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Abstract—Deep neural networks (DNNs) need intensive tuning
of their configurations such as network structures and learning
conditions. The tuning is a type of black-box optimization prob-
lem where evolutionary algorithms are applicable. A distinctive
property in evolutionary optimization of DNN configurations
is that there is a double structure in the optimization; the
evolutionary algorithm optimizes a chromosome representing the
DNN configuration while an individual DNN with the configu-
ration learns from training data typically by back-propagation.
With an aim to obtain better-optimized DNNs by evolutionary
algorithms, we propose a dual inheritance evolution strategy
based on an analogy to human brain evolution where gene and
culture co-evolves. The proposed method is an extension of a
conventional evolution strategy by introducing an additional pass
to directly propagate culture or knowledge from ancestor DNNs
to descendant DNNs by integrating teacher-student learning.
We apply the proposed method to the automatic tuning of
an end-to-end neural network-based speech recognition system.
Experimental results show that the proposed method produces
a smaller model with higher recognition performance than a
baseline optimization based on the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES).

Index Terms—CMA-ES, Teacher-Student Learning, dual in-
heritance theory, automatic speech recognition

I. INTRODUCTION

Deep neural network (DNN) based systems are getting
more and more popular replacing conventional systems by
surpassing them in performance and extending the technical
horizon to ever-challenging artificial intelligence tasks. DNNs
need tuning of its configuration such as network structures and
learning conditions before it gives full play to its ability. While
the back-propagation algorithm estimates a large number of
network weights from a training data set based on gradient
descent given a configuration, analytical optimization of the
configuration is impossible. Therefore, human specialists are
spending huge effort to optimize the configuration based on
try and error. Often, the development time of a DNN system
is dominated by the tuning of the configuration. Moreover, the
obtained performance largely depends on the craftsmanship of
the person who tunes it.

There are researches to automate the tuning process by
applying black-box optimization methods such as Bayesian
optimization and evolutionary algorithms [1]. While they are
useful to obtain better configuration than a reasonably or
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randomly given initial configuration, they are inefficient in
that all the learned results by an individual DNN except for
its fitness score are discarded and not used in its descendants.

Considering an analogy to the organisms, the optimization
of the network configuration corresponds to the evolution
of the chromosome that specifies the design of the brain,
and the optimization of the network weight parameters is
parallel to the leaning by an individual having the brain. For
human beings, there is an evolution of culture that is based
on learning by individuals in the population in addition to
the evolution of the chromosome. The dual inheritance theory
in the evolutionary biology field [2] points out that there
are interactions between the evolution of the culture and the
genes. It explains that the outstanding intelligence of human
beings is the result of the synergistic effect of the gene-culture
interaction that accelerated evolution.

Teacher-student (TS) learning or knowledge distillation [3]—
[5] is a widely used strategy to train small but high-
performance DNN based on transferring knowledge from a
teacher DNN to a student DNN. It is empirically known that
a small network often achieves better performance than normal
training by becoming a student of a large network. However,
empirical tuning is required to design a student network that
maintains required performance while reducing the model size
from the teacher DNN.

In this paper, we propose the Dual Inheritance Evolution
Strategy (DI-ES) extending conventional evolution strategy
inspired by the dual inheritance theory. In addition to updating
the chromosome distribution based on fitness scores of indi-
viduals at each generation, the proposed method introduces an-
other pass of information transmission from ancestor DNNs to
descendant DNNs based on teacher-student learning. While the
concept of the proposed method is general to any evolutionary
algorithms applied to DNN, we investigate it with Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). CMA-ES
is one of evolution strategy algorithms which is known to
be efficient and easy to use [6]. To evaluate the proposed
method, we optimize an End-to-End neural network based
speech recognition system included in the ESPnet speech
recognition toolkit ! that is widely used in the world. However,
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the proposed method is applicable to any DNN not limited to
speech recognition.

The rest of this paper is organized as follows. In Section
I, we review the End-to-End Deep Neural Network based
speech recognition system. In Section III, we introduce the
teacher-student learning and its extensions. In Section IV, we
summarize the related algorithms and describe our proposed
method. In Section V, we apply the proposed method to
automatically tune the End-to-End speech recognition system.
We describe the experimental setup in Section VI and show
the results in Section VII. Finally, we make a summary and
conclude this paper in Section VIIIL.

II. SPEECH RECOGNITION

An automatic speech recognition system takes a waveform
signal of an utterance and outputs a character sequence of cor-
responding text as the recognition result. Typically, frequency
analysis is first applied to the waveform signal with a sliding
analysis window as a pre-processing, and a sequence of feature
vectors is obtained [7]. Let 0 = (01, 09, - - - , o7) be a sequence
of the feature vectors of length 7" extracted from an utterance,
and y = (y1,%2, - ,yn) be a character sequence of length
N. Then, speech recognition is formulated as a problem of
finding ¢ that maximizes the conditional probability P (y|o)
as shown in Equation (1).

y = argmax P (ylo) . (1)
y

While hidden Markov model has long been used to model
the probability combined with a language model by decom-
posing the probability using the Bayes’ theorem [8]-[10], a
rapidly emerging approach is to directly model the probability
using an End-to-End neural network.

One approach to end-to-end speech recognition is the
attention-based encoder-decoder model [11]. The framework
of attention-based encoder-decoder speech recognition model
consists of two RNNs: encoder and attention decoder. Encoder
transforms the input acoustic frames o, to a high-level hidden
vector h, then attention decoder decodes this hidden vector by
producing the probability distribution over output y,, condi-
tioned on hidden vector h and previous context yj.,—1 [12],
as expressed in Equation 2.

N
H(yulhaylzu—l)v

u=l 2
w ~ AttentionDecoder(h, y1.,—1),

h = Encoder(o).

P(ylo) =

Hybrid CTC-attention encoder-decoder model [13] is an
extension of the attention-based encoder-decoder model by
integrating Connectionist Temporal Classification (CTC) [14].
Figure 1 illustrates the structure of the hybrid CTC-attention
encoder-decoder model.

In general, neural networks have many weight parame-
ters, and they are estimated from a training set using back-
propagation which is based on gradient descent. However,
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Fig. 1. Structure of End-to-End neural network speech recognition system
based on Hybrid CTC-attention encoder-decoder model.

the relationship between the network structure such as the
number of units in a hidden layer and the performance of the
network is complex and analytic optimization is impossible.
The learning conditions such as the termination criteria of the
back-propagation also need empirical tuning.

III. TEACHER-STUDENT LEARNING

TS learning was first proposed in [15] as a method to com-
press DNN size by minimizing Kullback-Leibler divergence
between output distributions of large-size teacher DNN and
small-size student DNN. Let Pr(c|o) and Pg(c|o) be posterior
distributions of an output category c given input o by the
teacher and student DNNs, respectively. The KL divergence
is defined by Equation (3).

Pr(clo)
Pr(c|o)log ( (3)

2 Pr(cioylos | o)
Since the approach is to study a student model which
approximates a teacher model, only the parameters of the
student model are optimized. Therefore, the minimization of

Equation (3) is simplified to minimization of cross-entropy
shown in Equation (4).

— > Pr(co)log (Ps(clo)). S

An extension to the TS learning is FitNet [16], in which
additional information from Teacher’s hidden layers, named
hints, are transmitted to guide the student’s learning. Since
the number of neuron units in hidden layers is not always
the same between the teacher and the student, a projection is
introduced.

Another extension of the TS learning is the introduction of
temperature T to the output distribution of the teacher DNN
as shown in Equation (5) [3].

o(c); = /T
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where o is the softmax function. A higher value of T
produces a softer probability distribution over classes. It is
used with the cross-entropy loss.

IV. BASELINE AND PROPOSED EVOLUTION STRATEGIES
A. Covariance matrix adaptation evolution strategy

Covariance matrix adaption evolution strategy (CMA-ES)
is one of the high-performance evolution strategies [6], [17]-
[19]. It uses a D-dimensional real vector x as a chromosome
encoding of meta-parameters to tune. By using @, the tuning of
the meta-parameters is formulated as a maximization problem
of a black-box function y = f(x), where y is the evaluation
score of x. Because f(x) is a black-box function, we can
not analytically obtain its gradient. Instead, CMA-ES defines
an expected value of y based on a multivariate Gaussian
distribution having a parameter set 8 as shown in Equation (6),
and maximizes the expected value by optimizing 6.

E[f(2)6],0 = {n, =}, ()

where p is a mean vector and 3 is a covariance matrix.

CMA-ES iteratively optimizes the expected value by using
the gradient ascent method with natural gradient [20]. By using
the log-trick Vlog f = VI and the sample approximation, the
natural gradient is estimated by Equation (7).

1 K
VoE[f(x)|6] ~ - > ykFy ' VelogN(zk]0), (1)
k

where x; is k-th chromosome drawn from the Gaussian
distribution, and F' is the Fisher information matrix defined
by Equation (8).

F6) = / N(]6) Vo log N (x]0) Ve log N (x(0) dz. (3)

By substituting the Gaussian distribution N (x|u, X) into
Equation (7), we can obtain the update formula for fi,, and
hIN.

fon = fon 1+ e iy W) (@5 — fn),
En = 2:nfl + ex lec(:l w(yk) (9)
(@ = frn—1) (@ — frn—1)T — Bn_1),

where T is the matrix transpose and 7 is the generation. The
value y; in Equation (7) is approximated in Equation (9) by
a weight function w(yy), which is defined by Equation (10):
max{0,log(K/2+ 1) — log(R(yx))} 1
Ly max{0, log(K/2 +1) ~log(Rye))} %/
where R(yy) is a ranking function that returns the descending
order of y; among y;.x (i.e., R(yx) = 1 for the highest yy,
R(yx) = K for the smallest yi, and so forth). Since this
equation only considers the order of y, the updates become
less sensitive to the evaluation measurements [17].

CMA-ES has been applied to automatically tune DNN-
HMM-based large vocabulary speech recognition systems, and
its effectiveness has been demonstrated [21]. In this research,
we use CMA-ES as a baseline evolution strategy.

w(yy) =

-

P ~ s \Culture
~

4
’ SA

Update

Gaussian i :
Distribution b O
——/
Generation n-1

Fig. 2. Dual Inheritance Evolution Strategy.

Algorithm 1 Dual Inheritance Evolution Strategy

1: Initialize py and ¥,
2: while not max_generation do
3:  Select a teacher DNN(T'),, from ancestors
fork=1to K do
Sample ), from N(x|pn—1,2n_1)
Train a student DNN(.S);, with a configuration spec-
ified by «; and with the teacher DNN(T'),,
7: Evaluate DNN(.S);, and obtain yy,
8:  end for
9:  Update p,, 3,
10: end while
11: return Best individual = and its score y = f(x)

A A

B. Dual Inheritance Evolution Strategy

To propagate more information from ancestor generations
to a descendant generation, we propose DI-ES that integrates
TS learning into CMA-ES. Figure 2 illustrates the proposed
method. At each generation n, we select a DNN from its
ancestor generations and use the selected DNN as a teacher
for all individuals in the current generation. Algorithm 1
summarizes the process.

In our preliminary experiment, we found there is a tendency
that TS learning is not effective when a student DNN is larger
than a teacher DNN. Based on the observation, we choose
the teacher DNN that gives the best performance among a set
of ancestor individuals whose size is larger than the initial
individual.

V. DI-ES BASED TUNING OF END-TO-END SPEECH
RECOGNITION SYSTEM

We apply the proposed DI-ES method to automatically tune
hybrid CTC-attention encoder-decoder based speech recogni-
tion system. As the knowledge to transfer from the teacher
to the student, we use encoder and decoder outputs as shown
in Figure 3. Since the encoder output is a real vector while
the decoder output is a categorical distribution, we use mean
square loss for the encoder output based TS learning and cross-
entropy loss for the decoder output based TS learning.
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Fig. 3. TS learning of encoder-decoder model.

Equation (11) describes the total loss we use for the TS
learning in DI-ES optimization.

Lossiotar = p - Lossts + (1 — p) - LoSSpase,
Lossts = A Lossppe + (1 — \) - T2 - Losspec,

Losspgse = o - LOSScte +

(1)

(1 — ) - Lossaut,

where Losspqse 1s the base training loss of the hybrid CTC-
attention encoder-decoder model consisting of the attention
loss Lossgi: and the CTC loss Lossgi., and LossTg is the
TS learning loss consisting of the encoder TS learning loss
Lossgn. and the decoder TS learning losses Lossppc. The
weights u, A, and « are used to change the balance of the
losses. Among them, x4 and X are used to control TS learning.
When p = 0, the TS learning is disabled. Only decoder output
based TS learning is performed when A = 0, whereas encoder
output based TS learning is performed when A = 1. When the
temperature T is applied to the cross-entropy loss (i.e. when
T7 is not 1.0), a coefficient T% is multiplied to the decoder
loss to scale the gradient [3].

In addition to minimizing the recognition error rate, re-
ducing the DNN size is important to improve computational
efficiency. If we only evaluate DNN by recognition error
rate, DNN size might largely increase for a tiny reduction
of the recognition error rate. In fact, we have found in our
preliminary experiments that the DNN size often explodes
after 5 or 6 generations if we do not consider the model size
in the evolution.

To consider the model size, we use a weighted average of
error rate and model size as shown in Equation (12) as the
objective function of the evolution.

Size(x)

Sizemit

g(z) =1 - Err(z) + 72 - , (12)

where Err(x) and Size(x) are error rate and DNN size of the
ASR system built from a chromosome x, and Size;,,;; is DNN

size of the initial individual. In our experiments, v; and - are
set to 1.0.

TABLE I
LIST OF META-PARAMETERS OPTIMIZED IN THE EXPERIMENT

Category Meta-parameters | Initial value
patience 3
General milalpha 05
elayers 4
Encoder eunits 320
eprojs 320
dlayers 1
Decoder dunits 300
adim 320
Attentions aconv-chans 10
aconv-filts 100
o 0.3
TS learning A 0.5
Tr 20
TABLE II

EVALUATION OF THE INITIAL MODEL

Err(train_dev) | Err(test)
18.1 9.7

Number of network weights
8,330,402

VI. EXPERIMENTAL SETUP

For speech recognition, we used ESPnet toolkit [22]. ESPnet
includes many recognition systems supporting different speech
databases. Among them, we used the Alphanumeric database
based system (AN4). Figure 4 illustrates the details of the
encoder-decoder structure of ESPnet, and structure meta-
parameters we optimized by the evolution.

Table I lists all the meta-parameters including those learning
conditions. Among them, structure related meta-parameters are
elayers (the number of encoder layers), eunits (the number
of units per an encoder layer), eprojs (projected size for the
next layer), dlayers (the number of decoder layers), dunits
(the number of units per a decoder layer), adim (dimension
of attention vector), aconv-chans (the number of channels
in attention), aconv-filts (the number of filters in attention).
Learning condition related meta-parameters are patience (the
number of back-propagation epochs before terminate with no
loss improvement), mtlalpha (attention loss coefficient «), u
(weight of TS loss and base loss), A (weight of encoder loss
and decoder loss), T (temperature). Their default values are
also given in the table.

For the configuration of the initial individual, we used
the default setting of the AN4 recipe in the ESPnet toolkit
except for o where it was set to 0.5 to enable the encoder-
decoder module. Table II shows the development and test set
character error rate and model size of it. We conducted four
types of experiments; "CMA-ES” is an evolution based on
conventional CMA-ES, "DI-ES(Encoder)” is the proposed
DI-ES with encoder based TS by fixing A = 1.0, "DI-
ES(Decoder)” is the proposed DI-ES with decoder based TS
and without temperature by fixing A = 0.0 and T = 1.0,
and "DI-ES(Encoder+Docoder)” is the proposed DI-ES with
both encoder and decoder based TS with temperature control.
In DI-ES(Encoder+Docoder), A, and T are included in the
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Fig. 4. ESPnet encoder-decoder network and structure meta-parameters subject for the evolutionary optimization.

chromosome, and optimized by the evolution among other
meta-parameters.

The model training and evaluation were performed using
TSUBAME 3.0 supercomputer 2. Three population sizes 15,
25, and 50 were investigated. The number of generations
was 15. The covariance was initialized by a unit diagonal
covariance multiplied by 0.3.

VII. RESULTS

Figure 5 shows the result by CMA-ES running 15 genera-
tions. The character error rate (CER) is defined as the number
of not correctly identified characters including substitutions,
insertions and deletions, divided by the total number of correct
characters. The Size is defined as the the total number of
DNN parameters. At generation 1, the chromosome vectors
were sampled from the initial Gaussian distribution, and were
distributed around the initial individual. With the progress
of evolution, the distribution of the results moved to the
direction of a lower error rate and a smaller number of network
weights, which demonstrates the effectiveness of CMA-ES in
End-to-End neural network optimization , suggesting that the
automation of meta-optimization can release human specialists
from manual DNN tuning processes. To the best of our
knowledge, this is the first experiment that applied CMA-ES
to an End-to-End speech recognition system.

Figures 6, 7, 8, 9 show results of the four strategies in the
evolution experiment magnifying the region where the char-
acter error rate and the model size are smaller than the initial
individual. In the figures, Pareto frontiers are also depicted.
As can be seen, all the four strategies successfully reduced the
character error rate and the DNN size compared to the initial
individual. However, there are differences in tendencies. While
the Pareto frontiers of CMA-ES with different population sizes
stay almost the same position, that of the proposed DI-ES
methods move toward the lower-left corner with the increase
of the population size.

Figure 10 compares the Pareto frontiers of CMA-ES and
proposed DI-ES methods with population size 50. It is con-
firmed that DI-ES methods generally produce DNNs with a

Zhttps://www.gsic.titech.ac.jp/en/tsubame
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Fig. 5. Distribution of results by CMA-ES. The initial individual is marked
by X.

TABLE III
RECOGNITION RESULT

CMA-ES | DI-ES(Enc) | DI-ES(Dec) | DI-ES(Enc+Dec)

Population Err (train_dev set)

15 114 12.6 12.5 13

25 12.3 12.5 12.0 12.5

50 12.1 11.3 12.2 12.6
Population Err (test set)

15 5.1 7.3 5.4 6.8

25 7.4 5.7 6.7 44

50 5.6 4.6 4.8 59

smaller character error rate and a smaller number of network
weights in the region. Especially, DI-ES(Encoder+Docoder)
gave the best performance.

Tables III and IV summarizes the character error rates of
the systems optimized by the four methods with three different
population sizes. At each condition, a DNN that gives the
lowest character error rate in the development set was chosen.
The development and test set error rates are the result of
the selected DNN. Table III is the results when the DNNs
were selected without size constraint. In this case, there is no
clear tendency which evolution strategy method gives the best.
However, when we select DNNs from those have less than 6
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million weight parameters, DI-ES(Enc+Dec) gives consistently
the best results for both the development and the test sets,
which demonstrates the effectiveness of the proposed method
to make small and high-performance DNNs.

Finally, Table V shows the tuned meta-parameters obtained
by the four methods with population size 50. Compared to the
initial individual obtained by default ESPnet recipe, the DNN
produced by DI-ES(Enc+Dec) has higher patience, dlayers,
aconv-chans. On the other hand, it has smaller eunits, eprojs,

Character Error Rate (%)
&
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Fig. 7. Results of DI-ES: Encoder
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Fig. 9. Results of DI-ES: Encoder+Decoder

TABLE IV
RECOGNITION RESULT(MODEL SIZE LESS THAN 6M)

CMA-ES | DI-ES(Enc) | DI-ES(Dec) | DI-ES(Enc+Dec)

Population Err (train_dev set) less than 6M

15 15.9 16.7 None 15.1

25 15.7 15.7 15.6 154

50 16.1 15.7 15.4 14.9
Population Err (test set) less than 6M

15 9.1 9.1 None 8.1

25 74 10.0 9.8 7.4

50 8.4 8.1 7.9 7.0

and adim, which contributed to reducing the model size.

VIII. CONCLUSION

We have proposed Dual Inheritance Evolution Strategy
that integrates teacher-student learning in the framework of
evolution strategy motivated by an analogy to human brain
evolution, and have evaluated it using an End-to-End speech
recognition system as a target of the optimization. Experi-
mental results show that the proposed method is superior to
conventional CMA-ES to produce small and high-performance
DNNs. At the same time, the proposed method is the first
engineering model of the dual inheritance theory which was
an assumption in evolutionary biology. Future work includes



TABLE V
TUNED META-PARAMETERS

Initial | CMA-ES | Enc Dec Enc+Dec
patience 3 4 5 4 7
elayers 4 3 2 3 3
eunits 320 326 362 276 263
eprojs 320 222 329 291 308
dlayers 1 2 1 1 2
dunits 300 169 69 162 280
adim 320 501 424 447 195
aconv-chans | 10 10 7 11 14
aconv-filts 100 93 145 141 105
mtlalpha 1.0 0.654 0.782 | 0.536 | 0.863
n 0.3 None 0.001 | 0.070 | 0.018
A 0.5 None 1 0 0.058
Tr 20 None None | 1 5.678

applying our proposed method to a larger data set and trans-
ferring more general knowledge from ancestor generation to
descendant generations.
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