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Abstract—Maritime Inventory Routing Problem (MIRP) is a
challenging combinatorial problem in which decision solutions
evolve vessels route and schedule, besides the inventory man-
agement at the ports along a limited planning horizon. Com-
mon solution approaches for solving MIRPs use matheuristics
combining heuristic elements and mathematical programming
for obtaining high-quality solutions in relatively short processing
time. The performance of such approaches can be compromised
if the problem size grows considerably. To provide an alternative
approach for solving larger MIRPs, we propose a multi-start
metaheuristic capable of producing several solutions for the
problem in short processing time. Additionally, we developed
a large neighborhood search for improving a subset of the
generated solutions, which are then used to build a reduced
mixed-integer problem which is solved by a mathematical solver.
Computational results demonstrated that our algorithm can
obtain solutions in short processing time, compared to the current
solutions methods, and it can solve larger problem instances, in
which no solutions were known.

Index Terms—Maritime inventory routing problem, multi-start
algorithm, large neighborhood search, mixed integer program.

I. INTRODUCTION

Heuristics usually are used for solving combinatorial prob-
lems in which exact approaches cannot provide solutions
in reasonable processing times. On the other hand, building
even a feasible solution for highly constrained problems with
heuristic approaches can be a hard task. In such cases, it
is preferable to use hybrid strategies, such as matheuristics,
which combines heuristic and exact methods to obtain high-
quality solutions. However, even using matheuristics, the com-
putational time for some problems can be prohibitive, limiting
the size of the instances that can be solved efficiently.

In this work, we propose a matheuristic composed of a
multi-start metaheuristic, a large neighborhood search (LNS),
and a reduced mixed-integer problem (RMIP) for solving a
Maritime Inventory Routing Problem (MIRP) described by [1].
In essence, the MIRP aims to define the route and schedule of
a set of vessels, including the amount of product(s) loaded and
unloaded at each visited port. Additionally, it must manage the
inventory at ports, keeping its level between lower and upper
limits along the planning horizon. Several constraints can
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be incorporated into the problem considering real scenarios,
leading to a very hard combinatorial problem.

Solution approaches for MIRPs presented in the literature
usually are related to hybrid methods, combining heuristic
and exact methods such as rolling-horizon heuristics [2], [3]
and relax-and-fix [4], [5]. In some cases, exact approaches
are proposed to examine the quality of the formulation [6],
[7], but the problems usually consider some simplifications
and small instances. Pure heuristic approaches, i.e. heuristic or
metaheuristics that do not use an exact approach as black-box
are less frequently found. In [8] is presented a parameterized
constructive heuristic for a MIRP related to the cement indus-
try. The heuristic iteratively selects the best vessel to perform a
visit between a pair of ports The vessel is selected considering
different ranks with different weights value. For defining the
best weight combination, a genetic algorithm was proposed.
A similar approach was proposed by [9] for solving a MIRP
related to the oil industry, where tankers transfer oil from
offshore platforms to inland terminals. In that work, a multi-
start algorithm is proposed and either vessels and ports can
be selected at random from a set of rankings. Additionally,
two route improvements and a local search procedure were
proposed. The last one uses a mathematical solver to solve a
residual model. The work of [10] considers a MIRP in which
total fuel consumption should also be minimized. Due to the
complexity of the non-linear mathematical program proposed,
[10] solves the problem using a particle swarm optimization
for composite particle, validating results with basic particle
swarm optimization and genetic algorithms.

The MIRP studied in this work was proposed by [1]
and the most effective results were found by [11], which
developed a two-stage decomposition approach similar to a
benders decomposition. Other works such as [5], [12]–[14]
also proposed solution methods for this MIRP variant. The
common point of these works is that a mathematical solver is
indispensable for the solution approach, either if it is an exact
method or a hybrid approach. Although our solution approach
uses a mathematical solver, it can be dispensable as it works as
a final improvement proceadure. Also, even though [1] made
available instances with up to 360 time periods, the solution
approaches of [5], [12]–[14] tested instances considering only
planning horizons with 45 and 60 time periods.
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Multi-start metaheuristics are useful in solving hard combi-
natorial optimization problems where it is difficult to define an
efficient and effective neighborhood structure for using local
search methods to improve a unique generated solution [15].
The basic algorithm consists of generating a set of solutions
from random starting points to obtain diversification. Option-
ally, improvement procedures can be applied to each solution
generated. For a comprehensive review of multi-start methods,
we recommend the work of [15].

The large neighborhood search (LNS) method improves
one or more solutions obtained by the multi-start algorithm.
This method explores a sample of a solution neighborhood,
as exploring the whole neighborhood is not practical. The
LNS iteratively uses a destroy and repair methods to gradually
improve the solution. The destroy method removes part of the
solution (usually turning it infeasible), while the repair method
is responsible to rebuild the solution in a different way. For
a survey on LNS, we refer to the work of [16]. Some works
on MIRPs already proposed LNS for solving the problem [4],
[13], [17], but using a mathematical solver for it. This method
is known as fix-and-optimize, and fixing a subset of the model
variables is equivalent to the destroy method, and the repair
method corresponds to solving the partially fixed problem.

This work aims to evaluate our metaheuristic as an alter-
native solution approach for a MIRP variant in which only
solver-based methods were proposed. We also tested long
planning horizon instances in which no attempts to solve them
were found in the literature. The remainder of the work is
organized as follows: Section II presents the problem definition
and shortly describes the mathematical model. The solution
approach and its components are presented in sections III, IV,
and V, respectively. Computational results are presented in
Section VI, followed by the conclusions in Section VII.

II. PROBLEM DESCRIPTION

In this section, we describe the MIRP proposed by [1].
Due to the size restrictions, we do not present the problem
formulation, which is found in the referred paper.

The problem consists of transporting a single product
between a set of ports J using a fleet of heterogeneous
vessels V , mananging the ports inventory along a discrete
planning horizon T . Set J is divided into two subsets, each
one corresponding to the type of port: loading (or production)
ports J P and discharging (or consumption) ports J C. Each
port i ∈ J has an inventory storage limit Smax

i and a minimum
level of product inventory Smin

i . Also, a berth limit Bj imposes
the maximum number of vessels that can operate (load or
discharge) at the port in the same time period. The production
(or consumption) rate in port i is denoted by Dit and can vary
at each time period t ∈ T . The inventory of port i at time t is
denoted by variable sit, while its inventory at the beginning of
the planning horizon is given by parameter sj0. Discharging
ports i ∈ J C pay a revenue Rit per product unit unloaded by
the vessels in each time period. The vessel set V is divided
into vessel classes representing different characteristics, such
as load capacity Qv , traveling time Tvij between ports i and j

and traveling costs Cvij . Each vessel v ∈ V has its initial
load sv0 , initial port jv0 , and first time available tv0 at the
planning horizon given as input parameters.

Besides the routing and inventory constraints common to
other MIRPs, there are specific characteristics of the problem.
This MIRP variant is denoted as deep-sea, where traveling
times are much higher than operating times. Thus, the problem
imposes that vessels departing from a loading port to a
discharging port must be at full capacity, while they must be
empty when performing the inverse path. When a vessel v
starts to operate at the port i in time t, the amount fvit operated
must lie between a minimum Fmin

i and a maximum Fmax
i

operation capacity. The port inventory constraints are allowed
to be violated considering certain limits. In this case, vari-
able αit, i ∈ J , t ∈ T is used to define a quantity of product
that can be bought from or sold to a simplified spot market
to keep the port inventory at its limit. Besides a penalization
value incurred in the objective function, αit is limited by
parameters αmax

it and αmax
i . The first one imposes a limit for

each port and time period, while the second defines the limit
for each port in the whole planning horizon. The objective is
to maximize the revenue obtained in discharging operations
minus the vessels traveling and operating costs, and minus the
penalization costs of using spot markets.

III. THE MULTI-START ALGORITHM

The multi-start algorithm builds a set S of n solutions
using a constructive greedy heuristic with randomness. For
explaining the heuristic, the following notation is adopted:
• Ri - Set of ports corresponding to the geographical region

of port i.
• tvioli - is the earlier time period t in which an inventory

violation occurs at port i, i.e. tvioli = min{t ∈ T :
sit < Smin

i , i ∈ J C}, and tvioli = min{t ∈ T :
sit > Smax

i , i ∈ J P};
• Vessel voyage - Sequence of vessel actions starting by

departing from port i ∈ J , and ending at port j ∈ J ,
such that i and j are different type ports. Optionally, a
port i′ ∈ Ri can be visited after port i, and a port j′ ∈ Rj
can be visited after port j. A vessel voyage ends after
finishing its operation at port j (or j′), such that no more
operations can be performed, i.e., if j ∈ J P the vessel
is at full capacity, and if j ∈ J C the vessel is empty.

The constructive algorithm iteratively builds a concatenation
of voyages for each vessel until there is no inventory violation
at the ports, i.e. tvioli > |T |, i ∈ J . The multi-start algorithm
is described in Fig. 1 and the details are explained below.

A. Initializing Solution s - line 3

This function puts each vessel v ∈ V in its initial port j0v
and its first time available t0v given as parameter input. We
assume that vessels always operate at the initial port, as they
start at full capacity (sv0 = Qv) if j0v ∈ J C and start empty
(sv0 = 0) if j0v ∈ J P. The algorithm decides if vessel v will
also operate at a port j′ ∈ Rj0v after operated at j0v . In this case
it is necessary to split the vessel capacity between ports j0v and



1: Input: n, pCP, p2nd

2: while |S| < n do
3: Init(s, p2nd) . Randomness
4: while there is a j ∈ J with tviolj do
5: j = urgentPort()
6: i = counterpartPort(j, pCP) . Randomness
7: v = selectBestVessel(i, j, p2nd) . Randomness
8: UpdadeSolution(s, v, i, j)
9: CompleteSolution(s)

10: S = S ∪ s

Fig. 1. Multi-Start Algorithm

j′. This decision procedure is detailed in Section III-E1. For
now, assume that after the end of the initialization function,
all vessels v ∈ V operated at its initial port j0v (and possibly
at a port j′ ∈ Rj0v ), completing its first vessel voyage.

Different vessels may start the route at the same port, but in
different time periods. Thus, the orded in which each vessel is
initialized in the solution may affects either the port inventory
levels and the other vessels operations at the same port. For
obtaining more variability in the solutions, this order randomly
defined by the algorithm for each solution s ∈ S

After a vessel operation is implemented at port j ∈ J , the
inventory violation time tviolj is updated, incresing its value.

B. Selecting the Urgent Port - line 5

The urgent port j is the port with the earliest inventory
violation time, i.e., j = argmini∈J {tvioli }. It can be a loading
or a discharging port, and in case of a tie, the discharging port
is selected. If the tie occurs between ports of the same type,
the one with the highest inventory capacity is selected.

C. Selecting the Counterpart Port - line 6

A counterpart port i is selected for supplying the demand
of urgent port j. The candidate ports are always of a different
type of port j. They are ranked in increasing order considering
tvioli and the distance to the urgent port j. The port with the
minor sum of its position in the two ranks is selected as
the counterpart port, and in case of a tie, the port with the
earliest inventory violation time is selected. This strategy is
the same as proposed by [8]. Additionally, to avoid producing
myopic solutions, we defined a probability pCP of selecting a
counterpart port at random between all candidate ports.

D. Selecting the Best Vessel - line 7

This function evaluates each vessel v ∈ V to perform the
voyage between counterpart port i and urgent port j. For the
explanation, we assume that i is a loading port, and j is a
discharging port. If v is currently at a loading port l 6= i in
the partial solution, it does not need to visit port i, as v will
be already loaded and can travel directly to port j. Otherwise,
v needs to travel from its current position to the counterpart
port i. In such case, it is also evaluated if a port i′ ∈ Ri should
be visited after port i and before departing to urgent port j
(see Sec. III-E1 for details). After visiting and operating at

port i (and possibly at port i′), vessel v travels at full capacity
to urgent port j. It is also evaluated if a port j′, such that
Rj′ = Rj can be visited after j. Note that when evaluating
each vessel, the optional ports i′ and j′ can be different.

Sometimes a vessel can arrive at a port only after tvioli . In
such cases, spot market variables αit are used to keep the
inventory at the bound limits (sit ≤ Smax

i for loading ports,
sit ≥ Smin

i for discharging ports) until one time period before
the vessel can arrive and operate at the port. As the use of
spot market variables is limited, if they are not sufficient to
keep the inventory of ports at the bound limits until the vessel
arrives, auxiliary variables βit, i ∈ J , t ∈ T are used. They
are equivalent to αit, but not bounded and highly penalized in
the objective function. The costs of using αit and βit variables
are considered penalization costs of the voyage.

After vessels were evaluated, the best one is selected ac-
cording to one of the following criteria, chose at random:

1) Lowest cost: Considers the traveling, operations and
possible penalization costs minus the profit obtained by
the vessel in the voyage;

2) Highest cost: The opposite of the previous criteria;
3) Smallest number of waiting times: Considers the total

number of time periods in which a vessel needs to wait
in the ports along the voyage;

4) Closest arrival time: Calculates the difference between
the arrival time and the inventory violation time at the
urgent port. The lower the value, the better;

5) Earliest arrival time: Selects the vessel which can first
arrive at urgent port j to operate;

6) Smallest number of operations: Selects the vessel which
needs the lowest number of operations at the ports to
finish the voyage;

7) Lowest cost/capacity ratio: considers the vessel voyage
cost divided by its capacity Qv;

8) Lowest penalization: in cases when no vessel can arrive
at urgent port j before inventory violation time, selects
the vessel with the lowest penalization cost associated.

Criteria {1, 3, 4, 6, 7, 8} aims to improve solutions quality,
while criteria {2,5} aims to provide variability on the gener-
ated solutions.

While the constructive algorithm iterates, it is possible that
a vessel is able to operate in a port at a time period earlier than
an already implemented operation. In such cases, for defining
a feasible operation it is necessary to check the inventory of
the port at the last time period in which operation took place.
For example, consider that an operation was implemented in
port j ∈ J C at time t′ = 9, such that sjt′ = 250. The port
inventory capacity is Smax

j = 300. Now suppose that vessel
v arrives in port j at time t = 4 and sjt = 100. Considering
only the inventory at time t, vessel v can discharge 200 units
without violating the inventory capacity of port j. However,
at time t′ the maximum amount that can be discharged is
only 50 units. Therefore, if some discharging operation occurs
before time t′, the value to be discharged must be at most the
inventory space available at time t′. The following variable
parameter defines the maximum value that can be operated



at port i in time t without causing an inventory violation in
future time periods:

fmax
it =

{
mint′∈T :t′≥t{sit′} if i ∈ J P

mint′∈T :t′≥t{Smax
i − sit′} if i ∈ J C

(1)

E. Specific proceadures

Two problem specific functions are used internally in Init
and selectBestV essel functions. For explaining them, we
consider a discharging port i ∈ J C. The procedure for a
loading port is analogous.

1) Deciding between operating at one or two ports: When
evaluating a vessel v to discharge at port i, the algorithm must
decide between discharging all its cargo in port i or spliting
the vessel load with a second port i′ ∈ Ri.

Such decision is used to handle two issues: i) no other vessel
except v can arrive at port i′ before tvioli′ . Therefore, it is
preferable that v visits port i′ to avoid a major probability
of building an infeasible solution; ii) vessel v needs to wait
too many time periods to discharge in port i due to inventory
constraints. Although there are no costs for a vessel to wait at
a port, such a situation should be avoided as it can compromise
the next voyages. Thus, it is possible that dividing a vessel load
between two ports may result in lesser waiting time periods,
and the voyage can finish earlier.

The algorithm ranks all candidate ports i′ ∈ Ri (including
port i) considering three criteria: inventory violation, end time
of the operation, and voyage cost. Firstly it is evaluated if only
vessel v can arrive at a candidate port i′ before tvioli′ . If this is
the case, then v must visit i′. If there is no candidate port in
such a situation (or more than one), the algorithm selects the
port i′ in which vessel v ends its voyage earlier in the planning
horizon. If there is a tie between two or more candidate ports
considering this criterion, the port i′ that implies in the lowest
voyage cost is selected.

If the best-ranked port is different from i, the vessel capacity
is divided between the ports such that the maximum amount
is operated in port i at time t, and the remaining is operated
at port i′, respecting the minimum amount Fmin

i′ . Otherwise,
if i′ = i, the total vessel capacity is operated at port i.
Besides the ranking, we defined a probability p2nd of randomly
selecting a port i′ ∈ Ri to provide more variability in the
solutions.

2) Defining operation values and times: Supose that vessel
v arrives in port i at time t, and needs discharge the amount
f . This operation is subject to several problem constraints,
such as inventory, operation, and berth limits. Firstly, if berth
occupation in i at time t is equal to berth limit Bi, then vessel
v must wait at the port until a time t′ ≥ t in which a berth
is available. There are three options for a vessel to discharge
in a port: the first and most preferable is to discharge f in
port i at time t without waiting at the port, i.e., fvit = f .
This is possible only if i has capacity to recieve the amount
f , and there is sufficient inventory space at the time t, i.e.,
f ≤ Fmax

i and f ≤ Smax
i − sit. In the second option, the

vessel needs to wait one or more times while f > Smax
i − sit

before discharging f . The third option occurs when f > Fmax
i .

In such a case, it is mandatory to a vessel to operate multiple
time periods, splitting the amount f .

F. Updating Solution - line 8

This procedure implements in solution s the voyage of
the selected vessel v between ports i and j, updating their
inventory according to the amount operated and also the
inventory violation time tvioli and tviolj .

G. Complete the Solution - line 9

After the end of the while loop, there is no port with an
inventory violation, and a feasible solution is obtained (unless
some auxiliary variable βit is positive). The CompleteSolution
function aims to obtain a better solution quality, verifying for
each discharging port if there is a vessel that can discharge
in the port before the end of the planning horizon. If such a
case exists and the operation provides a revenue greater than
the voyage and operation costs, the voyage is performed.

IV. LARGE NEIGHBORHOOD SEARCH

The large neighborhood search is responsible for improving
solutions given by the multi-start algorithm and possibly
remove the infeasibility when some variable βit is positive.
The LNS partially destroys a solution s by removing u% of
the vessels at random. The route of each removed vessel is then
rebuilt in a different way, generating a candidate solution s′. If
solution s′ is accepted, it becomes the current solution s. The
procedure is repeated until it reaches a maximum number of
iterations maxItLNS, or the candidate solution is not accepted
for maxNA consecutive iterations. The best solution found is
returned at the end of the LNS.

The route of vessels is rebuilt with the same constructive
heuristic of the multi-start algorithm, given in lines 4-9 of
Fig. 1. The unique difference is that the constructive heuristic
in the LNS considers only the vessels removed from the
solution. The LNS is performed on a set SLNS ⊆ S which is
composed of m solutions, such that dm2 e are the best solutions
obtained by the multi-start algorithm (considering different
objective function values) and bm2 c are solutions chosen at
random from set S. This configuration is chosen to provide
both exploitation and exploration of the solutions.

A. Acceptance Criteria

A candidate solution s′ is accepted if its objective value is
better than the value of the current solution s. The algorithm
also accepts worse solutions than the current one under some
conditions. To do this, we use the temperature parameter used
in simulated annealing in a similar way as [18], in which
the probability of a worse solution being selected decreases
as the temperature downs. More precisely, the probability is
given by p(S) = e−

f(S′)−f(S)
T where T is the temperature.

The initial temperature is defined by the value of the initial
solution (provided by the multi-start algorithm) multiplied by
a factor 0 < f start < 1, and decreased at each iteration by
a cool rate 0 < c < 1, until reaching the final temperature



defined based on the initial solution objective and a constant
0 < f end < 1, such that f end < f start.

B. Backtracking

For avoiding the LNS getting stuck in local minima and for
intensifying the search in promising solution spaces, if a new
best solution is not found after maxreset iterations, the current
solution is set to the best solution found so far. The current
temperature is set to half of the starting temperature to provide
more exploration of the search space from the best solution.

V. BUILDING REDUCED MIP

After LNS was performed on the m solutions of set SLNS,
such solutions are converted to a reduced mixed integer
program. We used the fixed-charge network flow model pre-
sented in [13] for the same MIRP, which provide a thighter
formulation than the time-space network model of [1]. In the
reduced MIP only the variables (and respective constraints)
that assume a positive value in the corresponding metaheuristic
solution are inserted in the model. The exceptions are port
inventory variables sit, spot market variables αit, and auxiliary
variables βit, which are added for all i ∈ J , t ∈ T . The
reduced model is then solved by a mathematical solver for
tRMIP seconds for trying to obtain a better solution than the
best one provided by the LNS. As the size of the reduced
model (number of columns and rows) is smaller than the
original model, it can be solved to optimality in a short
processing time depending on the value of parameter m.

Although solving RMIP is usually quick, adding only the
variables and constraints corresponding to the LNS solutions
can be restrictive, so that the solution found by the solver
is the same found by the LNS. Thus, we defined “adjacent”
variables of the solution that are also included in the model.
They cover the operation and waiting variables of the FCNF
model. Fig. 2 illustrates the adjacent variables according to a
vessel v route solution visiting a port i.

In the example of Fig. 2, vessel v arrives in port i at time
t = 1, wait for three time periods, and then operates at time
t = 3 to after depart to another port. The adjacent variables
corresponds to the waiting (w) and operation (o) variables
between the arrival time t = 1 of vessel v in port i until
the departing time t = 3. They enable the solver to decide
if a vessel can improve its route by changing possible time
periods in which the operation(s) take(s) place and the value
which is operated. Note that in the example of Fig. 2, vessel v
still must operate at the time period t = 3, as the traveling
arcs variables xijvt representing the depart from port i in time
periods with t < 3 are not included in the model.

VI. COMPUTATIONAL EXPERIMENTS

In this section, we evaluate the performance of our al-
gorithm and its three components: the multi-start, the large
neighborhood search and the reduced mixed integer program
model. The objective is to verify the capacity of our algorithm
to produce good solutions for the MIRP presented, either for
instances with short and long planning horizons.
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Fig. 2. Example of a MIRP FCNF model solution and the adjacent variables.

The experiments were carried out in an Intel Core i7 930
computer running at 2.8 GHz with 12 GB RAM. The algorithm
was implemented in C++, and CPLEX 12.7.1 solver was used
to solve the reduced MIP model using a single core. The
number of repetitions per run of the algorithm is set to 10,
and the average values considering objective function and
processing time were considered.

A. Benchmark Instances

The tests were performed using the “Group 1” instances
available at MIRPLIB1. The benchmark set consists of 14
instances, such that the planning horizon of each instance can
be changed and set up to |T | = 360 days.

B. Parameters Calibration

The multi-start algorithm and the LNS parameters
must be defined. They were calibrated using the irace
package2 for obtaining the best combination of its values.
Some parameters have not been calibrated and a fixed
value is set for them. We also study the value variation
of the fixed parameters individually. For defining the
training instances for irace, we modified six distinct
instances from the test set, defining a planning horizon with
size |T | = 30 and changing the x and y coordinates of
the ports at random. More precisely, we selected instances
LR1 1 DR1 3 VC1 V7a, LR1 1 DR1 4 VC3 V11a,
LR1 2 DR1 3 VC3 V8a, LR2 22 DR2 22 VC3 V10a,
and LR2 22 DR3 333 VC4 V14a as training instances. In
the calibration test, we do not consider the results from the
RMIP, i.e., the output is the best solution found after solving
the LNS for m solutions. The evaluated parameter values, the
best one defined by the calibration and the fixed-parameter
values are presented in Table I.

1https://mirplib.scl.gatech.edu/
2http://iridia.ulb.ac.be/irace/



TABLE I
RESULTS FROM THE PARAMETER CALIBRATION

Parameter Evaluated values Choosen Value
p2nd [0%,10%,20%,30%,40%,50%] 0%
pCP [0%,10%,20%,30%,40%,50%] 50%
f start {0.9,0.9999} 0.95
fend {0.0001,0.1} 0.09
c {0.0001,0.1} 0.01
maxreset [500,1000,2500,5000] 500
n Fixed 500
m Fixed 4
maxItLNS Fixed 25000
maxNA Fixed 2(maxreset)
u Fixed 20%

Fig. 3. Improvement of the multi-start solutions by LNS varying the values
of parameter u

The parameter tRMIP is defined according to two charac-
teristics of the instance: the number of loading regions (one
or two), and the size of the planning horizon. For the smallest
instances corresponding to those with one loading region and
|T | = 45, tRMIP is set to 60 seconds. For the instances with
two loading regions and the same planning horizon, the value
is doubled. For the remaining sizes of T , the time is increased
proportionally to the number of time periods.

C. Individual Parameters Analysis

We study how varying separately parameters u, n and m
affects the solution quality and processing time of the proposed
method. For these tests, we considered the 14 instances with
|T | = 45.

1) Evaluating Parameter u: We first analyze how varying
the percentage of vessels removed from the current solution in
each LNS iteration affects the solution quality. We performed
tests with values u = {20, 30, 40, 50, 60}. The remaining
parameters are fixed to the values defined in the last column
of Table I. Fig. 3 presents the box plot corresponding to the
improvement percentage of the multi-start solution by the LNS
varying parameter u. Thus, it considers only the insntaces in
which multi-start algorithm obtained a feasible solution.

As observed in Fig. 3, the improvement percentage slight
varies as parameter u increases considering the median value.
The outliers corresponds to two instances in which there is

Fig. 4. Average improvement of the solution quality by varying parameter
n, considering the multi-start, the LNS, and the RMIP.

a more siginificant improvement of the solution. Using a
binomial statical test with confidence level of 0.95 we cannot
affirm that incrasing the value of parameter u provides better
LNS solutions. The processing time increases proportionally
to the percentege u increase due to the major number of
vessesls that are evaluated in each iteration. Considering the
runs in which the multi-start solution is infeasible, the LNS
was able to remove such infeasibility in {26.3, 28.9, 36.8, 42.1,
47.3} percent of the cases. Although the feasibility increases
with the increase of u (the larger parameter u, the larger the
search space) it is not possible to confirm such hipotesys using
the same previous mentioned statical test. We decided to use
u = 40 for the remaining tests, as it provided the best median
value considering the improvement of multi-start solutions.

2) Evaluating Parameter n: The next parameter evaluated
was the number of solutions generated by the multi-start
algorithm. In this section and the subsequent ones, the re-
sults of the RMIP are also considered. We tested the values
n = {100, 250, 500, 1000, 2000, 5000, 10000} and the results
are presented in Fig. 4, showing for each parameter value the
average increase of the solution quality in relation to the base
case n = 100, considering the multi-start algorithm, the large
neighborhood search and the reduced MIP.

The results of Fig. 4 confirm the tendency that the greater
the number of generated solutions, the greater the improve-
ment of the solution quality in the multi-start algorithm.
Considering the LNS and the RMIP, we observed in several
runs of the algorithm that they provided worse solutions with
n = 10000 than with n = 100, which contributed to a smaller
increase in the solution quality of such components. Although
not shown in Fig. 4, the results demonstrated an approximate
increase of 10% in the number of feasible solutions between
the minimum and maximum value of n considering the multi-
start and the LNS algorithm. For the RMIP, this increase was
below 4%, demonstrating that the final algorithm solution is
less affected varying parameter n.

We have chosen the value parameter n = 1000 for the
remainder experiments, as it presented a good balance between
solution quality and feasible solutions.



3) Evaluating Parameter m: The last evaluated parameter
corresponds to the number of multi-start solutions improved
by the LNS and then used to build the RMIP. The objective
is to verify whether it is valid to increase the m parameter to
get a better solution, as it drastically increases the processing
time of the LNS. We evaluate the parameter with values m =
{1, 4, 8, 16, 32}. The results are shown in Fig. 5, presenting
for each parameter the average deviation GAP from the best-
known solutions considering the feasible solutions found. The
lines in the figure represent the average number of instances
in which no feasible solution was found.

Fig. 5. Average GAP deviation and average number of instances with no
feasible solution found for different values of parameter m, considering LNS
and the RMIP results.

Fig. 5 demonstrates a considerably average imporvement in
the RMIP solutions varying m until value 8, while the average
GAP of the LNS solutions decreases less than 0.5% as m is
doubled. The limited time for running RMIP may explain the
slight difference between the average GAP varying parameter
m from 8 to 32.

The average number of infeasible instances tends to de-
crease as m increases, reaching no infeasible solutions with
RMIP when m = 32. As the processing time increases
proportionally to the number m, this parameter should be
small, otherwise larger instances will take a long time to be
solved. Thus, we define m = 8 for the remaining tests.

D. Comparative Results
We compare our algorithm to the best-known values pre-

sented by [5], [11], [13], which solutions for |T | = {45, 60}
are reported. We performed the tests using the parameter
values defined in the previous sections. Table II summarizes
the results, presenting for each |T |, the average GAP deviation
from the best-known solution, the average number of instances
with no feasible solution found, the average processing time,
and the average reduction in the processing time. For calcu-
lating the processing time reduction, the time was normalized
using the PassMark Software3. The last line of the table
presents the average results.

3https://www.cpubenchmark.net/

TABLE II
COMPARATIVE WITH THE BEST KNOWN VALUES CONSIDERING SOLUTION

QUALITY AND PROCESSING TIME

|T | GAP(%) Inf. Time(s) Time reduction (%)
45 5.1 1.1/14 711.2 79.4%
60 8.0 3.3/14 936.4 91.7%
Avg 6.5 660.7 85.5%

We can observe from Table II that our approach is not
much robust considering solution quality, as the average GAP
from the best-known solution is higher, varying from 0.0%
to 25.1% depending on the instance. Although not shown in
Table II, no feasible solution was found in the 10 repetitions
of just one instance with |T | = 60. Considering processing
time, our algorithm provided the final solution in much shorter
processing time than the other approaches. We then test if the
results can be improved if the processing time is increased.
Thus, we set the parameters u, n,m with the highest values
tested in Section VI-C and defined tRMIP = 3600 seconds.
The results presented an average GAP of 3.9% (varying from
-0.7% to 13.5%), while they’re still one instance in which no
feasible solution was found in the 10 runs of the algorithm.
Considering individual runs, the algorithm could find new
best-known values for five instances. Although the average
processing time was 38.4% faster than the average processing
times reported by [5], [11], [13], it is much higher for the
small instances, due to the LNS and the RMIP, in which
the last usually reaches the time limit of 3600 seconds. Such
results demonstrated that the algorithm’s performance tends to
increase if the parameters u, n,m values are also increased.
However, as the processing time required is higher for small
instances, it may be more interesting to use higher parameter
values for testing larger instances, and still obtaining a lower
processing time than other approaches for solving this MIRP.

E. Long Planning Horizon Tests

We ran our algorithm in the instances with long planning
horizon |T | = {120, 180, 360}. For these tests, we perform
five repetitions of the algorithm per instance. As this is the
first attempt to solve these instances, we evaluate the quality of
the solution considering the average GAP to the lower bound
obtained by solving the linear relaxation of the model proposed
by [13].

Table III presents the average results for each size of the
planning horizon, showing the number of feasible solutions
found and GAP (only for the feasible instances) obtained at
the end of the LNS and the end of RMIP. The last column
presents the average total time of the algorithm.

As expected, the difficulty of obtaining feasible solutions,
and the average GAP increases as the planning horizon’s size
increases. The multi-start algorithm and the LNS were respon-
sible for 23% and 63% of the processing time on average,
respectively. Observe that the processing times increased more
than 430% between the tests with |T | = 180 and |T | = 360.
This can be explained due to the bottleneck in updating the
port’s inventory. Every time a vessel operates at a port, the port



TABLE III
LNS AND RMIP RESULTS FOR THE LONG PLANNING HORIZON

INSTANCES.

LNS RMIP Total
time (s)#Feasible GAP(%) #Feasible GAP(%)

|T | = 120 7.0/14 16.4 6.0/14 21,2 1,353.4
|T | = 180 5.2/14 19.7 5.2/14 27.0 2,166.6
|T | = 360 2.2/14 13.5 2.4/14 13.2 9,512.4

inventory needs to be updated in each time period from the
time of the operation until the end of the planning horizon. As
the number of operations performed increases with the size of
the planning horizon, further inventory updates are required.
The RMIP presented worse results considering feasibility and
solution quality in general, as the number of variables grows
proportionally to the planning horizon size. Thus, the time
limit defined for the CPLEX is too restrictive and may be
increased to obtain better results with RMIP.

It is important to say that we are not sure if there are feasible
solutions for all instances in all long planning horizons tested,
in particular, the instances in which spot market variables are
necessary to build feasible solutions. This occurs because the
value αmax

i , i ∈ J representing the total amount of product
that can be bought from or sold to a spot market in the
planning horizon is the same independently of the size of such
planning horizon. Thus, the higher the planning horizon, the
more difficult to obtain a feasible solution.

VII. CONCLUSION

In this work, we proposed a solution approach for a mar-
itime inventory routing problem in which obtaining feasible
solutions is a challenge. It is composed of two metaheuristics:
a multi-start algorithm and a large neighborhood search, which
uses a random constructive algorithm. Also, a reduced mixed-
integer program is built considering a solution set obtained by
the LNS and solved with the CPLEX solver. Computational
experiments were performed to analyze the influence of the
solution quality and processing times varying some parameter
values. The solution approach was compared with the ones that
obtained the best-known solutions, and although not outper-
forming them considering solution quality, the processing time
is much shorter. We also performed the tests with long plan-
ning horizon instances, in which no attempt to solve them was
presented in the literature, and our algorithm was able to obtain
feasible solutions for some of these instances. Differently from
other works that proposed solution approaches for the MIRP
variation studied here, our solution method is independent of
a mathematical solver, but its performance can be increased
when the reduced mixed-integer program is solved. A next
step to improve our multi-start algorithm is to use memory
mechanisms that can guide the search based on previously
built solutions.
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