c21 + 3c1(c2 − 2) + 2(c2 − 3)c2 < 0

Recollecting the above inequalities and given that c1 > 0 and
c2 > 0 we get the following stability area (Fig. 3)

{0 < c1 + c2 < 4 ∧ 2c21 + 3c1(c2 − 2) + 2(c2 − 3)c2 < 0

∧ c1 > 0 ∧ c2 > 0}
(51)

3) Stability area with respect to acceleration coefficients —
joint uniform distribution: Another common assumption made
during exploration of the IPSO method is for φt = ϕt,1 +ϕt,2
to have a uniform distribution over [0, c1 + c2]. Let’s set c =
c1 + c2 and calculate:

E[φt] =
c

2
,

V ar[φt] = V ar[ϕt,1 + ϕt,2] =
c2

12
.
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Observe the impact on the stability area:

− 1 < w =
c

2
− 1 < 1 =⇒ 0 < c < 4,

γ =
c2

12
< 1−

( c
2
− 1
)2

= 1− w2 =⇒ 0 < c < 3

Recollecting the above inequalities and given that c1 > 0 and
c2 > 0 we get the following stability area (Fig. 4)

{0 < c1 + c2 < 3 ∧ c1 > 0 ∧ c2 > 0} (52)
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VI. SIMULATIONS

The experimental part of the research verified graphs of
stability areas obtained from theoretical analysis. In this part,
we did simulations for a set of particles where the stagnation
condition is satisfied. Due to stagnation, no communication
between particles arise. Thus we can regard this experiment
as a series of tests for a sample of N = 1000 particles. For
all particles, their initial locations z1 are uniformly distributed
in [−10, 10]. The second locations equal the first ones, that
is, initial velocities equal zero for all particles. The particles
change their locations in subsequent steps according to the
eq. (31) and for each step, the variance of the location in the



sample is calculated. Algorithm 1 presents the details of this
procedure.

Algorithm 1 particle location variance evaluation procedure
1: for each particle in a set P of size N = 1000, initialize

its two successive distances from the attractor: zi1 and zi2
where i ∈ [1, N ]. Tmax = 150.

2: t = 2
3: repeat
4: for all i ∈ {1, 2 . . . N} do
5: zit+1 = (1 + w − φt)zit + wzit−1.
6: end for
7: t = t+ 1
8: until t ≤ Tmax

9: for all t ∈ {1, 2 . . . , Tmax} do
10: mt = 1

N

∑N
i=1(zit) . mt: mean of zt

11: vt = 1
N

∑N
i=1(zit −mt)

2 . vt: variance of zt
12: end for
13: return v . v: vector of variances of z

We executed the procedure for a grid of 100 × 100 nodes
representing particle configurations. For every node, the exper-
iment returned a series of location variances v for subsequent
time steps. When the variance values were higher than 106, we
regarded the configurations as representing the unstable region
and clamped the variance to 106. With maps of variances
obtained for subsequent time steps, we observed the process
of clarification of stable and unstable configuration areas and
identified their final shape.

Due to the fact that for the uniform distribution over an
interval of [0, c] all f , g and γ are dependent on w (see
Sec. V-B2, V-B3), for simulations we decided to use Gauss
distribution (see eq. (53), (54)). The results related to Fig. 1
and Fig. 2 can be viewed in Fig. 5 and Fig. 6 respectively.

The φt coefficient in the line 5 of Algorithm 1 is defined
depending on the tested stability area parameters. For the
stability area with respect to w and γ = V ar[φt] (Fig. 1),
φt equals:

φt = N(1 + w, γ) (53)

where N(·, ·) represents Gauss distribution. The variances are
generated for a grid of configurations (w, γ) starting from
[w = −1.272, γ = 0.014] and changing with step 0.028 for
w and with step 0.014 for γ. Fig. 5 depicts the final shape of
stable and unstable configuration areas obtained in simulations.

For the stability area with respect to w and g = E[φ2t ]
(Fig. 2), φt equals:

φt = N(1 + w, g − (1 + w)2) (54)

The variances are generated for a grid of configurations (w, g)
starting from [w = −1.272, g = 0.05] and changing with step
0.028 for w and with step 0.05 for g. Fig. 6 presents the results
of simulations.

The results of the simulations confirming validity of calcu-
lations leading to Fig. 3 and Fig. 4 can be viewed in Fig. 7 and
Fig. 8 respectively. In these cases we are testing the impact
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Fig. 5. Stability area with respect to w and γ obtained in simulations;
snapshots for t = 5 (the top figures) and t = 150 (the bottom figures)
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Fig. 6. Stability area with respect to w and g obtained in simulations;
snapshots for t = 5 (the top figures) and t = 150 (the bottom figures)

of acceleration coefficients c1 and c2, therefore we choose the
continuous uniform probability distribution and φt equals:

φt = U(0, c1) + U(0, c2) for ineq. (51) (55)
φt = U(0, c1 + c2) for ineq. (52) (56)

where U(·, ·) represents uniform distribution. The variances
are generated for a grid of configurations (c1, c2) starting from
[c1 = 0.05, c2 = 0.05] and changing with step 0.04 for both
c1 and c2. Fig. 7 and 8 present the results of simulations.

VII. SUMMARY AND CONCLUSIONS

In this paper, we investigated the method of particle swarm
optimization with inertia weight. We made a brief overview
of the stability definition and presented three types of stability
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Fig. 7. Stability area with respect to c1 and c2 obtained in simulations;
snapshots for t = 5 (the top figures) and t = 150 (the bottom figures)

together with the related research. Next, we showed the main
principles of the stochastic model of the IPSO method. Then,
we indicated the area of parameters, within which analytical
formulas for the variance of the location of a particle are
simple enough for further analysis. This led us to establish an
explicit formula for the second moment in the model. Finally,
using the formerly found formula, the stability areas were
calculated and visualized with respect to the inertia weight,
as well as some selected distributions of random variables
that parametrize acceleration coefficients of the particle. The
findings were confirmed empirically in simulations.

The main novelty of research conducted in this paper
lies in establishing a simple explicit formula for the second
moment of particle location under some sensible assumptions.
In previous works, despite the first moment analysis being
thoroughly conducted, the second moment analysis was often
referred to as too complicated to perform. This paper shows
that there exist assumptions for which the analysis becomes
viable.
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