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Abstract—The Travelling Salesman Problem and Vehicle
Routing Problem are two similar famous NP-hard problems
with simple evaluation functions. While these functions can
underestimate the quality of solutions in some cases, surrogate
models are widely used in many computationally expensive
problems as a supplement and optimization of traditional
evaluation methods. By studying two surrogate models based
on the spatial structure of the solution, this paper dedicates
to introducing an additional level of evaluation on the quality
of the individuals’ structure in the genetic algorithms designed
for TSP and VRP, aiming to maintain the diversity of the pop-
ulation while optimizing the solution of the genetic algorithm
in the meantime.

Index Terms—Surrogate, Genetic algorithms, Travelling
Salesman Problem, Vehicle Routing Problem.

I. Introduction

Surrogate is a model that implements optimization
through the data generated from the optimization pro-
cess [10]. The purpose of using surrogate model is to
approximate problems in the real situation. During the
optimization process, this agent model cooperates with
traditional models to evaluate individuals, and this mutual
cooperation is called Surrogate Management. The agent
model is trained on real problem data and has similarities
to real problems [20, 16, 9]. The proxy model is used
instead of the optimization problem to evaluate the
solutions, so that a better solution of the real problem
is selected to reduce the number of evaluations to the real
problem. In addition, as the surrogate is not as accurate
as the real problem, modification is required from the
real evaluation to adjust the surrogate assessment. In
this article, we try to use two types of surrogate, based
on the structure of solutions for the Travelling Salesman
Problem (TSP) and the Vehicle Routing Problem (VRP),
respectively. We do not look for a quick evaluation of
fitness, but use the surrogate as a complement of the GA
to optimize the algorithm.
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A. Travelling Salesman Problem

The TSP raises a question: given a list of cities and the
distances between each pair of cities, what is the shortest
possible route that visits each city and returns to the origin
city? It’s a famous NP-hard problem in combinatorial
optimization.

When we try to give out a solution for TSP, we either
use a local search method to search the neighboring area
of the initial solution to find a single new solution or
use an evolutionary algorithm to generate a group of new
solutions. For each newly-obtained solution, we need to
evaluate its quality in terms of the total cost of the tour
to visit every city.

Mathematically, the problem may be stated in the
following equivalent way: given a “cost matrix” D =
(dij), where d;; = cost of going from city ¢ to city j
(i, =1,2,...,n), find a permutation P = (i1, 12,13, ..., in)
of the integers from 1 to n that minimizes the quantity
d(il, ig) + d(’i27 i3) + ...+ d(in, i1).

So far, various methods for solving TSP to optimal have
been proposed. The branch cutting algorithm generally
gives the most effective results. One can quickly get 5%
solution quality assurance, but it takes a long time to
get close to 1% [11]. As Rego and Glover said, the TSP’s
exact solver seems to “require calculations beyond the
practical range” [7]. Therefore, various heuristic methods
have been widely used to generate approximate optimal
solutions within a reasonable computation time [1, 14,
24]. These heuristic algorithms provide a good balance
between solution quality and computation time.

B. Vehicle Routing Problem (VRP)

The solution of VRP is very similar to the solution
of TSP in form of chromosome in Genetic Algorithms
(GAs), which makes it very convenient to apply the
surrogate of TSP to VRP. However, VRP is a more
complex combinatorial optimization problem than TSP. In
transportation management, goods or services need to be
provided to scattered points on map from a certain depot.
VRP has received widespread attention in recent years



due to its broad applicability and economic importance in
determining distribution strategies to reduce the operating
costs of distribution systems.

The basic VRP refers to starting from a fixed depot
and serving many customers with known needs in different
locations. The transportation route of the vehicle needs to
depart from a depot and return to the same depot. Each
customer can only be visited once. There is also a limit on
the maximum load and maximum travel distance. Further
more, each time the customer is visited, the cost of the
vehicle is also increased, so that the maximum driving
distance of the vehicle after visiting a customer will be
reduced accordingly. The optimization goal can be the
minimization of the total distance traveled, and/or the
minimization of the total number of vehicles used.

The VRP is obviously also an NP-hard problem. We
can hardly get the exact solution to the problem within a
reasonable time. Some effective heuristic algorithms have
been developed [12], but for such complex multi-objective
optimization combinatorial problems, meta-heuristic algo-
rithms show more advantages. The tabu search algorithm
has achieved good results in the application of VRP
[19], and the simulated annealing has also got good
results [8] although the tabu algorithm requires more
computing resources and preset parameters. [18] The ant
colony optimization algorithm is another very successful
algorithm applied to VRP problems [21], with the results
obtained being only slightly inferior than those of the tabu
algorithm.

GAs are widely used metaheuristics. There are also
many precedents for applying genetic algorithms to VRP
problems [23, 2]. Compared with other metaheuristics,
GAs have the advantage of a wider search range and are
less likely to fall into the local optimal solution. Memetic
algorithms, i.e. GAs combined with other heuristic al-
gorithms that are good at finding the best solution in
the neighborhood, often have better results [22]. Different
from the domain search heuristic algorithm-assisted GA,
this paper attempts to build a surrogate model based on
the solution structure. By analyzing the structure of each
solution, the fitness produced by the surrogate model,
which differs from the one produced by the direct fitness
evaluation function, is obtained. The surrogate is used
to accelerate the convergence speed of the GA, while
maintaining the diversity of the population and improving
the solution quality.

II. Genetic Algorithms

GAs are inspired by natural selection and Darwinian
evolution. They have been used in many disciplines,
such as industrial design, computer automation design,
social systems and more, to solve real-world problems
and achieve optimization. In this case, the problems and
standards could not be clearly stated [4]. A GA is an
iterative process, and all solutions in each iteration are
called a generation. A set of attributes (also known as

genes) of the possible solutions is called a chromosome.
There are several basic components in GAs: the number
of chromosomes, the adaptive selection, the generation of
new offspring, and random mutations in new offspring.
A GA can basically be divided into the following three
processes:

1) Selection, which selects a pool of candidates from the
current generation by means of some fitness criteria. The
fitter a candidate is, the more likely it is to get chosen.
This ensures that only the more suitable candidates are
used to create the next generation of individuals.

2) Crossover, which is one of the genetic operators used
in the GA. A pair of candidates is selected from the pool
generated in the first step to create new offspring. This
involves combining the properties from the parents to
construct new potential solutions. The selection of the
properties can be completely random, or follow a set of
rules, e.g. take the first X percent of one parent and the
rest from the other parent. X can be randomized in each
successive generation to minimize the chance of recession.

3) Mutation, which is another genetic operator. Its main
purpose is to ensure genetic diversity. Some randomly
selected bits in chromosomes in each generation are
changed. The mutation rate is usually kept low to keep
the evolution steady.

A. GA for TSP

1) Partially-Mapped Crossover (PMX): The PMX op-
erator was suggested by Goldberg and Lingle (1985) [6]. It
passes on ordering and value information from the parent
tours to the offspring tours. A portion of one parent’s
string is mapped onto a portion of the other parent’s string
and the remaining information is exchanged.

The exchange mutation operator randomly selects two
cities in the tour and exchanges them. ¢§ is the consistent
mutation rate and § € (0,1), which is used to control the
size of mutation rate in case we may saunter around the
good solution instead of reach it. In the later experiment
we chose § = 0.5, so the maximum mutation rate will be
double of the minimum one.

Assume that dy is the sum of Hamming distance of each
solution to the best solution in this population. Then the
mutation rate of the GA is:

5 (di > k)
Pp={ 6(1+555) (ch<dg<k) (1)
g (dg < ek)

Where k is a parameter to adjust the diversity of the GA.

2) Edge Assembly Crossover (EAX): EAX is a very
effective algorithm for TSP [15], which focuses on retaining
the edges that are inherited from the parents. It is a
powerful GA comparable to the traditional LK-based
heuristic algorithms for TSP.

EAX has the following 5 steps:

Step 1. Select parents tours A and B, and combine all
edges of A and B into one big graph G4p.



Step 2. Separate G 4p into small AB — cycles which are
formed by selecting cycles consisting of edges of tour A
and tour B alternately.

Step 3. Select AB —cycles to form an E — set by specific
strategy, and those AB —cycles consisting of two edges are
deleted. In our experiment, I chose one random subtour
as the F — set.

Step 4. Combine E — set with tour A by deleting all
edges from tour A in F — set and adding all edges to form
tour B in F — set. An offspring with some subtours will
be generated.

Step 5. Merge the subtours into one valid tour by
connecting subtours with each other. The process of
connecting heuristically selects two edges in different
subtours, removing them and adding two new edges.

To ensure diversity, EAX introduces entropy of the TSP
population H to evaluate the individuals as follows;

H ==Y (F(e)/N)log ((F(e)/N)) (2)
ecX

where X is the set of all edges in the population, N is the
size of the population, and F(e) is the number of edges e
in the current population. During the selection process, if
there are children which increase the entropy of the whole
group as well as decrease distance, the solution with the
shortest path in the offspring is selected. If all offspring
with shorter distance than parents will reduce the entropy
of the population, choose the solution with the smallest
0L/5H where L is the distance of the tour. If all offspring
are not better than tour A in distance, tour A will survive.
The evaluation function is:

AL(y)/AH(y) if AH(y) <0

ALG)e if A =0

evalENT(y) = {

Where € is a small enough positive value. In our

experiment, the surrogate fitness S is considered to replace
the entropy every 5 generations.

AL(y)/AS(y) if AS(y) <0

evalsurro(y) = { —AL(y)/e if AS(y) >0

Where S(y) is the surrogate fitness of offspring y.

B. A GA for VRP

For the GA, this paper uses the the exact same method
as the GA of TSP to represent chromosomes, which
is a sequence containing all nodes once. This not only
facilitates the use of the surrogate, but also makes all the
generated offspring a legitimate solution, which greatly
reduces useless searches. At the same time, this will not
lose any information the chromosome contains, since a
split algorithm (shown in figurel) is used to find the unique
optimal solution corresponding to each chromosome [17].
After the chromosome is obtained, the split algorithm di-
vides the chromosome into many different small sequences,
and each sequence starts and ends with the same depot in
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Fig. 1. How a TSP solution splits into two different VRP solutions

the VRP. According to Bellman’s algorithm[5], given the
sequence order and direction, the optimal way of dividing
can be found within O(n?). The crossover operator and

mutation operator of the VRP population are consistent
with the PMX method in TSP.

ITI. Surrogate Construction

Although the surrogate models are widely used in real
number problems and simulation problems. In discrete
combinatorial optimization problems, surrogate model
applications are scarce. The reason is not that there
are not enough problems in this field, but because the
appropriate surrogate model has not been well learned and
developed [3]. For combinatorial optimization problems
with different properties, the surrogate models to be
selected are totally different. Based on feature extraction
and similarity comparison strategy, this part introduces
several surrogate models suitable for TSP and VRP
problems.

The workflow of the surrogate model in GA is as follows:

Step 1. Initialize the population.

Step 2. Use precise methods to evaluate the population.

Step 3. Build/update the surrogate model.

Step 4. Based on the surrogate model, revise the fitness
and the population parameters.

Step 5. Generate offspring based on the new fitness.

Step 6. Return to step 2 or end the algorithm.

In both TSP and VRP, the total distance or cost is
usually used to measure the quality of the solution, but
there is no effective way to identify the feature of the
solution. In other words, we get the fitness value of a
solution, which cannot reflect the intrinsic properties of
the solution itself. For example, in TSP, some solutions
may have completely different paths, while the fitness is
very close or even equal. Some solutions, even though their
distance fitness are bad, can be very close to optimal
solution in the view of structure that through one or
two transformations it will be optimum. This makes it
necessary to analyze the structure of the solution in
additional to measuring the original fitness.

For the TSP and VRP, although the a solution is repre-
sented a series of nodes, what affects the evaluation value
is actually the edges connecting these nodes. Therefore,
each solution is no more than a set of edges, which can be



combined to form a solution to a legitimate problem. Ana-
lyzing the structure of the solution is the same as analyzing
the edges of these sequences. Two different proxy models
are proposed below. The first is based on the analysis
of the frequency of connected edges of the population.
The structural surrogate fitness of the solution is given by
comparing the frequency of the edges contained in each
individual in the population. The second is constructing an
auto-encoder neural network, extracting the features of the
solution sequence and mapping it in a lower-dimensional
space. The structure-based surrogate fitness of the solution
is obtained by analyzing the properties of the solution in
this space.

A. Edge Based Surrogate

After observing the common features of many good
solutions, we find that as the quality of the solution
increases, more solutions tend to have common edges.
In other words, the entropy of the population of the
entire solutions is decreasing. Those edges with the highest
frequency in the entire population have a high probability
of being part of the optimal solution, Which does make
sense, as if all solutions are optimal, they will be the same
solution. Those high-frequency edges are the pattern we
are looking for. Therefore, an surrogate model is built
based on the number of edges of the solution in the
pattern (i.e. good edge) we choose. In the experiment part,
we choose the high-frequency edges of 100 random 2-opt
solutions as the surrogate model.

1) 3-edge surrogate: 3-edge surrogate model is based
on the frequency of joint edges (shown in figure2). We
select all the high-frequency edges (shown in figure3) that
are connected together, and these connections contain at
least 3 edges which have appeared in the high frequency
end of the figure. Only those individuals who have the
entire trilateral structure can get positive comments. This
will raise the standard of “good structure” and avoid over-
estimating solutions with too many scattered edges. The
more 3-edges it has, the higher the scores obtained from
the surrogate model. The high frequency is specifically
assigned depending on the problem.

2) Linear regression surrogate: Linear regression is a
widely used statistical analysis method that uses re-
gression analysis in mathematical statistics to determine
the quantitative relationship between two or more vari-
ables. We use linear regression to find the relationship
between edge frequency distribution and fitness. Take
i =1,2,...,10, x; represents the distribution of edges on
different frequencies within an individual solution. For
example, x7 represents how many edges of the solution
are not in the surrogate model we built earlier or in terms
of the frequency of occurrences in the model that are less
than 10%, and z1¢ represents how many edges belong to
the frequency of occurrence of 90 to 100%.
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Fig. 2. Edge frequency distribution of 100 random heuristic solution
of a random TSP
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10
y:b—l—in*wi (5)
i=1
Where y is the fitness of the surrogate and ¢ is the exact
fitness function which is the total distance of the tour.
The Loss function is

N
Z[w w") —y")? (6)

By training this model with good solutions we get from
heuristic methods, the w is determined and gy is the
surrogate fitness of the solution.

B. Auto-encoder based surrogate

Auto-encoder is a form of unsupervised learning neural
network [27], which is widely used for dimension reduction
or feature extraction of data and pattern recognition.

Auto-encoder is basically a neural network trained with
the same input and output [26]. The structure of the auto-
encoder is symmetrical. The output of the short middle
hidden layer is the code we are looking for, as it contain
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Fig. 4. Schematic diagram of auto-encoder surrogate

all the information of the input data. In TSP or VRP,
the input and the output are node sequences, which is
exactly the chromosome represents (shown in figure4. For
example,in tour 0 —2—-3—-5—-6—-8—-1—7—4, 0 is the
first input and 4 is the last input. We set the dimension
of the code to be around one quarter of the number of
cities.

It should be noted that in the process of training this
auto-encoder neural network, the input is a sequence of
nodes, not the edges that really play a decisive role in the
solution structure. Also, in both the TSP and VRP, any
movement of the starting point of the sequence or any
change in direction will not cause any substantial change
in the total fitness. Therefore, when training this auto-
encoder neural network, the input is a sequence starting
from a fixed point, but the output needs to be listed
as a sequence of random starting points and direction
of the same sequence. This can ensure that the code in
the middle of this auto-encoder can effectively extract the
characteristics of the chromosome.

We select some random legal solutions generated by
the heuristic algorithm and their retransformed sequences
as training data for the auto-encode, and then put each
individual in the population into the encoder to find
their coordinates in low-dimensional space. In this way,
the average coordinate of the population, C,, and the
coordinate of the individual with the best fitness in the
population, Cjy, can be obtained. For the coordinates Cj
of a legitimate offspring obtained through crossover, if the
offspring is close enough to the best individual, it means
that the structure of this offspring is close to the optimal
solution in the current population. Although the distance
fitness of this offspring may not be necessarily nice, it has
enough potential to become a high-quality solution after
quite few mutations or inheritance. At the same time,
if the coordinates of this offspring are far enough from
the average coordinates of the population C),, it means
that this offspring has a structure that most individuals
in the population do not have. Therefore, by retaining the
offspring, the diversity of the population can be improved.

IV. Computational results

The TSP instances we use come from TSPlib [25], where
the number in each instance name represents the number

of cities. We use three different surrogates for the TSP GA-
based on PMX. We set the size of population = 300 and
the selective pressure b = 1.90. The mutation probability
is adjusted according to Equation 1.

For the surrogate based on the structure of 3-edge, the
three edges that are connected together and show up more
frequently than 80 % are selected as the structure to
find. Each generation will retain 5 individuals with the
maximum number of 3-edge structures and 5 individuals
with the minimum. After the surrogate of linear regression
obtains fitness, it will only retain 5 individuals with the
highest proxy evaluation value per generation into the
offspring.

The auto-encoder uses a solution of 100 randomly gen-
erated heuristics and a random selection of 100 different
permutations after the starting point for a total of 10,000
groups. Among them, 1,000 data were selected as testing
set, and the rest were used as training set. Using Relu
as the activation function and Adam as the learning rate
algorithm, it stops when the test set accuracy rate does not
improve for 20 consecutive epochs. In the selection phase,
the auto-encoder also retains the 5 children closest to the
optimal solution of the population Cj, and the children
most deviated from the population average C,,.

We stop the program after running 3,000 generations
and get the following results in table I. It can be seen
that the edge-based surrogate can effectively improve the
quality of the GA’s solution in the PMX algorithm with
fewer cities, especially for the 3-edge surrogate. The auto-
encoder based surrogate is of little help to GAs. In table
II, for the TSP using the EAX algorithm, because the
EAX algorithm itself is powerful enough, for the problem
of a small number of cities, none of the three proxy models
has been effective. For the problem with a large number
of cities, auto-encoder and linear regression surrogate may
improve the GA significantly.

The VRP instances we use come from [13]. Size of
population = 100, and selective pressure b = 1.90. In
table III, for more complex VRP problems, auto-encoder
is the most effective surrogate, which can improve the
quality of the solution by 1.09% on average compared to
the standard GA. Edge-based surrogate cannot provide
forward optimization steadily, and its effect on GAs is
not obvious.

V. Conclusion

In this research we propose a number of surrogate
models and test on the TSP and VRP instances of various
sizes. The edge-based surrogate model has advantages
in simple TSP problems, but it does not help the GA
effectively in complex TSP and VRP. On the other hand,
the auto-encoder-based surrogate model has significantly
improved the quality of GA’s solutions in more complex
TSP and VRP.

Therefore, it is suggested that the idea of using sur-
rogate models is not restricted to the complex problems



TABLE I
Results of different surrogate of PMX on TSP

Instance  Pure GA 3-edge Linear Regression Auto-encoder
best best improvement  optimum best improvement  optimum best improvement  optimum
qal94 20978.3 17456.4 0.17 X 19494.2 0.067 X 17488.7 -0.015 X
xqf131 1015.2 772.2 0.24 X 1005.4 0.0096 X 1084.3 -0.068 X
xqg237 1834.2 1636.5 0.11 X 1802.5 0.017 X 1654.5 0.098 X
TABLE II
Results of different surrogate of EAX on TSP
Instance  Pure GA 3-edge RLmea}r Auto-encoder
egression
best best improvement  optimum best improvement  optimum best improvement  optimum
qal94 9352.2 9352.2 0 Il 9352.2 0 y 9352.2 0 Il
xqf131 564.5 564.5 0 V 564.5 0 y 564.5 0 4
xqg237 1019.5 1019.5 0 v 1019.5 0 v 1019.5 0 "
1u980 11340.3 11340.3 0 iV 11340.3 0 V 11340.3 0 v
mul979 86891.7  86891.7 0 X 86884.5 0.000082 X 86788.5 0.0011 X
nu3496 96282.5 96132.2 0.0015 X 96162.8 0.0012 X 95801.1 0.015 X
€i8246 206281 206231 0.00024 X 206351 -0.00034 X 205600 0.0043 X
TABLE II1
Results of different surrogate on VRP
Original GA 3-edge Linear Regression Auto-encoder
cities drop dls.tapce best %improvement best %improvement best %improvement
allowance limit
50 0 / 524.61 524.61 0.00 524.61 0.00 524.61 0.00
75 0 / 862.26 866.65 -0.51 864.41 -0.25 848.46 1.60
100 0 / 848.97 842.69 0.74 856.11 -0.84 844.05 0.58
150 0 / 1050.59 1055.53 -0.47 1047.97 0.25 1028.42 2.11
199 0 / 1325.15 1314.55 0.80 1326.35 -0.09 1295.41 2.24
50 10 200 576.40 584.30 -1.37 580.09 -0.64 567.76 1.50
75 10 160 909.68 912.23 -0.28 906.13 0.39 909.68 0.00
100 10 230 897.74 896.30 0.16 887.50 1.14 894.51 0.36
150 10 200 1196.36 1185.95 0.87 1182.60 1.15 1177.93 1.54
199 10 200 1432.21 1444.96 -0.89 1415.17 1.19 1416.17 1.12
120 0 / 1077.71 1083.96 -0.58 1080.94 -0.30 1042.11 3.30
100 0 / 851.13 842.70 0.99 846.53 0.54 848.92 0.26
120 50 720 1596.38 1581.53 0.93 1581.05 0.96 1586.16 0.64
100 90 1040 866.37 863.42 0.34 875.64 -1.07 866.37 0.00
Average 0.05 0.17 1.09
where the evaluation functions are difficult to define or References

expensive to calculate. For easy-to-evaluate problems like
TSP and VRP, the surrogate model can also effectively
improve the performance of GAs by analyzing structural
features that are different from distance fitness. For many
other similar problems, if the fitness of the solution
does not fully reflect all the properties of the solution
itself, using a surrogate model to extract more structural
features and assisting the evaluation of the solution may
be an effective way to improve the search ability of an
optimization algorithm.
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