
Which random is the best random? A study on
sampling methods in Fourier surrogate modeling

Marco S. Nobile
Department of Industrial Engineering &

Innovation Sciences
Eindhoven University of Technology

Eindhoven, The Netherlands
m.s.nobile@tue.nl

Simone Spolaor
Department of Informatics,

Systems and Communication
University of Milano-Bicocca

Milan, Italy
simone.spolaor@disco.unimib.it

Paolo Cazzaniga
Department of Human and Social Sciences

University of Bergamo
Bergamo, Italy

paolo.cazzaniga@unibg.it

Daniele M. Papetti
Department of Informatics,

Systems and Communication
University of Milano-Bicocca

Milan, Italy
d.papetti1@campus.unimib.it

Daniela Besozzi
Department of Informatics,

Systems and Communication
University of Milano-Bicocca

Milan, Italy
daniela.besozzi@unimib.it

Daniel A. Ashlock
Department of Mathematics

and Statistics
University of Guelph
Guelph, ON, Canada

dashlock@uoguelph.ca

Luca Manzoni
Department of Mathematics

and Geosciences
University of Trieste

Trieste, Italy
lmanzoni@units.it

Abstract—Global optimization problems can be effectively
solved by means of Computational Intelligence methods. How-
ever, there are several areas in which the effectiveness of these
algorithms can be hampered by the computational costs of the
fitness evaluations, or by specific features of the fitness landscape
that can be characterized by noise and by the presence of several
(even infinite) local optima. These issues bring about the necessity
of defining specific techniques to replace the original problem
with a surrogate representation. Fourier surrogate modeling
represents a novel and effective approach to generate smoother,
and possibly easier to explore, fitness landscapes, and to reduce
the computational effort. Fourier surrogates require an initial
sampling of the search space that must be performed to calculate
the Fourier transforms. In this paper we investigate the impact
on the quality of the surrogate models of the hyper-parameters of
the methodology, and of several methods that can be employed
for the initial sampling of the fitness landscape (i.e., pseudo-
random numbers, low discrepancy sequences, a logistic map in
chaotic regime, true random positions generated by a quantum
computer, and point packing). Our results show that semi-
structured approaches like quasi-random sequences and point
packing can outperform the other sampling methods.

Index Terms—Fuzzy Self-Tuning PSO, global optimization,
surrogate modeling, Fourier transform, chaotic systems, logistic
map, pseudo-random numbers generation, quasi-random num-
bers generation, quantum computing, point packing

I. INTRODUCTION

Surrogate modeling is widely used in the context of global
optimization, in order to define an approximate or simplified
version of the fitness function, whose evaluation is (much) less
expensive than the original version [1]. To this aim, various
techniques have been employed, including genetic program-
ming [2], artificial neural networks [3], polynomial regression
[4], Kriging modeling [5], support vector regression [6], radial
basis functions [7], or combinations of these methods to build
local or global surrogate models [8]–[11]. Surrogate models

are exploited in several engineering and scientific disciplines
[1], [12]–[15], to reduce the relevant computational burden
of optimization tasks, in which the evaluation of the fitness
function represents the major bottleneck.

Surrogate models can be particularly useful when the opti-
mization is carried out by means of Computational Intelligence
methods, e.g., evolutionary computation or swarm intelligence
algorithms [16]–[18], since these approaches typically require
many evaluations of the fitness function to converge to an opti-
mal solution. Surrogate models can also be useful for a second
reason, i.e., filtering or smoothing out the fitness landscape.
Taking into account both problems, we proposed surF [19],
a method for generating smooth surrogate models of multi-
modal, rugged, and noisy fitness landscapes. surF leverages the
Fourier transform to filter out the high frequency components
of the landscape, in order to avoid the premature convergence
of optimization algorithms into local optima. The surrogate
fitness landscapes generated by surF preserve the advantage of
being computationally less expensive to evaluate; at the same
time, surF provides the user with the possibility of “tuning”
the level of smoothness applied to the surrogate landscape
by means of a specific hyper-parameter, corresponding to the
number of low frequency spectral coefficients considered for
the inverse Fourier transform. An additional hyper-setting of
surF is the initial sampling of the search space that is used to
create the surrogate.

In this paper we investigate the impact on the quality of
the generated surrogate models of the hyper-parameters of
surF, and of the sampling strategy employed. In particular, we
test multiple sampling strategies, ranging from the absolute
randomness provided by quantum random sampling, to the
semi-regular coverage of the search space offered by entropic
point packing algorithms. In order to investigate the impact

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Random sampling of
fitness landscape

Interpolation over
D-dimensional lattice

D-dimensional
Fourier Transform

Spectral coefficients
filtering

Inverse D-dimensional
Fourier transform

Creation of
surrogate model

Fig. 1. Schematization of the surF surrogate modeling method: at the beginning of the procedure, a random sampling of the search space is applied (blue box).
These samples are used to perform a Fourier filtering and create the surrogate model (red boxes), which can be later exploited to perform an optimization.

of these settings, we apply surF to three benchmark func-
tions characterized by multi-modality and ruggedness: Ackley,
Alpine and Rastrigin.

The remainder of the paper is structured as follows. Section
II provides background information on the surF method for
surrogate modeling, and on the random sampling strategies
exploited in this work. Section III presents a comparison on the
quality of the surrogate models obtained with different hyper-
parameters settings and different sampling strategies, and the
application of our methodology to a real world problem.
Finally, in Section IV we conclude with some discussions and
future developments of this line of research.

II. METHODS

Given an optimization problem, we define the search space
as the sub-space F ⊆ RD of the feasible candidate solutions.
In what follows, we assume that the search space is bounded
within the interval [βdmin, β

d
max], for each d = 1, . . . , D. Note

that sampling techniques typically produce random values in
the unitary hyper-cube, which can be easily remapped within
the boundaries of the search space.

A. Fourier surrogate modeling (surF)

The discrete Fourier transform (DFT) is a ubiquitous and
extremely useful mathematical tool for the processing of
discretized signals and information [20]. Although DFT is
generally exploited to manipulate periodic and oscillating
signals [21], we propose a completely different application
in the context of global optimization based on Computational
Intelligence. Specifically, we introduced surF [19], a new
approach for fitness landscape surrogate modeling by means
of Fourier filtering.

The surF methodology works as schematized in Figure 1:
the algorithm begins by randomly sampling σ points in the
search space (blue box). These random samples are then used
to generate a surrogate model (red boxes) by creating an
interpolated D-dimensional grid—having ρ points on each
dimension—that is fed to a DFT to convert the “signal” of
the fitness landscape into its frequency-domain representation.
Then, a low-pass filter retains the first γ low frequency
coefficients and sets to zero the rest of the spectra. Finally,
this filtered representation is fed back to an inverse Fourier
transform, which eventually builds the surrogate model of the
fitness landscape. surF works under the assumption that the
high frequency components of the fitness landscape can be
discarded, and the global optimum is preserved when a limited
number of low-frequency components is maintained.

One important question is how to select the value of γ.
Intuitively, the smaller the value of γ, the smoother the
landscape. However, when γ is too small, there might not
be enough coefficients to correctly preserve the position of
the global optimum, thus moving the global optimum in the
surrogate function far from the real one. Therefore, the optimal
value of γ should correspond to the minimum number of
coefficients needed to preserve the position of the global
optimum in the surrogate function. We expect this approach
to be effective when the landscape can be decomposed in a
few low-frequency components plus a high-frequency noise:
by keeping only the lower frequency, most of the local optima
should be removed, while preserving the position of the global
optima. Though, in general, the best value of γ will depend on
the characteristics of the fitness landscape, which are usually
unknown.

The goal of this paper is to investigate the impact of differ-
ent sampling strategies of the search space on the quality of the
surrogate model (i.e., the blue box in Figure 1), combined with
the variation of the hyper-parameter γ. A thorough description
of the surF surrogate algorithm can be found in [19].

B. Search space sampling methods

a) Uniform sampling with pseudo-random sequences:
The simplest method to sample a D-dimensional search space
consists in generating random vectors using a pseudo-random
number generator (here denoted by PSEUDO), which produces
a sequence of (apparently) random uncorrelated numbers fol-
lowing a uniform distribution. In this work, each d-th value of
these vectors is randomly sampled from a uniform distribution
in [βdmin, β

d
max], exploiting the random numbers generator of-

fered by the Python numpy library that uses the Mersenne
Twister algorithm [22]. Mersenne Twister is a well-known
robust generator characterized by an extremely long period
of 219937 − 1, which makes it the most widespread choice
for pseudo-random numbers generation. Nevertheless, since
computer programs are deterministic in nature, the pseudo-
random numbers are correlated (e.g., it is possible to predict
future values by looking at a sufficient number of iterations—
624 in the case of Mersenne Twister), and depend on the
chosen seed value.

b) Quantum random numbers generation: Among the
alternative options to pseudo-random sequences to generate
true random numbers, quantum computing is possibly one of
the most effective solutions. Namely, it is possible to exploit
superposition, i.e., to prepare the following quantum state

using a Hadamard gate:

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 . (1)

If a downstream measurement of the quantum register is
performed, the quantum waveform collapses and there is a
50% probability of measuring a 0, and 50% probability of
measuring a 1. By iteratively repeating the process, truly ran-
dom bits can be aggregated and interpreted as random numbers
of arbitrary precision. In this work, this task was performed
by using the qRNG library version 0.2.1. We also exploited
the Qiskit library version 0.13.0 [23], configured to access the
IBM Q Experience computing infrastructures. Specifically, we
run the code on the following backends: the 1 qubit machine
ibmq armonk and the 5 qubits machine ibm essex. It is worth
noting that the random number generation task performed
with these machines (here denoted by QUANTUM) is very
time consuming; for this reason, in the results presented in
Section III, we used actual quantum random generation only
for σ = 50 and σ = 500, while for σ = 5000 we exploited
the ibmq qasm simulator backend.

c) Logistic maps: The logistic map is a relatively simple
difference equation characterized by a complex chaotic behav-
ior. The recurrence formula is defined as:

xn+1 = rxn(1− xn), (2)

with r ∈ [0, 4] and x0 6= 0. The chaotic behavior arises for
values of r greater than 3.56995. Due to its characteristics,
the logistic map has been used to create random numbers
generators [24]. In this paper, we employ a chaotic random
numbers generator (denoted by CHAOS), using r = 4 and
applying the following transformation (see [24] for additional
information):

yn =
arcsin(1− 2xn)

π
. (3)

d) Quasi-random low discrepancy sequences: Quasi-
random number generators are designed to produce highly
uniform samples of the unitary hyper-cube [25], [26]. Their
goal is to minimize the discrepancy between the distribution of
the sampled points, and a distribution with equal proportions
of points in each sub-cube belonging to a uniform partition
of the hyper-cube. Thanks to this low-discrepancy property,
quasi-random numbers generators are able to more uniformly
cover the search space than classic pseudo-random generators.
In this work, we exploit the quasi-random generator based on
the Sobol sequence (denoted by QUASI) offered by the Python
package sobol seq version 0.1.2.

e) Point packing: A point packing in the unit square is
a placement of m points, aiming at the maximization of the
geometric mean of the Shannon entropy [27]. This technique,
which maximizes the evenness of marginal distributions in
each coordinate, was used because it creates a good approxi-
mation to an evenly spaced lattice of points. The concept can
be generalized to D-dimensional hyper-cubes, and multiple
point packings are possible for the same hyper-space. In this
work, we use a point packing algorithm (denoted by PPACK)
whose representation exploits the Conway operator [28].

III. RESULTS

Figure 2 shows some examples of surrogate models of the
Ackley benchmark function (with D = 2), created by means
of Fourier filtering. In the top-left figure we show the original
fitness landscape, characterized by a single global optimum
in (0, 0) and several local minima. In the second column,
we show the σ = 50 samples of the fitness landscape (red
dots), which are used to create the lattice by means of the
interpolation among the sampled values; in the background of
these plots, the darker the color, the better the fitness. The
five rows show the differences between the initial sampling
methods, namely (top to bottom): QUANTUM, PSEUDO,
CHAOS, QUASI, and PPACK. The sampling methods are
sorted according to the “degree of randomness” of the pro-
duced points distribution. The lattice then undergoes Fourier
filtering, where the high frequency spectral coefficients are
removed and the surrogate model is created by means of
inverse Fourier transform. The third, fourth and fifth columns
show the surrogate models created using γ = 3, γ = 5 and
γ = 15 coefficients, respectively. Overall, this figure clearly
shows that different sampling methods can yield different
surrogate models, by conveying different information into
surF.

We observe that a more uniform coverage of the search
space by means of QUASI and PPACK sampling allows for the
creation of a surrogate model that faithfully approximates the
original function, independently of the value of γ used. On the
contrary, QUANTUM, PSEUDO and CHAOS strategies suffer
from the low number of samples (i.e., σ = 50), especially in
the case of 15 coefficients. In any case, the value of γ used
to create the surrogate model has a strong effect on the final
result.

We denote by fo the original fitness function, and by
finitγ,σ the fitness function based on a surrogate model created
by generating σ samples using the init sampling method
(i.e., QUANTUM, PSEUDO, CHAOS, QUASI or PPACK),
and considering the first γ spectral coefficients. For each
combination of initial sampling method init, number of
spectral coefficients γ, and number of initial samples σ, we
calculate the average error with respect to the original function
as follows:

error(init, γ, σ) =
1

R

R∑
r=1

∣∣fo(xr)− finitγ,σ (xr)
∣∣ , (4)

where R is the number of random values taken from fo and
finit to compute the error. In all tests, we used R = 10000.

We calculated the error on three rugged and multi-modal
benchmark functions, which represent problems that can ben-
efit from the application of surF: Ackley, Alpine and Rastrigin.
The hyper-parameters of surF that were tested are: γ ∈ {3, 15}
spectral coefficients, and σ ∈ {50, 500, 5000} samples.

Although surF samples the fitness function fo only σ
times, the Fourier transform must be performed using a signal
sampled at regular intervals. This is obtained by using the
linear interpolation on a grid with ρ partitions per axis, leading

30 20 10 0 10 20 30 30
20

10
0
10

20
30

5.0
7.5
10.0
12.5
15.0
17.5
20.0

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30 30
20

10
0

10
20

30

16
17
18
19
20
21

= 3

30 20 10 0 10 20 30 30
20

10
0
10

20
30

12
14
16
18
20

= 5

30 20 10 0 10 20 30 30
20

10
0
10

20
30

12
14
16
18

20

22

= 15

Ac
kl

ey

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30 30
20

10
0

10
20

30

15
16
17
18
19
20
21
22

30 20 10 0 10 20 30 30
20

10
0
10

20
30

12
14
16
18
20

30 20 10 0 10 20 30 30
20

10
0
10

20
30

12
14
16
18
20
22

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30 30
20

10
0

10
20

30
15
16
17
18
19
20
21

30 20 10 0 10 20 30 30
20

10
0
10

20
30

12
14

16

18

20

30 20 10 0 10 20 30 30
20

10
0
10

20
30

10
12
14
16
18
20
22

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30 30
20

10
0

10
20

30
12

14

16

18

20

30 20 10 0 10 20 30 30
20

10
0
10

20
30

10
12
14
16
18
20
22

30 20 10 0 10 20 30 30
20

10
0
10

20
30

5

10

15

20

30 20 10 0 10 20 30
30

20

10

0

10

20

30

30 20 10 0 10 20 30 30
20

10
0

10
20

30

14

16

18

20

30 20 10 0 10 20 30 30
20

10
0
10

20
30

12
14
16
18
20
22

30 20 10 0 10 20 30 30
20

10
0
10

20
30

8
10
12
14
16
18
20
22

Fig. 2. Examples of Fourier surrogate models of the Ackley benchmark function created with Fourier filtering. The surrogate models are created using (from
top to bottom) the QUANTUM, PSEUDO, CHAOS, QUASI, and PPACK sampling strategies. Example of σ = 50 sampled points are shown as red dots in
the figures of the second column. The background color represents the linear interpolation of such points. The spectral coefficient used to create the surrogate
models are γ = 3 (third column), γ = 5 (fourth column) and γ = 15 (fifth column).

to a count of ρD interpolated samples. Hence, the requirements
in term of time and memory needed for storing the samples and
computing the DFT increase exponentially with the number
of dimensions D. Due to these circumstances, in all tests that
follow we limited our investigation to D = 5. We will discuss
this limitation in Section IV.

Figures 3 and 4 show the error between the original fitness
function and the surrogate models created by surF, considering
the Ackley, Alpine and Rastrigin benchmark functions with
D = 2 and D = 5 dimensions, respectively. These results
show that the number γ of spectral coefficients considered for
the creation of the surrogate model has a great impact on the
error, especially when σ = 500 or σ = 5000. This is not
unexpected, as the number γ must be high enough so that the
position of the global optimum is preserved in the surrogate
landscape. In addition, also the number σ of samples affects
the error value, which decreases from σ = 50 to σ = 500. On
the contrary, increasing the number of samples to σ = 5000
allows to decrease the error value only in a limited number of
cases (see, e.g., the Rastrigin function with γ = 15 in Figure
3). Analysing these results from a different perspective, we
observe that in the case of σ = 500 and σ = 5000, all sampling
strategies allow to achieve similar error values; conversely,
a limited number of samples (i.e., σ = 50) may result in
markedly different error values, as in the case of the Ackley
function with γ = 15 (see Figure 3, bottom left). Finally, by
comparing the performance of the different sampling strategies
over all benchmark functions with different hyper-parameters
combinations, it appears that QUASI and PPACK methods
generally obtain the best results. However, as we will discuss
in Section IV, the application of the PPACK method may be
problematic.

As a final test, we calculated the surrogate surface for
a “real world” problem, i.e., the Parameter Estimation (PE)
of a biochemical systems [29], in order to show a practical
application of surF. The PE problem consists in finding the
vector x ∈ R+ of the (unknown) kinetic parameters of a
mathematical model describing a biochemical system, which
allows to reproduce its dynamic behavior. This problem can
be re-stated as an optimization problem, where the distance
between a target dynamics and the simulated dynamics has
to be minimized. Here we consider a simplified version of
the problem, in which we aim at minimizing the difference
between the number of molecules appearing at any time point:

fbio(x) = |T (t)− S(x, t)|, (5)

where T (t) and S(x, t) represent, respectively, the target
number of molecules at time t, and the simulated number of
molecules at time t obtained using the putative parameteriza-
tion x.

Due to the non-linear and non-convex nature of this prob-
lem, the PE is a particularly challenging task to solve; this
issue can be exacerbated if the biochemical system is ana-
lyzed by means of stochastic approaches, which are suitable
when the molecular amounts are low and the role played by
noise cannot be neglected [30]. Several algorithms for the

stochastic simulation of biochemical models exist [30]–[32].
In this work, we leverage Gillespie’s Stochastic Simulation
Algorithm (SSA); specifically, the direct method implemented
in the StochPy library [33]. Due to stochasticity, two SSA
simulations run using the same model parameterization can
yield different dynamics. As a result, the fitness function in
Equation 5 is noisy, i.e., it can yield different values for the
same parameterization x, possibly misleading the optimization
algorithm. In this context, surF can be helpful to mitigate
the noise, yet preserving the general structure of the fitness
landscape while simplifying the optimization problem.

To investigate the effectiveness of this approach, we exploit
a simple stochastic model describing the transcription of a
gene [33], a process that is well-known to be affected by
stochastic fluctuations [34]. Transcription is a cellular process
in which the information encoded in a gene is copied into
a messenger RNA by an enzyme called RNA polymerase.
This process can be formalized with the following reactions:

• polymerase kini−−→ polymeraseMoving;
• polymeraseMoving ktra−−−→ mRNA + polymerase;
• mRNA

kdeg−−−→ λ,

where polymerase and polymeraseMoving denote the inactive
and active RNA polymerase, respectively, mRNA denotes the
messenger RNA, and λ denotes the degradation of the reactant.
A stochastic parameter is associated with each reaction: kini
denotes the rate of activation of the RNA polymerase, ktra
denotes the rate of transcription of the gene, and kdeg denotes
the rate of degradation of the mRNA. Stochastic parameters
are exploited by SSA to assess the probability of each reaction
to occur [30].

In this test, the goal of the PE was to fit an amount of mRNA
equal to 80 molecules at t = 500 minutes. The value of ktra
was fixed to 0.1 min−1, while kini and kdeg were unknown. It
is worth noting that, despite the small number of parameters,
their estimation can be a very complex task, because the fitness
landscape is characterized by noise and multi-modality. We
show in Figure 5 a comparison of the original fitness landscape
(blue surface) and the surrogate model created by surF (orange
surface). In this test, we used the QUASI initialization method,
γ = 8, σ = 500, ρ = 100.

Thanks to the application of surF, the plethora of local min-
ima characterizing the original fitness landscape is removed
in the surrogate model, but its general features are preserved.
For instance, in both cases the fitness value increases when
the degradation constant kdeg decreases, since this causes
the accumulation of mRNA molecules. It is also important
to highlight that the fitness evaluations performed with the
surrogate model were computationally less expensive than
the SSA runs necessary to compute the corresponding fitness
values of the original model. The generation of the surface
related to the original fitness landscape in Figure 5 required
156 seconds, while the surface of the surrogate fitness land-
scape required 0.08 seconds, corresponding to approximately
a 2000× speedup.

As a final remark, it is worth noting that, when using a few

= 50 = 500 = 5000
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Er
ro

r

Ackley - = 3
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r

Alpine - = 3
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Er
ro

r

Rastrigin - = 3
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Er
ro

r

Ackley - = 15
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
0.5

1.0

1.5

2.0

2.5

3.0

Er
ro

r

Alpine - = 15
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Er
ro

r

Rastrigin - = 15
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

Fig. 3. Error between the original fitness function and the surrogate models created by surF. The first, second and third columns correspond to the 2D versions
of the Ackley, Alpine and Rastrigin functions, respectively. The upper and lower rows correspond to the cases γ = 3 and γ = 15, respectively. In each figure,
the histograms are divided in three groups corresponding (left to right) to the number of initial samples used: σ = 50, σ = 500, and σ = 5000.

= 50 = 500 = 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r

Ackley - = 3
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
1

2

3

4

5

6

Er
ro

r

Alpine - = 3
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Er
ro

r

Rastrigin - = 3
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r

Ackley - = 15
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
1

2

3

4

5

6

Er
ro

r

Alpine - = 15
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

= 50 = 500 = 5000
0

5

10

15

20

Er
ro

r

Rastrigin - = 15
QUANTUM
PSEUDO
CHAOS
QUASI
PPACK
QUANTUM (simulated)

Fig. 4. Error between the original fitness function and the surrogate models created by surF. The first, second and third columns correspond to the 5D versions
of the Ackley, Alpine and Rastrigin functions, respectively. The upper and lower rows correspond to the cases γ = 3 and γ = 15, respectively. In each figure,
the histograms are divided in three groups corresponding (left to right) to the number of initial samples used: σ = 50, σ = 500, and σ = 5000.

k ini

0.00
0.02

0.04
0.06

0.08
0.10

kdeg

0.000
0.002

0.004
0.006

0.008
0.010

Fitness value

0
20
40
60
80

100
120
140
160

Fig. 5. Comparison of the fitness landscape of the PE problem of a stochastic
biochemical model. The blue and orange surfaces represent the original fitness
landscape and the surF surrogate model.

samples, surF can be more effective than alternative surrogate
modeling methods. For example, Figure 6 shows four Kriging
surrogate models of the Ackley function, created with SMT
[35] (using default settings), and using σ = 50 pseudo-random
samples. Compared to the surrogate model produced by surF
(see Figure 2, second row), the Kriging surrogates appear to
be more approximate and noisy. The average errors calculated
for the four examples in Figure 6 are 1.04, 1.5, 1.2 and 1.3
(from top to bottom, left to right), which are always higher
than the error values obtained with surF (see Figure 3, first
column).

IV. CONCLUSION

In this paper we investigated the impact of different sam-
pling methods and of the hyper-parameters of surF on the
generation of surrogate models of fitness landscapes. surF
exploits the Fourier transform to perform a low-pass filtering
of the fitness landscape, producing a smooth surrogate model
characterized by a “tunable” level of ruggedness. Notably,
the surrogate model is also computationally less expensive
than the original fitness function. According to our results,
the sampling of the fitness landscape performed with purely
random approaches (e.g., QUANTUM, PSEUDO, CHAOS)
is outperformed by more “structured” methods (e.g., QUASI,
PPACK), which grant a more uniform coverage of the search
space, even with a reduced number of samples. Interestingly,
the best sampling algorithm seems to be problem-dependent in
the case of low values of σ, while the differences are limited
if σ is higher.

The main drawback of the surF methodology concerns the
interpolation of the random samples of the fitness function
using a D-dimensional lattice. This phase—which is necessary
to evaluate the Fourier transforms at regular intervals—is
characterized by a very high time and space complexity:
if ρ partitions are considered for each dimension of the

20
0

20 20
0

20

14
16
18
20
22
24

20
0

20 20
0

20

10
15
20
25
30

20
0

20 20
0

20

10

15

20

25

20
0

20 20
0

20

12.5
15.0
17.5
20.0
22.5
25.0

Fig. 6. Surrogate models of the Ackley function created with the Kriging
method. The red dots denote the 50 random samples used for the generation
of each surrogate model.

search space, then a grid of ρD interpolated points must be
calculated. Hence, the first implementation proposed in [19]
should be enhanced to solve optimization problems with a high
number of dimensions. We will investigate new approaches
for the effective assessment of Fourier transforms over high-
dimensional fitness landscapes—as in the case of real-world
problems—using a less-than-exponential complexity algorithm
in which the ρ hyper-parameter is no longer necessary.

A second issue highlighted in this work regards the huge
effort spent by the QUANTUM and PPACK methodologies in
generating the random samples:

• in the case of QUANTUM, by exploiting multiple qubits
quantum machines (e.g., the ibmq essex backend that we
leveraged in part of our tests), several measurements can
be performed during the same experiment (e.g., “in paral-
lel”). However, due to the scarcity of quantum computers
in the planet, we frequently ended up queuing and waiting
minutes for a single experiment to be scheduled. Such
experiments generate just a subset of the 64 bits that
are necessary to build a double precision floating point
random number. Hence, paradoxically, the execution of
single-qubit experiments on the ibmq armonk backend
resulted more efficient, since there was almost no queue
on this specific machine. Due to this circumstances, and
the technical delay introduced by the communication with
backends, the use of QUANTUM initialization for surF
resulted extremely time consuming. We expect that, with
the advancement of the technology (i.e., more quantum
computers, equipped with more qubits), this methodology
will eventually become feasible for surF;

• in the case of PPACK, the existing algorithms are de-
signed to place as many points as possible while pre-
serving the minimum distance between any pair of points.
This is actually the opposite of what is necessary to run
surF, i.e., the optimal packing of exactly σ points in a
D-dimensional search space. Nevertheless, the correct
placement can be achieved by tuning, by means of a
trial-and-error approach, the minimum distance parameter
until the number of points reaches the desired value.
In order to make surF completely automatic, we will
investigate a novel variant of the point packing algorithm,
able to estimate the minimum distance to solve the inverse
problem of optimally packing σ points.

To conclude, the current default setting for surF is the QUASI
sampling strategy, which provides an excellent trade-off be-
tween efficiency and surrogate model error.

ACKNOWLEDGMENT

We acknowledge the use of the IBM Q Experience. Part
of this work was carried out on the Dutch national e-
infrastructure with the support of SURF Cooperative.

REFERENCES

[1] A. Bhosekar and M. Ierapetritou, “Advances in surrogate based mod-
eling, feasibility analysis, and optimization: A review,” Computers &
Chemical Engineering, vol. 108, pp. 250–267, 2018.

[2] T. Lew, A. Spencer, F. Scarpa, K. Worden, A. Rutherford, and F. Hemez,
“Identification of response surface models using genetic programming,”
Mechanical Systems and Signal Processing, vol. 20, no. 8, pp. 1819–
1831, 2006.

[3] J. Eason and S. Cremaschi, “Adaptive sequential sampling for surrogate
model generation with artificial neural networks,” Computers & Chem-
ical Engineering, vol. 68, pp. 220–232, 2014.

[4] G. E. Box and N. R. Draper, Empirical Model-Building and Response
Surfaces. John Wiley & Sons, 1987.

[5] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and
analysis of computer experiments,” Statistical Science, pp. 409–423,
1989.

[6] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.

[7] Z. Wang and M. Ierapetritou, “A novel feasibility analysis method for
black-box processes using a radial basis function adaptive sampling
approach,” AIChE Journal, vol. 63, no. 2, pp. 532–550, 2017.

[8] A. Samad, K.-Y. Kim, T. Goel, R. T. Haftka, and W. Shyy, “Multiple
surrogate modeling for axial compressor blade shape optimization,”
Journal of Propulsion and Power, vol. 24, no. 2, pp. 301–310, 2008.

[9] A. I. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization
via surrogate modelling,” Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, vol. 463, no. 2088, pp.
3251–3269, 2007.

[10] F. A. Viana, R. T. Haftka, and L. T. Watson, “Efficient global opti-
mization algorithm assisted by multiple surrogate techniques,” Journal
of Global Optimization, vol. 56, no. 2, pp. 669–689, 2013.

[11] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining
global and local surrogate models to accelerate evolutionary optimiza-
tion,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 37, no. 1, pp. 66–76, 2006.

[12] A. I. Forrester and A. J. Keane, “Recent advances in surrogate-based
optimization,” Progress in Aerospace Sciences, vol. 45, no. 1-3, pp. 50–
79, 2009.

[13] N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. K. Tucker, “Surrogate-based analysis and optimization,” Progress in
Aerospace Sciences, vol. 41, no. 1, pp. 1–28, 2005.

[14] B. Liu, Q. Zhang, and G. G. Gielen, “A Gaussian process surrogate
model assisted evolutionary algorithm for medium scale expensive opti-
mization problems,” IEEE Transactions on Evolutionary Computation,
vol. 18, no. 2, pp. 180–192, 2013.

[15] Y. Yang, W. Zeng, W.-s. Qiu, and T. Wang, “Optimization of the
suspension parameters of a rail vehicle based on a virtual prototype
Kriging surrogate model,” Proceedings of the Institution of Mechanical
Engineers, Part F: Journal of Rail and Rapid Transit, vol. 230, no. 8,
pp. 1890–1898, 2016.

[16] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, 2011.

[17] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted co-
operative swarm optimization of high-dimensional expensive problems,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 4, pp.
644–660, 2017.

[18] Y. Tang, J. Chen, and J. Wei, “A surrogate-based particle swarm
optimization algorithm for solving optimization problems with expensive
black box functions,” Engineering Optimization, vol. 45, no. 5, pp. 557–
576, 2013.

[19] L. Manzoni, D. M. Papetti, P. Cazzaniga, S. Spolaor, G. Mauri, D. Be-
sozzi, and M. S. Nobile, “Surfing on fitness landscapes: A boost on
optimization by Fourier surrogate modeling,” Entropy, vol. 22, no. 3,
2020.

[20] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965.

[21] M. S. Nobile and H. Iba, “A double swarm methodology for parameter
estimation in oscillating gene regulatory networks,” in 2015 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2015, pp. 2376–
2383.

[22] M. Matsumoto and T. Nishimura, “Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[23] H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, and
G. A. et al., “Qiskit: An open-source framework for quantum comput-
ing,” 2019.

[24] S. Phatak and S. S. Rao, “Logistic map: A possible random-number
generator,” Physical Review E, vol. 51, no. 4, p. 3670, 1995.

[25] I. M. Sobol’, “On the distribution of points in a cube and the approximate
evaluation of integrals,” Zhurnal Vychislitel’noi Matematiki i Matem-
aticheskoi Fiziki, vol. 7, no. 4, pp. 784–802, 1967.

[26] H. Niederreiter, “Low-discrepancy and low-dispersion sequences,” Jour-
nal of Number Theory, vol. 30, no. 1, pp. 51–70, 1988.

[27] R. Brown and D. Ashlock, “Parameter tuning of a peak fitting algorithm
with an evolved experimental design,” in Proceedings of the 2019 IEEE
Congress on Evolutionary Computation, 2019, pp. 2379–2386.

[28] D. Ashlock, S. K. Houghten, J. A. Brown, and J. Orth, “On the synthesis
of DNA error correcting codes,” Biosystems, vol. 110, no. 1, pp. 1–8,
2012.

[29] A. Tangherloni, S. Spolaor, P. Cazzaniga, D. Besozzi, L. Rundo,
G. Mauri, and M. S. Nobile, “Biochemical parameter estimation vs.
benchmark functions: A comparative study of optimization performance
and representation design,” Applied Soft Computing, vol. 81, p. 105494,
2019.

[30] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–
2361, 1977.

[31] ——, “The chemical Langevin equation,” The Journal of Chemical
Physics, vol. 113, no. 1, pp. 297–306, 2000.

[32] M. S. Nobile, P. Cazzaniga, D. Besozzi, D. Pescini, and G. Mauri,
“cuTauLeaping: A GPU-powered tau-leaping stochastic simulator for
massive parallel analyses of biological systems,” PLOS One, vol. 9,
no. 3, 2014.

[33] T. R. Maarleveld, B. G. Olivier, and F. J. Bruggeman, “StochPy: a
comprehensive, user-friendly tool for simulating stochastic biological
processes,” PLOS One, vol. 8, no. 11, 2013.

[34] A. Eldar and M. B. Elowitz, “Functional roles for noise in genetic
circuits,” Nature, vol. 467, no. 7312, pp. 167–173, 2010.

[35] M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and
J. R. R. A. Martins, “A Python surrogate modeling framework with
derivatives,” Advances in Engineering Software, p. 102662, 2019.

