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Abstract—Dynamic multi-objective optimisation has attracted
increasing attention in the evolutionary multi-objective opti-
misation community in recent years. Comparing to its static
counterpart, which has been studied for more than half a century,
the involvement of dynamic and uncertain features, including but
not limited to the changing Pareto-optimal set, Pareto-optimal
front and problem formulation, pose significant more challenges
to evolutionary algorithms. This will become even more com-
plicated when the underlying problem involves computationally
expensive objective functions which are not rare in many real-
world application scenarios. In this paper, we pave an initial step
towards the study of dynamic multi-objective optimisation with
computationally expensive objective functions. More specifically,
we use a surrogate assisted evolutionary algorithm, MOEA/D-
EGO in particular, as the baseline in order to carry out
evolutionary optimisation with a limited amount of function
evaluations. Furthermore, instead of restart the MOEA/D-EGO
from scratch after each change, we use transfer learning to map
the previously archived training data to the current landscape
in order to jump start the surrogate model building process.
By doing so, we can expect a better adaptation to the new
environment. Proof-of-concept experiments fully demonstrate the
effectiveness of our proposed method.

Index Terms—Dynamic multi-objective optimization, evolution-
ary algorithm, surrogate modeling, Gaussian process, transfer
learning

I. INTRODUCTION

Multi-objective optimisation problems (MOPs) are ubiqui-
tous in many real-world applications, such as engineering [1],
biology [2] and economics [3]. Comparing to predefined
and static MOPs, it is not uncommon and unarguably more
challenging to involve time varying features, including but
not limited to decision variables, objective functions and
constraints, termed as dynamic multi-objective optimisation
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problems (DMOPs). Without loss of generality, the DMOP
considered in this paper is formulated as:

minimise F(x) = (f1(x, t), · · · , fm(x, t))T

subject to x ∈ Ω, t ∈ Ωt
, (1)

where t is a discrete time step defined as t = b(τ/τt)c, τ and
τt represent the iteration counter and the frequency of change,
respectively, and Ωt ∈ N is the time space. Ω = Πn

i=1[ai, bi] ⊆
Rn is the decision (variable) space, x = (x1, · · · , xn)T ∈ Ω
is a candidate solution. F : Ω→ Rm consists of m conflicting
objective functions and Rm is the objective space. Given the
dynamic characteristics, the objective functions fi(x, t), i ∈
{1, · · · ,m}, are changing with time step t.

Given two candidate solutions x1 and x2 of the DMOP
defined in (1), x1 is said to dominate x2 at the time step t
(denoted as x1 �t x2) if and only if fi(x1, t) ≤ fi(x

2, t)
for all i ∈ {1, · · · ,m} and there exists at least one objective
j ∈ {1, · · · ,m} such that fj(x1, t) < fj(x

2, t). A solution
x∗ ∈ Ω is called Pareto-optimal at the time step t in case there
does not exist another solution x ∈ Ω such that x �t x

∗. All
Pareto-optimal solutions at the time step t constitute the t-th
Pareto-optimal set (PSt) whilst its image in the objective space
is the t-th Pareto-optimal front (PFt). In [4], Farina and Deb
for the first time formalised the benchmark test problems for
dynamic multi-objective optimisation and classified DMOPs
into four categorises according to the dynamics of PS and PF:
1) the PS changes over time but the PF is fixed; 2) both the
PS and PF change over time; 3) the PS is fixed whereas the
PF changes over time; and 4) both the PS and PF are fixed,
but the problem formulation changes over time.

Due to the population-based characteristics, evolutionary al-
gorithms (EAs) have been widely accepted as a major approach
for multi-objective optimisation. However, with the presence of
aforementioned dynamic features, DMOPs bring significantly
more challenges to traditional evolutionary multi-objective
optimisation (EMO) algorithms for tracking moving PSs and/or
PFs. In addition, one of the major obstacles that prevents the
widespread use of EAs in the real world is their intensive
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requirement of function evaluations which were assumed to be
non-trivial. On the contrary, evaluating a objective function in
many real-world scenarios is the most expensive part as it either
involves computationally expensive numerical simulations or
costly physical experiments. For example, computational fluid
dynamic (CFD) simulations usually take from minutes to hours
to run one function evaluation [5]. In this sense, dynamic multi-
objective optimisation under an expensive objective setting is
even more challenging because an EMO algorithm is required to
track the time varying PSs and/or PFs within a limited number
of function evaluations. In particular, the computational budget
between two time steps can even be much less than the classic
expensive optimisation settings.

To enable EAs to solve expensive optimisation problems,
surrogate models have been widely used to simulate the origi-
nally computationally demanding objective function, as known
as surrogate-based EAs (SAEAs). Many machine learning
algorithms, such as Gaussian processes, neural networks and
radial basis function networks, have been applied to build
surrogate models in SAEAs. Interested readers are referred
to a recent survey [6] on data-driven optimisation about the
current developments along this line of research. It is worth
noting that surrogate modelling is not a panacea, given the
intrinsic approximation errors of surrogate models brought
by limited training data. Such imperfect surrogate model
may mislead the evolutionary search. Under a dynamic and
uncertain environment, surrogate modelling becomes even more
challenging since the training data in the previous time step
highly likely to be useless for modelling the current landscape.
Given the short turnaround time between two consecutive
changes, it is suspicious to collect enough training data to
build a reliable surrogate model even at the end of a time step.

Bearing the above considerations in mind, this paper
proposes a SAEA based on transfer learning for solving
DMOPs with computationally expensive objective functions.
In particular, for proof-of-concept purpose, MOEA/D-EGO [7]
is chosen as the baseline surrogate-assisted optimiser and our
algorithm is thus dubbed as TL-MOEA/D-EGO. Instead of
building a surrogate model from scratch at each time step, TL-
MOEA/D-EGO applies transfer learning to map the training
data collected from previous time step(s) to enrich the data used
to build the surrogate model at the current time step. Proof-
of-concept experiments on several dynamic benchmark test
problems demonstrate the effectiveness and competitiveness of
our proposed TL-MOEA/D-EGO comparing to four state-of-
the-art peer competitors.

The rest of this paper is organised as follows. Section II
provides a pragmatic overview of some related works on
dynamic EMO algorithms. Section III describes the algorithmic
implementation of our proposed algorithm. Experimental results
are presented and analysed in Section IV. Section V concludes
this paper and threads some potential future directions.

II. RELATED WORKS

In the section, we will give a pragmatic overview of some
important works on both surrogate assisted EAs for solving

computationally expensive MOPs and techniques for solving
dynamic MOPs.

A. Surrogate Assisted EMO Methods

Most surrogate assisted EMO algorithms are derived from
those SAEAs designed for expensive global optimisation. For
example, in [8], Goel et al. proposed a function approximation
method that uses the polynomial functions to approximate the
originally expensive objective functions. It is worth noting
that this method works well for problems with two and three
objectives in a convex space. In [9], Ponweiser et al. adapted the
Kriging model and the efficient global optimisation (EGO) [10]
framework to the SMS-EMOA [11] and proposed a SMS-EGO.
In [7], Zhang et al. proposed to incorporate the EGO framework
into the MOEA/D. Its basic idea is to decompose the original
MOP into several subproblems. By this means, the surrogate
model of the objective function is transformed into a surrogate
of a subproblem. During the optimisation process, the expected
improvement of each subproblem is used as the selection
criterion. In [12], Chugh et al. proposed a surrogate-assisted
reference vector guided EA for expensive MOP with more
than three objectives. In managing the surrogate models, the
algorithm focuses on the balance between convergence and
diversity by making use of the uncertainty information derived
from the surrogate model.

B. Techniques for DOMPs

According to the way about how to adapt to the changing
environment, the existing techniques for DMOPs can be
categorised into four classes.

1) Diversity-Based Techniques: The basic idea of this type
of techniques is try to maintain the population diversity as much
as possible so that to preserve a better exploration in the search
space. By doing so, the evolutionary population is expected to
keep a record of the representative spots of the search space
to quickly adapt to the changing environment. For example,
Deb et al. [13] proposed two algorithms based on the fast non-
dominated sorting genetic algorithm (NSGA-II) [14]. Their
basic idea is to introduce diversified solutions by replacing ζ%
population with randomly generated solutions or mutated ones.
It is worth noting that both algorithms are sensitive the control
parameter ζ . In [15], Jiang et al. proposed to keep some of the
solution in the previous population untouched and use some
prediction method to generate new solutions according to the
movement of the changing PF. Unfortunately, it is far from
trivial to keep track of the moving trajectory of the changing
PF’s manifold.

2) Memory-Based Techniques: Given the observation of the
oscillation of DMOPs, the basic idea of this sort of method is
to keep a record of some promising/representative solutions in
the previous population. By doing so, it is expected to adapt
to the those memorised solutions once the environment is
changed back to the previous steps. In [16], an adaptive hybrid
strategy is proposed to combine the memory-based strategy
and the random strategy. However, when the changing severity
is lower which means the difference between two population



is large, this algorithm may lose diversity and even worse
than randomly reinitialization. In [17], a multiple reference
point-based algorithm is proposed to use a set of predefined
search directions to navigate the search process.

3) Multi-Population-Based Techniques: The rigor of this
type of techniques is similar to the diversity-based techniques.
It aims to use several co-evolving populations to maintain an
acceptable diversity of the search space. For example, in [18],
Branke et al. proposed to divide the evolutionary population
into two parts, i.e., scout and base populations. During the
search process, the base population searches for the optimal
solutions in the current environment whilst the scout population
keeps on tracking the change of the optimal solutions.

4) Prediction-Based Techniques: This type of techniques
aims to use model-based method to keep track of the dynamics
of the changing environment. In [19], a linear discrete-
time Kalman filter (KF) [20] is used along with the multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) [21] for solving DMOPs. Since the KF is able
keep track of the dynamics of the system and smooth the
landscape by removing unnecessary noises, it is ideal tool for
DMOPs. In particular, the KF is used to predict the potential
position of the best initial population in the next time step.
Unfortunately, the linear KF used in this work does not work
for non-linear environment.

According to the above overview, we can find that it is
important to leverage the historical information in the previous
time steps to help keep track of the dynamic features of the
problem landscape. This motivates us to take advantage to
exploit the knowledge embedded in those historical information
by using transfer learning.

III. PROPOSED METHOD

Since MOEA/D-EGO is used as the baseline optimiser of
TL-MOEA/D-EGO, we first provide a briefing of its working
principle. Afterwards, the basic idea and the mathematical
underpinnings of transfer component analysis (TCA) [22], i.e.,
the transfer learning techniques used in TL-MOEA/D-EGO, are
described. At the end, the additional steps used to incorporate
TCA into MOEA/D-EGO to constitute TL-MOEA/D-EGO is
explained step by step.

A. Working Principle of MOEA/D-EGO

MOEA/D-EGO is a MOEA/D [21] variant with the Gaussian
process (GP) model for solving expensive multi-objective
optimisation. Generally speaking, MOEA/D-EGO consists of
the following six steps:

• Step 1. Initialisation: Use an experimental design method
to sample NI solutions from Ω and evaluate their objective
values. Set Pe = {xi}NI

i=1

• Step 2. Termination Criterion: Terminate MOEA/D-
EGO and output all non-dominated solutions in Pe.

• Step 3. Model Building: Using Pe to build a GP model
for each objective and thus the acquisition function.

• Step 4. Locating Candidate Solutions: Using the vanilla
MOEA/D to search a population of solutions Ps =
{x̃i}Ni=1 that optimise the acquisition function.

• Step 5. Selecting Solutions for Function Evaluation:
Select NE solutions from Ps according to a selection
criterion.

• Step 6. Update Database: Evaluate the objective values
of all NE solutions from Step 5 and add them all to Pe

and go to Step 2.
In the following paragraphs, we will delineate some impor-

tant steps directly related to TL-MOEA/D-EGO.
1) GP Modelling: In the SAEA literature, GP model [23] has

been widely used as a relatively cheap to evaluate surrogate of
the original expensive objective function. Given a set of training
data D = {(ziI , ziO)|i = 1, · · · , Ñ}, GP regression aims to
learn a latent function g(zI) by assuming ziO = g(ziI) + ε,
where ε ∼ N (0, σ2

n) is an independently and identically
distributed Gaussian noise. For a new and unknown data
z∗I ∈ [0, 1]m−1, the mean and variance of the target g(z∗I)
are predicted as:

g(z∗I) = m(z∗I) + k∗T (K + σ2
nI)−1(zO −m(ZI))

V[g(z∗I)] = k(z∗I , z
∗
I)− k∗T (K + σ2

nI)−1k∗
, (2)

where ZI = (z1I , · · · , zÑI )T and zO = (z1O, · · · , zÑO )T . m(ZI)
is the mean vector of ZI , k∗ is the covariance vector between
ZI and z∗I , and K is the covariance matrix of ZI . The predicted
mean g(z∗I) is directly used as the prediction of z∗O, and the
prediction variance V[g∗] quantifies the uncertainty. Since there
are multiple conflicting objective functions in a MOP, it is
required to use GP to build a model for each objective function
in Step 3 of MOEA/D-EGO.

The basic idea of MOEA/D is to decompose the original
MOP into a population of subproblems and solve them in
a collaborative manner. Without loss of generality, here we
only consider the widely used Tchebycheff function as the
subproblem formulation:

minimise gt(x|w, z∗) = max
1≤i≤m

{|fi(x)− z∗i |/wi}

subject to x ∈ Ω
, (3)

where w = (w1, · · · , wm)T is a weight vector used to
characterise a subproblem and z∗ is the ideal point. In particular,
MOEA/D uses Das and Dennis’s method [24] to generate
a population of weight vectors W = {w1, · · · ,wN}. In
MOEA/D-EGO, instead of working with the surrogates of
objective functions, it uses model composition method to derive
a predictive distribution of gt(x|w, z∗) as:

gt(x|w, z∗) = max{max{|fi(x)− z∗i |/wi}}mi=1, (4)

where we only consider the cases of m = 2 and m = 3.
2) Acquisition Function: Under the efficient global opti-

misation (EGO) framework [10], instead of optimising the
surrogate function directly, it optimises the acquisition func-
tion to guide the sampling and infill criterion in the next
step. As for MOEA/D-EGO, each subproblem gt(x|wi, z∗),



i ∈ {1, · · · , N}, can have an acquisition function ξi(x)
where MOEA/D-EGO uses the expected improvement (EI)
in particular which is formulated as:

ξi(x) = E[max{gtmin(∗|wi, z∗)− gt((x|wi, z∗))}] (5)

where gtmin(∗|wi, z∗) is the current minimum aggregation
function value of the i-th subproblem. In Step 4, different from
the vanilla MOEA/D which optimises the aggregation function
of each subproblem, MOEA/D-EGO uses the acquisition
function of each subproblem instead.

3) Infill Criterion: Different from the classic EGO frame-
work which only update the training dataset one solution at
a time, MOEA/D-EGO aims to evaluate NE > 1 solutions
simultaneously in a batch manner. Specifically, in Step 5, it
first trims the evolutionary population Ps according to their
similarity to the solutions in Pe. In other words, only different
solutions can be considered to carry out function evaluations.
Thereafter, it uses k-means algorithm to identify NE clusters.
At the end, the solution having the best acquisition function
value at each cluster is chosen to have a function evaluation.

B. Domain Adaptation by Transfer Component Analysis

Transfer Component Analysis (TCA) has been widely
recognised as one of the most successful domain adaptation
methods for transfer learning purpose. In the context of
DSAEA/TL, TCA is applied to adapt the evaluated training
data to the current problem landscape, in order to overcome
the shortage of data in the fast moving dynamic environment.

More specifically, we assume that the training data collected
before the current time step can be formulated as Ds =
{(xi,F(xi))}ns

i=1, which is called the source domain under the
transfer learning rigor. As for the data collected at the current
time step, they can be formulated as Dt = {(x̂i,F(x̂i))}nt

i=1

which is termed as the target domain. It is not uncommon
that the marginal probability distribution of the data in the
source domain is different from that of the target domain, i.e.,
P (Ds) 6= P (Dt). In order to implement a domain adaptation,
the basic idea of TCA is to use a feature mapping φ over the
source and the target domain, thus leading to P (F(x)|φ(x)) ≈
P (F(x̂)|φ(x̂)). It is non-trivial to align two multi-variable
probability distribution. Instead, Pan et al [22] proposed to
reformulate this as an optimisation problem that aims to
minimise the maximum mean discrepancy (MMD) [25] of two
marginal probability distributions. Specifically, given two sets
of observations X = {x1, · · · , xns

} and Y = {y1, · · · , ynt
}

drawn independently and identically distributed (i.i.d.) from
two probability distributions p and q respectively. Then MMD
and its empirical estimate is defined as:

MMD(F , p, q) = sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)])

MMD(F , X, Y ) = sup
f∈F

(
1

ns

ns∑
i=1

f(xi)− 1

nt

nt∑
i=1

f(x̂i))
,

(6)
where F is a class of functions f : X → R. By using kernel
theory, f can be written as f(x) = 〈φ(x), f〈 in a reproducing

kernel Hilbert space (RKHS), where φ(x) : X → H. In this
sense, the empirical estimate of MMD can be written as:

MMD(F , X, Y ) =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

φ(xi)−
1

nt

nt∑
j=1

φ(xj)

∥∥∥∥∥∥
2

H

. (7)

By using kernel tricks, equation (7) can be written as a quadratic
product of kernel matrices K∥∥∥∥∥∥ 1

ns

ns∑
i=1

φ(xi)−
1

nt

nt∑
j=1

φ(xj)

∥∥∥∥∥∥
2

= tr

([
φ(xs) φ(xt)

] [ 1
n2
s
11T −1

nsnt
11T

−1
nsnt

11T 1
n2
t
11T

] [
φ(xs)

T

φ(xt)
T

])

= tr

([
φ(xs)

T

φ(xt)
T

] [
φ(xs) φ(xt)

] [ 1
n2
s
11T −1

nsnt
11T

−1
nsnt

11T 1
n2
t
11T

])

= tr

([
< φ(xs), φ(xs) > < φ(xs), φ(xt) >
< φ(xt), φ(xs) > < φ(xt), φ(xt) >

]
L

)
= tr

([
Ks,s Ks,t

Kt,s Kt,t

]
L

)

,

(8)

where

(L)ij =


1

nsns
, xi,xj ∈ Ds

1
ntnt

, xi,xj ∈ Dt
−1
nsnt

, otherwise
, (9)

By using such derivation, equation (7) can be simplified as:

MMD(F , X, Y ) = tr(KL)− λ tr(K), (10)

where

K =

[
Ks,s Ks,t

Kt,s Kt,t

]
. (11)

Since equation (10) is a semi-definite programming problem,
it can be solved by constructing the following formulation:

K̃ = (KK−
1
2 W̃ )(W̃TK−

1
2K) = KWWTK, (12)

where W = K−
1
2 W̃ . By using 12, the distance between the

distributions of two sets of observations can be re-written as:

Dist(Ds,Dt) = tr((KWWTK)L) = tr(WTKLKW ),
(13)

Thereafter, the final optimisation problem is:

min
W

tr(WTKLKW )

s.t. WTKHKW = I
, (14)

where H = I − (1/[s + t])11T and I ∈ R(s+t)∗(s+t) is an
identity matrix. Lagrangian duality can be used to solve (14)
whilst W is the first (s+ t) eigenvalues.



C. Using TCA within MOEA/D-EGO

As discussed in Section I, we do not intend to restart the
search process from scratch when the environment has been
changed from time step t to time step t+1. On the contrary, we
expect to leverage the knowledge collected from the previous
time steps to enrich the training dataset in the underlying time
step. To this end, we only need the following three additional
procedures to extend the original MOEA/D-EGO.
• Once the environment is switched from time step t to
t+ 1, we need to store all non-dominated solutions from
Pe at the time step t into A.

• We use the same experimental design method as the
Step 1 of MOEA/D-EGO to sample NT solutions from
Ω. In particular, 1 < NT � NI given the shortage of
computational resource. Then, we evaluate their objective
values and set them as the new Pe at the time step t.

• At for the Step 3 of MOEA/D-EGO, instead of just using
Pe to build a GP model, we use TCA to map A to the
domain of Pe at the current time step and generate a new
set of data At. At the end, Pe

⋃
At is used as the training

data for building the GP model.
It is worth noting that we use MOEA/D-EGO for proof-of-
concept purpose. In principle, this idea can be incorporated
with any surrogate-assisted EMO algorithms.

IV. EMPIRICAL STUDY

A. Benchmark Problems

To have a proof-of concept study of our proposed TL-
MOEA/D-EGO, we choose some widely used test problems in
the literature, including FDA1 to FDA5 [4], ZJZ5 to ZJZ8 [26],
dMOP1 and dMOP2 [27], to constitute our benchmark set.
FDA test suite represents various dynamic features introduced
in Section I. dMOP1 and dMOP2 provide an extension of FDA.
ZJZ test suite consists of 10 different test problem instances.
In particular, ZJZ1 to ZJZ4 are similar to FDA1 to FDA5,
thus only the remaining six problems are considered in our
experiments.

B. Performance Metrics

To have a quantitative evaluation of the performance of
different algorithms, we use the modified inverted generational
distance (MIGD) proposed in [26] as the performance metric.
Specifically, it is defined as:

MIGD =

∑
t∈T IGD(St, S

∗
t )

T
(15)

where T is the number of time steps, S∗t is the reference
set sampled from the t-th PF and St is the approximated PF
obtained at the end of the time step t. In particular, the vanilla
IGD is calculated as:

IGD(St, S
∗
t )) =

∑
x∗∈S∗

t
dist(x∗, St)

|S∗t |
(16)

where dist(x∗, St) is the Euclidean distance between the
solution x∗ ∈ S∗t and its nearest neighbour of St in the
objective space and |S∗t | is the cardinality of S∗t .

C. Peer Algorithms

In our experiments, we choose the dynamic NSGA-II
(DNSGA-II) proposed in [13] as the peer algorithm for
performance comparisons. Specifically, DNSGA-II keeps on
choosing 10% randomly chosen solutions as pilots to keep
track of the change of the environment. In particular, if the
objective function values of the current pilots are different from
their last step, the change of the environment is thus captured.
In DNSGA-II, there are two different strategies to respond to
the change of the environment:
• DNSGA-II-A: When a change occurs, ζ% of the population

is replaced by randomly generated solutions.
• DNSGA-II-B: Similar to DNSGA-II-A, ζ% of the solutions

are mutated with rate ηNSGA% when the change is
detected.

In particular, our experiments set ζ = 20 and ηNSGA = 5.

D. Parameter Settings

The parameters associate with the algorithms considered
in our experiments and also the benchmark problems are
introduced as follows.
• The number of decision variables is set as n = 10 for all

benchmark problems.
• The population size of DNSGA-II is set to 152.
• Simulated binary crossover and polynomial mutation is

used as the reproduction operator. Their parameters are
set as ηc = ηm = 20, pc = 1.0 and pm = 1

n .
• In order to have a statistical sound comparison, Wilcoxon

rank sum test is used to validate the statistical significance
of the best results.

• There are two parameters associated with the benchmark
problems to control the changing frequency and severity.
Four different changing patterns are considered in our
experiments, i.e., (nt = 10, τt = 50), (nt = 10, τt = 30),
(nt = 10, τt = 20), (nt = 20, τt = 50). nt and τt are
the severity and the frequency of changes, respectively. A
lower value of nt represents larger change and a smaller
value of τt represents faster change.

E. Results

The statistical results of IGD values for the different
problems are listed in Table I, II, III and IV. The statistical
test of Wilcoxon’s rank-sum test for independent samples is
tested for all IGD statistical values. Wilcoxon’s rank-sum test
is a non-parametric statistical hypothesis test used to compare
two sets of samples to assess whether their population means
rank differ. In this test, we assume that data are paired and
come from the same population. Then compare the statistical
results with the significance level at p = 0.05. When the
statistical result is less than p, the hypothesis is rejected, that
is, the proposed algorithm performs significantly better than
the compared algorithms.

In our results, the performance of the TL-MOEA/D-EGO is
better than the performance of the peer algorithms, especially
in Test 2 (Table II). TF-MOEA/D-EGO algorithm performs



significantly better than the other comparison algorithms in
9 out of the 11 problems. This shows that the proposed
algorithm can accelerate the speed of the search for Pareto
Optimal. Figure 1-11 shows the IGD changing with different
test problems. According to Figure II and Figure III, we can
see that when τt gradually becomes smaller, that is, when fast
changes occur, the performance of our algorithm decreases in
some test problems. This is because our algorithm needs a
certain number of samples as a benchmark to transfer, and it
takes a certain period to collect samples. When the environment
changes rapidly, detecting and tracking the latest changes is
a complicated problem. Similarly, when nt becomes larger, it
indicates that the severity of the change becomes smaller, thus
the effect of the algorithm using transfer learning method is
not obvious.

In Fig. 1 to Fig. 4, we use 3 different lines to represent the
IGD values’ change of the proposed algorithm and the peer
algorithms in each test case during function evaluations. In
particular, our parameters set nt = 10 and τt = 50. As can be
seen from the figures, except for the test problem of FDA1,
the IGD value of the proposed algorithm changes less sharply
change than the peer algorithms. This indicates that in most
cases, the proposed algorithm can effectively track the changes
of Pareto optimal.

As can be seen from Fig. 1, in the dMOP test problems,
the proposed TF-MOEA/D-EGO performance is significantly
better than other peer algorithms. First, in the beginning,
TF-MOEA/D-EGO finds effective solutions faster than other
algorithms. And in subsequent changes, the optimal solution
has been continuously tracked by proposed algorithm. For the
five problems of the FDA test set, the proposed algorithm
performs poorly in some test cases, especially in FDA1, which
shows greater fluctuations than other algorithms. Although our
algorithm in FDA1 is like in the dMOP problem, the proposed
algorithm converges faster than other algorithms, but the Pareto
front is not captured real. This may be related to the choice of
framework. We will conduct further experiments and improve
in the future. In the FDA3, as shown in the Fig. 2(c), the three
comparison algorithms show the same IGD change pattern. It
can be considered that our algorithm is equally effective on
this problem, but more attention to detail is needed to improve
the performance of the algorithm. In rest tests of the FDA
test set, the proposed algorithm performance is statistically
significantly better than other peer algorithms. In the ZJZ test
set, we tested four questions (ZJZ5 to ZJZ8). Among them,
ZJZ5 to ZJZ7 are 2-objective test problems and have non-linear
linkages between decision variables. It is observed that our
algorithm performs significantly better than peers. The TF-
MOEA/D-EGO algorithm not only has immediate results at
the beginning but also remains stable in subsequent changes.
ZJZ8 is a 3-objective problem with PF that remains the same
at all times. As can be seen from Fig. 4(d) and Table II, our
algorithm performs significantly better.

TABLE I
COMPARISON RESULTS OF MIGD VALUES OF PROPOSED ALGORITHM AND

OTHER PEER ALGORITHMS WHERE nt = 20 τt = 50)

TL-MOEA/D-EGO DNSGA-II-A DNSGA-II-B
FDA1 2.385E-2(1.33E-4) 6.098E-3(3.09E-7)‡ 2.909E-2(6.11E-4)†

FDA2 5.670E-3(3.92E-6) 3.684E-2(1.18E-2)† 2.157E-2(1.52E-4)†

FDA3 8.998E-1(2.75E-3) 3.244E-1(2.12E-1)† 1.572E-1(3.86E-2)‡

FDA4 6.345E-2(1.67E-4) 9.755E-2(3.38E-4)† 7.339E-2(2.79E-4)†

FDA5 8.744E-2(2.89E-4) 1.285E-1(3.89E-3)† 2.528E-1(1.33E-2)†

ZJZ5 2.724E-2(1.90E-2) 3.780E-2(3.42E-5)† 1.422E-1(5.04E-3)†

ZJZ6 3.596E-2(1.30E-3) 3.909E-2(3.77E-5)† 6.936E-2(6.77E-5)†

ZJZ7 3.544E-2(3.02E-3) 2.975E-2(3.49E-5)‡ 8.719E-2(7.08E-5)†

ZJZ8 5.182E-2(6.70E-3) 5.977E-1(1.26E-2)† 5.175E-1(1.62E-2)†

dMOP1 1.298E-2(2.88E-4) 1.541E-2(4.21E-5)† 1.989E-2(5.31E-5)†

dMOP2 1.330E-2(7.90E-5) 5.960E-3(7.91E-7)‡ 1.298E-1(4.08E-2)†

† denotes that the proposed algorithm is significantly better than the
compared algorithm with the Wilcoxon’s rank-sum test at p = 0.05
significance level. ‡ denotes that the corresponding algorithm is better than
proposed algorithm.

TABLE II
COMPARISON RESULTS OF MIGD VALUES OF PROPOSED ALGORITHM AND

OTHER PEER ALGORITHMS WHERE nt = 10 τt = 50)

TL-MOEA/D-EGO DNSGA-II-A DNSGA-II-B
FDA1 3.772E-2(3.23E-4) 2.364E-2(1.15E-5)‡ 3.095E-2(2.37E-3)
FDA2 6.441E-3(8.73E-6) 1.421E-2(1.15E-4)† 1.559E-1(7.58E-7)†

FDA3 8.890E-1(7.80E-3) 5.197E-2(1.95E-2) 4.214E-2(3.86E-4)‡

FDA4 8.193E-2(4.65E-4) 1.280E-1(3.35E-4)† 9.917E-2(4.31E-5)†

FDA5 8.616E-2(9.71E-4) 1.609E-1(6.39E-4)† 1.489E-1(3.69E-5)†

ZJZ5 2.326E-2(9.90E-5) 9.499E-2(1.12E-3)† 2.146E-1(7.79E-3)†

ZJZ6 2.316E-2(6.55E-3) 5.881E-2(1.50E-4)† 1.450E-1(2.51E-4)†

ZJZ7 1.433E-2(2.37E-2) 5.249E-2(1.54E-4)† 1.535E-1(1.98E-4)†

ZJZ8 4.645E-2(7.90E-4) 4.989E-1(5.64E-2)† 1.116E-1(7.38E-5)†

dMOP1 9.204E-3(1.04E-4) 1.823E-2(1.20E-4)† 1.565E-1(6.42E-7)†

dMOP2 2.161E-2(3.85E-4) 5.583E-2(5.93E-4)† 3.724E-1(8.14E-2)†

† denotes that the proposed algorithm is significantly better than the
compared algorithm with the Wilcoxon’s rank-sum test at p = 0.05
significance level. ‡ denotes that the corresponding algorithm is better than
proposed algorithm.

TABLE III
COMPARISON RESULTS OF MIGD VALUES OF PROPOSED ALGORITHM AND

OTHER PEER ALGORITHMS WHERE nt = 10 τt = 30

TL-MOEA/D-EGO DNSGA-II-A DNSGA-II-B
FDA1 3.191E-2(2.19E-4) 5.787E-3(1.12E-7)‡ 5.189E-2(1.60E-2)†

FDA2 1.125E-2(7.04E-5) 7.127E-2(9.41E-4)† 2.075E-1(8.35E-4)†

FDA3 8.818E-1(5.80E-3) 7.808E-2(1.51E-2)‡ 3.280E-1(1.72E-3)†

FDA4 5.130E-2(2.50E-5) 7.832E-2(2.79E-4) 5.652E-2(1.97E-5)
FDA5 5.657E-2(2.50E-5) 3.876E-1(6.63E-3)† 5.148E-1(2.78E-3)†

ZJZ5 5.927E-2(1.24E-2) 4.924E-2(1.29E-4)‡ 6.598E-1(2.22E-2)†

ZJZ6 4.138E-2(3.11E-4) 4.026E-2(4.51E-5) 5.570E-2(6.18E-4)
ZJZ7 1.621E-1(1.34E-1) 3.404E-2(1.55E-5)‡ 4.101E-2(7.32E-5)
ZJZ8 6.679E-2(5.73E-4) 3.870E-1(1.62E-2)† 1.253E-1(3.70E-4)†

dMOP1 1.129E-2(3.55E-5) 5.933E-2(2.20E-3)† 2.155E-1(3.74E-7)†

dMOP2 7.701E-2(3.06E-3) 9.049E-2(2.73E-3) 1.521E-1(6.13E-2)
† denotes that the proposed algorithm is significantly better than the
compared algorithm with the Wilcoxon’s rank-sum test at p = 0.05
significance level. ‡ denotes that the corresponding algorithm is better than
proposed algorithm.



TABLE IV
COMPARISON RESULTS OF MIGD VALUES OF PROPOSED ALGORITHM AND

OTHER PEER ALGORITHMS WHERE nt = 10 τt = 20)

TL-MOEA/D-EGO DNSGA-II-A DNSGA-II-B
FDA1 7.786E-2(7.13E-4) 3.184E-2(5.66E-5)‡ 4.257E-2(6.65E-3)
FDA2 1.919E-2(4.70E-4) 2.846E-1(8.70E-2)† 2.635E-1(8.97E-2)†

FDA3 8.856E-1(4.89E-3) 7.325E-1(3.29E-1)† 3.372E-1(8.59E-2)†

FDA4 5.738E-2(2.50E-4) 1.431E-1(3.40E-4)† 1.236E-1(2.75E-4)
FDA5 5.199E-2(2.50E-5) 1.637E-1(4.90E-4)† 1.494E-1(3.13E-5)†

ZJZ5 5.153E-2(4.94E-4) 2.512E-1(1.23E-2)† 7.115E-1(1.07E-1)†

ZJZ6 1.137E-1(1.62E-2) 2.028E-1(4.15E-3)† 8.518E-2(9.07E-4)‡

ZJZ7 9.670E-1(3.98E-1) 1.541E-1(6.41E-3) 8.031E-2(3.05E-4)‡

ZJZ8 2.820E-1(3.76E-4) 8.959E-1(5.19E-2)† 6.178E-1(1.37E-2)†

dMOP1 1.425E-2(1.17E-4) 3.875E-1(1.03E-1)† 3.472E-1(1.07E-1)†

dMOP2 6.900E-2(2.72E-3) 1.172E-1(2.15E-2) 1.565E-1(4.97E-2)
† denotes that the proposed algorithm is significantly better than the
compared algorithm with the Wilcoxon’s rank-sum test at p = 0.05
significance level. ‡ denotes that the corresponding algorithm is better than
proposed algorithm.

(a) MIGD for dMOP1 Problem

(b) MIGD for dMOP2 Problem

Fig. 1. Comparison of MIGD for dMOP Problems(nt = 10 τt = 50)

Fig. 3. Results of MIGD for FAD5 Problem(nt = 10 τt = 50)

V. CONCLUSIONS

Due to the dynamic features (e.g., changing PS, PF or
problem formulation), dynamic multi-objective optimisation
pose significant more challenges than its static counterpart. It
becomes even more complicated if the objective functions are

computationally expensive. As an initial attempt along this
line, we propose a surrogate assisted EA, using MOEA/D-
EGO as the baseline, based on transfer learning, using TCA
to implement domain adaptation, to solve dynamic MOPs
with expensive objective functions. Its basic idea is to use
transfer learning to jump start the surrogate model building
process in order to adapt to the fast moving environment.
Preliminary results on some popular dynamic multi-objective
optimisation benchmark problems demonstrate the effectiveness
of our proposed method.

As an early attempt along this line of research, a lot of
issues remained for further investigations. For example, many
other transfer learning techniques can be considered to better
leverage the previous knowledge. In some cases, the landscape
might have a significant change with respect to the previous
time steps, it is arguable to treat all those archived data equally
in transfer learning. It is interesting to study more problem
specific way to aggregate the training data archived at different
time steps. Many other surrogate assisted EA frameworks can
be explored in future research.
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