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Abstract—In combination with successful constraint handling
techniques, a Matrix Adaptation Evolution Strategy (MA-ES)
variant (the εMAg-ES) turned out to be a competitive algorithm
on the constrained optimization problems proposed for the CEC
2018 competition on constrained single objective real-parameter
optimization. A subsequent analysis points to additional potential
in terms of robustness and solution quality. The consideration
of a restart scheme and adjustments in the constraint handling
techniques put this into effect and simplify the configuration. The
resulting BP-εMAg-ES algorithm is applied to the constrained
problems proposed for the IEEE CEC 2020 competition on Real-
World Single-Objective Constrained Optimization. The novel
MA-ES variant realizes improvements over the original εMAg-
ES in terms of feasibility and effectiveness on many of the real-
world benchmarks. The BP-εMAg-ES realizes a feasibility rate
of 100% on 44 out of 57 real-world problems and improves the
best-known solution in 5 cases.

Index Terms—evolution strategies, constrained optimization,
real-world competition, population control, restart strategy

I. INTRODUCTION

Constrained optimization considers the search for the opti-
mal solution of an objective function subject to restrictive con-
straints on the parameter vectors. Such constraints can result
from limited resources, problem-specific trade-offs, appropri-
ate physical boundaries, and many other sources. Particularly,
in black-box optimization, the involvement of constraints into
an optimization task increases the problem complexity.

In recent years, a growing number of meta-heuristics have
been designed for solving constrained black-box optimization
problems. Accordingly, there is a need for elaborate bench-
mark collections on which the effectiveness and efficiency
of the proposed algorithms can be validated and compared.
So far, constrained benchmark environments were limited to
sets of, more or less, artificial test functions [1]–[5]. As
these artificial test problems often do not contain the full
complexity of real-world problems, the results are usually
not directly transferable to practical applications. For this
reason, a novel benchmark collection [6] that comprises a set
of constrained real-world optimization problems for various
industrial applications is worth taking into account. It might
help to choose the best among the compared algorithms for a
specific kind of real-world problem.
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In the context of the IEEE Congress on Evolutionary
Computation 2020 (CEC 2020), the competition on Real-
World Single-Objective Constrained Optimization is inviting
competitive algorithms for solving these constrained real-
world benchmark collection [7]. By changing the benchmark
functions, this competition represents a further development
of previous competitions. The evaluation criteria are based on
the calculation and comparison of performance statistics.

As one of the first Evolution Strategies (ES) in the con-
strained competitions, a Matrix Adaptation Evolution Strategy
(MA-ES) [8] variant, the so-called εMAg-ES [9], was able to
achieve the overall second place at the CEC 2018 competition
on constrained single-objective real parameter optimization in
2018. In addition, the algorithm turned out to be particularly
successful in the high dimensional setting (N = 100). In [10],
a detailed analysis of the algorithmic εMAg-ES components
revealed that in many cases the best solution found during
a single run is obtained after a relatively small number of
function evaluations. That is, instead of stagnating during the
consumption of the remaining budget, the use of a restart
strategy seems to be more appropriate. By re-initialization
in different search space areas, disjoint feasible sets might
be explored and the best solution found can potentially be
improved. In the case of connected feasible sets, premature
convergence might be remedied and the robustness of the
algorithm can be increased. Further, the recommended pop-
ulation size in [9] was based on the population sizes of
comparable DE algorithms. The analysis showed that the best
choice for the offspring population size depends very much
on the structure of the problem. On average, however, smaller
population sizes appeared to be beneficial in the constrained
CEC 2018 benchmark settings. Following these observations,
the εMAg-ES strategy is augmented with a restart mechanism
that varies the population size. To this end, the BiPop-MA-ES
implementation [8] for unconstrained problems, which is based
on the ideas of [11] and [12], is used as a design guideline.

The analysis in [10] also revealed that the ε-level constraint
handling approach used by εMAg-ES can turn out disadvan-
tageous in some cases. In particular, this is true in situations
where the objective function turns out to be monotonic in at
least one dimension [5].

The presented algorithm aims at solving the real-valued
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constrained real-world optimization problems specified in [6]
for the CEC competition on constrained real-world problems
in 2020. It is referred to as BP-εMAg-ES. By making use
of restarts and varying the population sizes, BP-εMAg-ES
represents an advancement of the εMAg-ES customized for the
benchmarking competition. Additionally, the ε-level reduction
is adjusted to rely on the ratio of ε-feasible solutions within
the offspring population of the ES rather than on the number
of generations elapsed. The design idea goes back to [13], but
was further modified for the use within εMAg-ES.

The remainder of this paper is organized as follows: The
general form of the constrained optimization problems and
some useful notations are presented in Sec. II. Section III then
introduces the BP-εMAg-ES for constrained optimization. Due
to page limitations, it focuses primarily on the changes with
respect to εMAg-ES [9], in particular. After that, the exper-
imental setting of the CEC 2020 competition on constrained
real-world problems as well as the parameter settings for the
BP-εMAg-ES are summarized in Sec. IV. Section V presents
the final performance statistics as specified in [7]. The paper
concludes with a brief discussion of the observations.

II. GENERAL PROBLEM FORMULATION

This paper considers constrained real-world optimization
problems [6] of the general form

min f(y)

s.t. gi(y) ≤ 0, i = 1, ... , l,

hj(y) = 0, j = 1, ... , k,

y̌ ≤ y ≤ ŷ.

(1)

That is, the optimization goal is w.l.o.g. the minimization of
the real-valued objective function f(y) with respect to an N -
dimensional search space parameter vector y ∈ RN . The N -
dimensional vectors y̌ and ŷ define lower and upper box con-
straints of each parameter vector component yk, k = 1, ... , N .
Specifying reasonable ranges of the components yk, the box-
constraints are provided in the source code that comes with [7].

The feasible region of (1) is additionally restricted by
m = l + k real-valued constraint functions. These constraint
functions consist of inequality constraints gi(y), i = 1, ... , l
and equality constraints hj(y), j = 1, ... , k. A vector y ∈ S
that satisfies all constraints simultaneously is called feasible.
When considering problem (1) a measure of infeasibility is
useful for ranking potentially infeasible candidate solutions.
To this end, we compute the constraint violation ν(y) of a
candidate solution y as

ν(y) =

∑l
i=1Gi(y) +

∑k
j=1Hj(y)

l + k
, (2)

with functions Gi(y) and Hj(y) defined by

Gi(y) := max (0, gi(y)) , and (3)

Hj(y) :=

{
|hj(y)|, if |hj(y)| − δ > 0

0, if |hj(y)| − δ ≤ 0
. (4)

In order to be able to satisfy the equality constraints, the δ term
introduces the necessary error margin. In accordance with [7],
this paper considers δ = 10−4.

III. ALGORITHM

The MA-ES represents an algorithmically reduced CMA-
ES variant [14] that was already implemented as a building
block in a multi-restart approach similar to the BiPop-CMA-
ES in [8]. The newly proposed BP-εMAg-ES transfers this
approach designed for multi-modal problems to constrained
optimization problems (1).

The Meta-ES approach presented in Alg. 1 utilizes a modi-
fied version of the εMAg-ES as its “search driver”, see Alg. 2.
Until the total budget of function evaluations is exhausted,
the εMAg-ES is restarted with different population sizes and
randomly initialized starting populations. In line 6 of the
BP-εMAg-ES, the parental population size is updated. The
truncation ratio ϑ = µ/λ is held constant regardless of the
offspring population size adjustment. Right after initialization,
Alg. 1 executes a first εMAg-ES run with the initial parameter
choices. In case that the first run already consumes the total
budget, the Meta-ES approach will terminate before consid-
ering any restart at all. Hence, Alg. 1 is basically similar to
Alg. 2. For this reason, the restart scheme will not affect the
results of the εMAg-ES algorithm in terms of effectiveness.
The choice whether to restart the εMAg-ES with small or large
population size is balanced. This is performed in such a way
that basically half of the total budget will be consumed in
the branch working with small populations λS , and the other
half in the branch using large populations λ. Therefore, the
parameters bS and bL accumulate the corresponding number
of function evaluations used. In the small population branch,
the population size λS is randomly derived on the basis of
the updated λ. The probabilistic choice is introduced by the
uniformly distributed random number u(0, 1) in the range
[0,1]. In contrast to [8], the mutation strength σ is not
probabilistically chosen. It is reset to σInit for every restart.

The case differentiation introduced in lines 8–11 of Alg. 1
controls the number of repair steps θr as well as the order
relation used in the next εMAg-ES run. As long as νbsf > 0,
the lexicograpic ordering, i.e. ε(0) = 0, and θr = 20 is used in
every second restart. In all other cases, the settings according
to Sec. IV are considered.

To avoid the consumption of large budget amounts in a
single εMAg-ES runs, the search is aborted with respect to
three different termination criteria. This way, wasting function
evaluations in case of local convergence can be mitigated.
Termination is enforced as soon as (TC1) the mutation strength
is lower than a threshold below which only marginal improve-
ments are expected (σ < 10−12), as soon as (TC2) more than
10% of the total budget is spent without improvement of the
best solution found so far, or as soon as (TC3) the total budget
is exhausted. It must be noted that these termination criteria
also affect the overall performance of the εMAg-ES. However,
the final results appear to substantiate the parameter selections
made for the CEC 2020 competition.



In a black-box scenario, the algorithm has no knowledge
about the appropriate step-size at a random location in the
search space. That is, unlike [8], the algorithm initially samples
a uniformly distributed population P of λ candidate solutions
yj ∈ RN , j = 1, ... , λ within the predefined box-constraints
y̌ and ŷ, respectively. This is implemented according to line
4 in Alg. 2. There, u(0, 1) denotes an N -dimensional vector
with uniformly distributed components in (0, 1). The starting
population is also used to determine the initial ε(0) value, in
line 7 of Alg. 2, by considering the constraint violation of
the median solution with respect to the lexicographic ordering
relation (see (6) with ε ≡ 0 const.). Notice, χT>0 denotes the
indicator function ensuring that the initial ε-level is set to zero
in case T = 0.

After determination of ε(0), the parent population is se-
lected by choosing the µ best candidate solutions from the
offspring population of size λ. Note that ym;λ denotes the
mth best out of λ with respect to the order relation ≤ε, see
Eq. (6). The recombination of the weighted parents forms
the initial parental centroid in line 9 of Alg. 2 and the best
found candidate solution so far ybsf is memorized in line 10.
Standard weights wi of the MA-ES are used as described in
Sec. IV. The comparison of the candidate solutions involves
the evaluation of the constrained problem. We account one
function evaluation per evaluation of a constrained problem,

Algorithm 1 Pseudo code of the BP-εMAg-ES for constrained
real-parameter optimization.

1: Initialize: µInit, λInit, σInit, budgetmax, ϑ← µ/λ
2: n← 0, nS ← 0, bL ← 0, bS ← 0,
3: [ybsf, fbsf, νbsf, evals]← εMAg-ES(µInit, λInit, σInit)
4: budgetused ← evals
5: while budgetused < budgetmax do n← n+ 1
6: λ← 2n−nS · λInit
7: µ← dλϑe
8: if νbsf > 0 AND mod(n, 2) = 1 then
9: T ← 0, θr ← 20

10: else T ← 500, θr ← 3
11: end if
12: if n > 2 AND bS < bL then
13: λS ← bλInit

(
1
2λ/λInit

)u(0,1)c
14: µS ← dλSϑe
15: [y, f, ν, evals]← εMAg-ES(µS , λS , σInit, T, θr)
16: bS ← bS + evals
17: nS ← nS + 1
18: else
19: [y, f, ν, evals]← εMAg-ES(µ, λ, σInit, T, θr)
20: bL ← bL + evals
21: end if
22: budgetused ← budgetused + evals
23: if y ≤lex ybsf then ybsf ← y, fbsf ← f, νbsf ← ν
24: end if
25: end while
26: return [ybsf, fbsf, νbsf]

i.e. including the objective function and all related constraints.
Until one of the three termination conditions (TC1), (TC2),

or (TC3) is satisfied, the εMAg-ES is repeatedly generat-
ing new offspring populations. To this end, λ offspring are
generated out of the parental recombinant of the previous
generation in the offspring procreation loop of each generation
g. The corresponding mutation vector d

(g)
l of each offspring

is obtained by multiplication of the transformation matrix
M (g) and a vector z

(g)
l with standard normally distributed

components, lines 17 and 18 of Alg. 2. An offspring is
generated in line 19 by adding the product of the mutation
strength σ(g) and d(g) to the recombinant y(g) of the previous
generation. Offspring individuals that are generated outside
the box constraints, are component-wise reflected into the
box. In accordance with Eq. (5), the reflection is denoted by
KeepRange(.) within the pseudo code. It is performed before
each function evaluation (see line 20 and line 25).

Taking into account [15], an additional repair step (lines
22 to 28) is performed with probability θp in generations
g that are multiples of the dimensionality N . If applicable,
infeasible offspring candidate solutions y(g)

l are repaired based
on the approximated gradients of the constraint functions.
The repair step requires N function evaluations per execution
plus one single evaluation of the repaired candidate solution.
It is expected to reduce the constraint violation of a can-
didate solution and will potentially guide the search into a
beneficial region of the search space, or promote the final
step towards the optimizer, respectively. This operation called
GradientBasedRepair(.) does not guarantee feasibility
in a single step. Hence, it is repeated up to θr times.

Offspring candidate solutions y
(g)
l that have been adjusted

by KeepRange(.) or GradientBasedRepair(.) will dif-
fer from the originally sampled ȳ. The corresponding mutation
vector d

(g)
l and z

(g)
l of y

(g)
l have to be readjusted to take

into account the correct quantities in the transformation matrix
update (line 38). This back-calculation is executed in lines 30
and 31 of Alg. 2. While the adjustment of d(g)

l is simple, the
correction of z

(g)
l involves the inverse of the transformation

matrix M (g). Since M (g) might turn out to be a singular
matrix, its pseudo inverse M−1 is used in line 31. It is
computed in line 12 at the beginning of each generation.

In the event that the M (g) update results in a matrix that
is ill-suited for the determination of the pseudo inverse M−1,
a reinitialization step is applied in line 13 to 15. It prevents
the algorithm from breaking off due to numerical instabilities.
Using the implementation in [9], M (g) is reset to I , and p

(g)
σ

to 1 ∈ RN , if applicable. This way, the adaptation mechanism
will start anew in the current location of the search space.

After the computation of all λ offspring, the best offspring
is compared to the best-found solution so far ybsf in line 34. In
line 36, the parental recombinant y(g) is updated. The update
involves the selection of the best µ mutation vectors with
respect to ≤ε. Note that in the context of the updates (line
36 to 38), those vectors z

(g)
l , and d

(g)
l , that contribute to the

mth best candidate solution ym;λ are considered the mth best,



Algorithm 2 Pseudo code of a modified version of εMAg-
ES [9]. Modifications are highlighted by grey boxes.

1: Initialize: µ, λ, T , w, p(0)
σ ← 1, M (0) ← I , g ← 0,

2: σ(0) ← σInit, σmax ← max(y̌ − ŷ)/2
3: for j ← 1: λ do . Sample initial population
4: yj ← y̌ + (ŷ − y̌) ◦ u(0, 1)
5: P ← P ∪ {yj}
6: end for
7: ε(0)← median ({ν(yk), k = 1, ... , λ}) ·χT>0 acc. to ≤lex
8: evals← λ
9: y(0) ←

∑µ
i=1 wiyi;λ according to ≤ε

10: ybsf ← y1;λ

11: repeat
12: M−1 ← PseudoInverse(M (g))
13: if PseudoInverse(M (g)) fails then
14: M (g) ← I , p

(g)
σ ← 1

15: end if
16: for l← 1: λ do . Create offspring population
17: z

(g)
l ← N (0, I)

18: d
(g)
l ←M (g)z

(g)
l

19: ȳ ← y(g) + σ(g)d
(g)
l

20: y
(g)
l ← KeepRange(ȳ)

21: evals← evals+ 1
22: if mod(g,N) = 0 AND u(0, 1) < θp then h← 1

23: while h ≤ θr AND ν(y
(g)
l ) > 0 do h← h+ 1

24: ỹ ← GradientBasedRepair(y
(g)
l )

25: y
(g)
l ← KeepRange(ỹ)

26: evals← evals+N + 1
27: end while
28: end if
29: if ȳ 6= y

(g)
l then

30: d
(g)
l ←

(
y

(g)
l − y(g)

)
/σ(g)

31: z
(g)
l ←M−1d

(g)
l

32: end if
33: end for
34: if y(g)

1;λ ≤ε ybsf then ybsf ← y
(g)
1;λ

35: end if
36: y(g+1) ← y(g) + σ(g)

∑µ
i=1 wid

(g)
i;λ

37: p
(g+1)
σ ← (1− cσ)p

(g)
σ +

√
µwcσ(2− cσ)

µ∑
i=1

wiz
(g)
i;λ

38: M (g+1) ←M (g) + c1
2 M (g)

(
p

(g)
σ (p

(g)
σ )> − I

)
...

+
cµ
2 M (g)

(∑µ
i=1 wiz

(g)
i;λ (z

(g)
i;λ )> − I

)
39: σ(g+1)← min

(
σ(g)exp

[
cσ
2

(
‖p(g+1)

σ ‖2
N − 1

)]
, σmax

)
40: if g < T AND FRε(g) > θFR then
41: ε(g+1) ← ε(g)(1− g

T )2

42: else if g < T AND FRε(g) ≤ θFR then
43: ε(g+1) ← (1 + θε)ε

(g)

44: else ε(g+1) ← 0
45: end if
46: g ← g + 1
47: until termination in acc. with (TC1), (TC2), or (TC3)
48: return [ybsf, f(ybsf), ν(ybsf), evals]

i.e. zm;λ, and dm;λ, respectively.
The εMAg-ES adapts its search path p

(g)
σ in line 37.

‖p(g)
σ ‖ indicates whether the mutation strength σ(g) should

be decreased or increased in the next generation. The search
path also contributes to the transformation matrix M (g) update
performed in line 38. The corresponding strategy parameters
are chosen according to the recommendations in [8]. The
mutation strength σ(g) is then updated in line 39. It is bounded
from above by the parameter σmax. Motivated by empirical
observations, σmax was set to a fixed value for the CEC 2018
competition in [9]. The modified εMAg-ES initially computes
σmax on the basis of the problem-specific box constraints in
line 2 and thus omits additional parameter tuning.

Finally, the ε(g)-threshold is controlled in lines 40 to 45.
The ε(g) control differs substantially from [9]. Instead of
simply reducing the threshold towards zero, it includes a rule
for raising the ε-level. The idea to control ε(g) is inspired
by [13], but tailored to ES characteristics and using less
strategy parameters. That is, the ε-level, i.e. the magnitude
of constraint relaxation, is decreased as long as the ratio of ε-
feasible solutions FRε(g) in the parental population of size µ
exceeds a minimum value θFR. Otherwise, the current ε-level
is increased by a factor of 1 + θε with the intention of giving
the ES more flexibility to find better points through stronger
relaxation. Still, after a predefined number of generations T ,
the ε-level is ultimately set to zero in late search phases.
This control procedure adopts the accuracy with which the ≤ε
order relation distinguishes feasible from infeasible candidate
solutions (see Eq. (6) below).

A. Constraint handling approaches

This subsection briefly recaps the constraint handling meth-
ods used in εMAg-ES and BP-εMAg-ES.

a) Treatment of box-constraints: The satisfaction of the
box-constraints is ensured for every single candidate solution
y ∈ RN prior to its evaluation. Regarding the upper and lower
parameter bounds (ŷ, y̌ ∈ RN ) of the constrained function,
each exceeding component i ∈ {1, ... , N} of y is reflected
into the box according to

yi =


y̌i +

(
(y̌i − yi)−

⌊
y̌i−yi
ωi

⌋
ωi

)
, if yi < y̌i,

ŷi −
(

(yi − ŷi)−
⌊
yi−ŷi
ωi

⌋
ωi

)
, if yi > ŷi,

yi, else,

(5)

with component-wise distance ωi = (ŷi − y̌i) between ŷ, and
y̌. In Alg. 2, the approach is denoted by KeepRange(.).

b) The ε-level ordering: The selection operator within ES
needs to rank the generated offspring individuals of a single
generation. In that regard, feasible solutions are considered
superior to infeasible solutions. The usual lexicographic or-
dering primarily ranks two candidate solutions according to
their constraint violations and secondly with respect to their
objective function values.

Except in line 7, the εMAg-ES uses another ordering
relation: the ε-level ordering introduced by [15]. It represents
a relaxation that enables the ES to treat infeasible candidate



solutions with constraint violation below a specific ε(g) level
as feasible. A candidate solution y is called ε-feasible, if its
constraint violation ν(y) does not exceed the ε(g) threshold in
generation g. Originally, the ε(g)-level is continuously reduced
to zero with the number of generations. Hence, the strategy is
able to move outside the feasible region within the early phase
of the search which can potentially support the convergence to
the optimizer y∗. Conversely, the search outside the feasible
region might misdirect the algorithm in case of objective
functions that are monotonic in at least one axial direction [5].

Consider two candidate solutions of problem (1), yi ∈ RN
and yj ∈ RN , as well was their corresponding pairs of
objective function and constraint violation values (fi, νi) =
(f(yi), ν(yi)), and (fj , νj), respectively. The ε-level order
relation denoted by ≤ε is then defined by

yi ≤ε yj ⇔

fi ≤ fj , if (νi ≤ ε(g)) ∧ (νj ≤ ε(g)),
fi ≤ fj , if νi = νj ,
νi < νj , otherwise.

(6)

Hence, candidate solutions are compared according to the
following criteria: Two ε-feasible solutions are ranked with
respect to their objective function values. Two ε-infeasible
solutions are ordered on the basis of their constraint violations.
Ties are resolved by considering the objective function values.

In line 7 of Alg. 2, ε(0) is determined as the median
constraint violation of the initial population. During the search,
it is adjusted with each generation until it is set to zero after a
fixed number of generations T . For ε ≡ 0, the ε level ordering
equals the lexicographic ordering which is denoted by ≤lex.

c) Gradient-based repair: In addition to ε-level order
relation, the εMAg-ES erratically repairs infeasible candidate
solutions based on the gradient of the constraint functions.
In these situations, the Jacobian is approximated by use of
finite differences. The consumed function evaluations have to
be accounted properly. If the correction is not resulting in
a feasible solution, the gradient-based repair step is repeated
at most θr times. In case the strategy cannot find a feasible
solution after θr repair steps, the last infeasible candidate
solution is considered as the new offspring candidate solution.
A detailed description of the repair approach is provided in [9].

IV. EXPERIMENTS

This section recaps the experimental setup and provides the
parameter settings used by BP-εMAg-ES, Alg. 1. All exper-
iments are carried out in accordance with the specifications
of the CEC competition provided in [7]1. Consequently, the
algorithm executes 25 independent runs on each constrained
real-world problem i ∈ {1, ... , 57}. During the runs, equality
constraints are considered to be satisfied if the absolute devi-
ation is below the error margin of δ = 10−4, cf. Eq. (4). To

1Note that [6] initially specified larger function evaluation budgets (for
N < 50). In a late revision the budget was reduced by half (N ≤ 30),
and by one third (30 < N ≤ 50), respectively. Yet, the final algorithm
results provided have not been revised accordingly. To ensure comparability
to the published results in [6], the results presented in Sec. V are based on
the original budgets. Of course, the algorithm results submitted to the CEC
competition are prepared using the budgets defined in the latest version of [7].

Table I
PC CONFIGURATION AND ALGORITHM COMPLEXITY

PC: Intel Haswell Desktop
CPU: Intel Core i7-4770 3.40GHz×8
RAM: 16 GB
OS / Language: Linux / Matlab (2018b)
Algorithm: BP-εMAg-ES

Computational complexity

Algorithm T1(s) T2(s) (T2− T1)/T1

BP-εMAg-ES 10.39 15.13 0.46

fully provide the required statistics, the algorithm returns the
objective function and constrained violation (2) values of the
best candidate solution found after having consumed 100% of
the allowed budget of function evaluation. The εMAg-ES uses
the standard parameters recommended for the MA-ES in [8].
The recombination weights are

wi =
ln(µ+ 0.5)− ln i∑µ

j=1(ln(µ+ 0.5)− ln j)
, for i ∈ {1, ... , µ} (7)

and the corresponding effective population size is given as
µw = 1/

∑µ
i=1 w

2
i . The learning rates of the mutation strength,

the search path, and the transformation matrix update are

cσ =
µw + 2

N + µw + 5
, c1 =

2

(N + 1.3)2 + µw
, and (8)

cµ = min

[
1− c1,

2(µw − 2 + 1/µw)

(N + 2)2 + µw

]
(9)

In contrast to [9], the initial population size parameters λ =
4 + b3 log(N)c and µ = dλϑe with ϑ = 1/3 are considered
in this paper. This choice is motivated by the investigations
in [10] and by the use of the restart scheme that gradually
elevates the population in one of the branches.

Except for the cases specified in line 8, Alg. 1, the ε-
threshold of≤ε is adopted during the first T = 500 generations
using θFR = 0.2 and θε = 0.1, see lines 40–45 of Alg. 2. The
gradient-based repair is applied at most θr = 3 times with
probability θp = 0.2 every N th generation. As initial mutation
strength σInit = 1 is used in the BP-εMAg-ES.

V. RESULTS

As requested in [7], information on the PC configuration and
the measured computational complexity of the BP-εMAg-ES
are presented in Table I. There, T1 represents the computation
time of 105 objective function evaluations of a single candidate
solution averaged over all 57 test functions. On the other
hand, T2 refers to the average computation time needed by
the complete BP-εMAg-ES for 105 function evaluations. The
algorithm complexity is identified with the relative difference
(T2− T1)/T1 of these quantities.

The final performance statistics of the BP-εMAg-ES on
the constrained real-world benchmarks [6] for the CEC 2020
competition are presented in Tables II to V. Each table displays
the final results after having consumed 100% of the function
evaluations budget. They have been experimentally obtained
in 25 independent algorithm runs on all 57 constrained real-
world problems. The detailed results, i.e. measured in steps



of 10% of the total budget, are submitted to the CEC 2020
competition in electronic form.

The performance statistics involve the objective function
values f and the constraint violation values ν of the best, me-
dian, and worst candidate solutions found in all 25 independent
algorithm runs on each single constrained real-world problem.
Hence, the final best-found solutions are lexicographically
ranked, i.e. primarily according to their constrained violations,
and secondly with respect to their objective function values.

The mean objective function value and the mean constraint
violation are also displayed together with the corresponding
standard deviations. In addition, the tables give information on
the feasibility rate FR and on the tuple c. The former (FR) is
obtained as the ratio of the number of algorithm runs in which
at least one feasible solution is found and the total number of
algorithm runs. The latter provides a triplet the number of
unsatisfied constraints with constraint violation larger than 1,
in between 1 and 10−2, and below 10−2, respectively.

The BP-εMAg-ES found feasible solutions on 50 of 57 con-
strained real-world problems. A feasible median solution could
be computed in 49 cases. A feasibility rate of FR = 100% was
obtained on 44 benchmark problems. Only on seven problems,
no feasible solution was found at all. That is, problems
RC07, RC51, RC52, and RC54 to RC57, present the biggest
challenge for the BP-εMAg-ES among the constrained real-
world benchmarks. On five problems (RC25, RC35, RC36,
RC45, and RC50) the BP-εMAg-ES even improves the best-
known feasible solution (see Table 3 in [6]).

Comparing the BP-εMAg-ES results to the results of the
original εMAg-ES provided in [6], one observes reasonable
performance improvements in terms of an increased feasibility
rate or mean objective function values on 22 constrained
problems, e.g. RC02, RC06, or problems RC35 to RC40. On
another 26 problems the performances of both approaches are
comparable. The results on the remaining 9 benchmark func-
tions reveal slight performance degradations of the BP-εMAg-
ES over the original εMAg-ES approach without restarts. In
comparison with the two Differential Evolution (DE) variants
displayed in [6], the BP-εMAg-ES is able to realize improve-
ments on 24 real-world benchmarks.

VI. DISCUSSION

The paper introduces an advancement of the εMAg Evo-
lution Strategy designed for the CEC 2020 competition on
constrained real-world optimization problems. The BP-εMAg-
ES combines the Matrix Adaptation Evolution Strategy for
unconstrained optimization with well-known constraint han-
dling techniques and a restart scheme capable of efficiently
using the total budget of function evaluations. The approach
exhibits great performance on most of the test problems. The
BP-εMAg-ES realizes a feasibility rate of 100% on 44 real-
world problems. Only 7 problems could never be solved satis-
factorily. That represents an improvement over the algorithms
tested in [6] including the original εMAg-ES version [9]. Many
of the εMAg-ES results could be substantiated or even refined.
The BiPop approach manages to find feasible solutions more

regularly and reduces the scattering of the results over the 25
algorithm runs. Further investigations will be concerned with
the evaluation of the impact of the termination conditions on
the performance. Premature abortion due to (TC2) may con-
siderably affect the effectiveness. Hence, the best termination
criteria still need to be determined. Also, questions regarding
the sensitivity to other parameter settings will have to be
answered in a more detailed study. While BP-εMAg-ES always
assumes a black-box setting, the competition allows to treat
the constraints as white box [7]. Hence, utilizing constraint
information may offer further room for improvements.
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Table II
FINAL PERFORMANCE STATISTICS OVER 25 INDEPENDENT ALGORITHM

RUNS ON THE INDUSTRIAL CHEMICAL PROCESS (RC01–RC07) AND ON
THE PROCESS SYNTHESIS & DESIGN (RC08–RC14) PROBLEMS .

Problem RC01 RC02 RC03

Best f 1.8932E+02 7.0490E+03 -1.4272E+02
ν 0 0 0

Median f 1.8936E+02 7.0490E+03 7.6269E+01
ν 0 0 0

Mean f 1.8945E+02 7.0490E+03 -3.4578E+00
ν 0 0 0

Worst f 1.9005E+02 7.0490E+03 2.4932E+02
ν 0 0 0

Std f 1.9648E-01 8.1165E-08 1.1900E+02
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC04 RC05 RC06

Best f -3.8792E-01 -3.5674E+02 1.9543E+00
ν 0 0 0

Median f -3.8730E-01 -1.5944E+02 2.5398E+00
ν 0 0 0

Mean f -3.8723E-01 -1.7769E+02 2.3059E+00
ν 0 0 9.3095E-04

Worst f -3.8572E-01 -7.7454E+01 2.0895E+00
ν 0 0 2.1343E-02

Std f 4.9182E-04 6.3134E+01 2.4938E-01
ν 0 0 4.2614E-03

FR 100 100 68
c (0,0,0) (0,0,0) (0,0,0)
Problem RC07 RC08 RC09

Best f 1.9630E+00 2.0000E+00 2.5577E+00
ν 1.3133E-02 0 0

Median f 1.7735E+00 2.0000E+00 2.5577E+00
ν 4.7908E-02 0 0

Mean f 1.9696E+00 2.0000E+00 2.5577E+00
ν 1.2636E-01 0 0

Worst f 1.9958E+00 2.0000E+00 2.5577E+00
ν 6.5835E-01 0 0

Std f 2.5311E-01 0 1.3597E-15
ν 1.8664E-01 0 0

FR 0 100 100
c (0,7,13) (0,0,0) (0,0,0)
Problem RC10 RC11 RC12

Best f 1.0765E+00 1.0276E+02 2.9248E+00
ν 0 0 0

Median f 1.0765E+00 1.0878E+02 2.9248E+00
ν 0 6.5604E-141 0

Mean f 1.0765E+00 1.1043E+02 2.9857E+00
ν 0 3.8615E-29 0

Worst f 1.0765E+00 9.9949E+01 3.7749E+00
ν 0 9.6535E-28 0

Std f 4.5325E-16 5.4879E+00 1.7560E-01
ν 0 1.9307E-28 0

FR 100 28 100
c (0,0,0) (0,0,2) (0,0,0)
Problem RC13 RC14

Best f 2.6887E+04 5.8505E+04
ν 0 0

Median f 2.6887E+04 5.8505E+04
ν 0 0

Mean f 2.6887E+04 5.8505E+04
ν 0 0

Worst f 2.6887E+04 5.8505E+04
ν 0 0

Std f 1.1139E-11 7.3322E-06
ν 0 0

FR 100 100
c (0,0,0) (0,0,0)

Table III
FINAL PERFORMANCE STATISTICS OVER 25 INDEPENDENT ALGORITHM
RUNS ON THE MECHANICAL ENGINEERING PROBLEMS (RC15–RC29).

FOR THE RESULTS ON RC30–RC33 REFER TO TABLE IV.

Problem RC15 RC16 RC17

Best f 2.9944E+03 3.2213E-02 1.2665E-02
ν 0 0 0

Median f 2.9944E+03 3.7255E-02 1.2665E-02
ν 0 0 0

Mean f 2.9944E+03 4.3887E-02 1.2665E-02
ν 0 0 0

Worst f 2.9944E+03 1.1517E-01 1.2665E-02
ν 0 0 0

Std f 4.6413E-13 1.9276E-02 2.2500E-11
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC18 RC19 RC20

Best f 6.0597E+03 1.6702E+00 2.6390E+02
ν 0 0 0

Median f 6.0597E+03 1.6702E+00 2.6390E+02
ν 0 0 0

Mean f 6.0671E+03 1.6702E+00 2.6390E+02
ν 0 0 0

Worst f 6.0905E+03 1.6702E+00 2.6390E+02
ν 0 0 0

Std f 1.3431E+01 4.5325E-17 0
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC21 RC22 RC23

Best f 2.3524E-01 5.2628E-01 1.6070E+01
ν 0 0 0

Median f 2.3524E-01 5.2815E-01 1.6070E+01
ν 0 0 0

Mean f 2.3524E-01 5.2884E-01 1.6070E+01
ν 0 0 0

Worst f 2.3524E-01 5.3287E-01 1.6070E+01
ν 0 0 0

Std f 1.1331E-16 1.8187E-03 1.6790E-14
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC24 RC25 RC26

Best f 2.5439E+00 1.6161E+03 3.9151E+01
ν 0 0 0

Median f 2.5473E+00 1.6222E+03 4.6372E+01
ν 0 0 0

Mean f 2.5499E+00 1.6499E+03 4.7945E+01
ν 0 0 8.3188E-05

Worst f 2.5757E+00 1.7673E+03 5.0778E+01
ν 0 0 2.0797E-03

Std f 7.4647E-03 4.7396E+01 5.2664E+00
ν 0 0 4.1594E-04

FR 100 100 96
c (0,0,0) (0,0,0) (0,0,0)
Problem RC27 RC28 RC29

Best f 5.2445E+02 1.4614E+04 2.9649E+06
ν 0 0 0

Median f 5.2445E+02 1.4614E+04 2.9649E+06
ν 0 0 0

Mean f 5.2472E+02 1.4615E+04 2.9649E+06
ν 0 0 0

Worst f 5.3057E+02 1.4633E+04 2.9649E+06
ν 0 0 0

Std f 1.2225E+00 3.7925E+00 1.4258E-09
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)



Table IV
FINAL PERFORMANCE STATISTICS OVER 25 INDEPENDENT ALGORITHM
RUNS ON THE MECHANICAL ENGINEERING PROBLEMS (RC30–RC33)

AND ON THE POWER SYSTEMS PROBLEMS (RC34–RC44).

Problem RC30 RC31 RC32

Best f 2.6139E+00 0 -3.0666E+04
ν 0 0 0

Median f 2.6139E+00 0 -3.0666E+04
ν 0 0 0

Mean f 2.6139E+00 0 -3.0666E+04
ν 0 0 0

Worst f 2.6139E+00 0 -3.0666E+04
ν 0 0 0

Std f 1.0386E-13 0 3.7130E-12
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC33 RC34 RC35

Best f 2.6395E+00 1.9266E-01 8.3277E-02
ν 0 0 0

Median f 2.6449E+00 4.7804E-01 9.3446E-02
ν 0 0 0

Mean f 2.6457E+00 5.0622E-01 9.7245E-02
ν 0 0 0

Worst f 2.6552E+00 8.7114E-01 1.3920E-01
ν 0 0 0

Std f 4.5003E-03 1.9468E-01 1.3134E-02
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC36 RC37 RC38

Best f 6.5159E-02 3.1889E-02 3.3550E+00
ν 0 0 0

Median f 1.0595E-01 4.1814E-01 5.2696E+00
ν 0 0 0

Mean f 1.0745E-01 4.7536E-01 5.7540E+00
ν 0 0 0

Worst f 1.7258E-01 1.5526E+00 9.0946E+00
ν 0 0 0

Std f 2.3787E-02 4.1428E-01 1.4384E+00
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC39 RC40 RC41

Best f 3.6914E+00 1.1671E-18 7.6732E-21
ν 0 0 0

Median f 6.4649E+00 1.2574E-15 2.2331E-20
ν 0 0 0

Mean f 6.9625E+00 4.8998E-11 3.6146E-20
ν 0 0 0

Worst f 1.0617E+01 6.4324E-10 1.2044E-19
ν 0 0 0

Std f 1.7710E+00 1.4480E-10 3.2582E-20
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC42 RC43 RC44

Best f 1.7721E-01 1.2413E-01 -6.1271E+03
ν 0 0 0

Median f 5.9240E+01 3.8803E+01 -5.9674E+03
ν 0 0 0

Mean f 4.4066E+01 4.3098E+01 -5.9654E+03
ν 2.7008E-02 5.1356E-04 0

Worst f -2.0399E+00 2.2633E+01 -5.8194E+03
ν 2.8314E-01 1.2839E-02 0

Std f 3.1818E+01 2.3633E+01 8.9263E+01
ν 6.9332E-02 2.5678E-03 0

FR 76 96 100
c (0,0,0) (0,0,0) (0,0,0)

Table V
FINAL PERFORMANCE STATISTICS OVER 25 INDEPENDENT ALGORITHM

RUNS ON THE POWER ELECTRONIC (RC45–RC50) AND LIVE STOCK
RATION OPTIMIZATION (RC51–RC57) PROBLEMS.

Problem RC45 RC46 RC47

Best f 3.6065E-02 2.3592E-02 1.1408E-02
ν 0 0 0

Median f 3.9926E-02 3.1118E-02 2.1222E-02
ν 0 0 0

Mean f 4.6045E-02 3.5846E-02 2.1246E-02
ν 0 0 0

Worst f 1.0114E-01 8.3595E-02 3.4599E-02
ν 0 0 0

Std f 1.7446E-02 1.4628E-02 5.1362E-03
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC48 RC49 RC50

Best f 1.6788E-02 1.0519E-02 1.4970E-02
ν 0 0 0

Median f 3.5294E-02 2.7958E-02 1.5797E-02
ν 0 0 0

Mean f 3.4488E-02 2.6114E-02 1.8026E-02
ν 0 0 0

Worst f 8.3839E-02 3.7347E-02 6.8336E-02
ν 0 0 0

Std f 1.5087E-02 7.6237E-03 1.0543E-02
ν 0 0 0

FR 100 100 100
c (0,0,0) (0,0,0) (0,0,0)
Problem RC51 RC52 RC53

Best f 4.4222E+03 3.7636E+03 5.6593E+03
ν 3.0264E-03 0 2.4659E-04

Median f 4.3540E+03 4.7342E+03 5.1442E+03
ν 7.3361E-03 0 7.6991E-03

Mean f 4.2331E+03 4.8245E+03 5.3356E+03
ν 1.5850E-02 2.9673E-03 1.6343E-02

Worst f 4.1360E+03 6.0512E+03 5.3852E+03
ν 1.1500E-01 2.4198E-02 7.6665E-02

Std f 1.5683E+02 6.7631E+02 2.7711E+02
ν 2.3600E-02 6.0413E-03 1.8654E-02

FR 0 76 0
c (0,1,0) (0,0,0) (0,3,1)
Problem RC54 RC55 RC56

Best f 3.6391E+03 7.8318E+03 1.4353E+04
ν 2.1221E-03 2.4056E-03 4.2292E-03

Median f 4.4356E+03 5.1067E+03 1.5549E+04
ν 1.5963E-02 5.2585E-03 1.2621E-02

Mean f 4.3174E+03 6.3419E+03 1.3031E+04
ν 4.4050E-02 5.5204E-03 1.1893E-02

Worst f 4.4653E+03 9.4135E+03 1.2804E+04
ν 2.2344E-01 9.3768E-03 1.9663E-02

Std f 1.0552E+03 1.2380E+03 1.6771E+03
ν 5.7884E-02 1.6408E-03 4.0553E-03

FR 0 0 0
c (0,2,1) (0,1,3) (0,3,1)
Problem RC57

Best f 1.0164E+04
ν 8.3190E-04

Median f 5.3843E+03
ν 2.1675E-03

Mean f 6.6273E+03
ν 2.4252E-03

Worst f 5.9084E+03
ν 4.3802E-03

Std f 1.7481E+03
ν 8.2663E-04

FR 0
c (0,1,1)




