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Abstract—In this paper, we combine the concepts of hyper-
volume, ant colony optimization and nondominated sorting to
develop a novel multi-objective ant colony optimizer for global
space trajectory optimization. In particular, this algorithm is first
tested on three space trajectory bi-objective test problems: an
Earth-Mars transfer, an Earth-Venus transfer and a bi-objective
version of the Jupiter Icy Moons Explorer mission (the first large-
class mission of the European Space Agency’s Cosmic Vision
2015-2025 programme). Finally, the algorithm is applied to a
four-objectives low-thrust problem that describes the journey of
a solar sail towards a polar orbit around the Sun. The results on
both the test cases and the more complex problem are reported
by comparing the novel algorithm performances with those of
two popular multi-objective optimizers (i.e., a nondominated
sorting genetic algorithm and a multi-objective evolutionary
algorithm with decomposition) in terms of hypervolume metric.
The numerical results of this study show that the multi-objective
hypervolume-based ant colony optimization algorithm is not only
competitive with the standard multi-objective algorithms when
applied to the space trajectory test cases, but it can also provide
better Pareto fronts in terms of hypervolume values when applied
to the complex solar sailing mission.

Index Terms—global optimization, space trajectory optimiza-
tion, ant colony optimization, hypervolume metric

I. INTRODUCTION

Global optimization techniques are usually critical in terms
of computation time, however, thanks to the fast developments
in computer power in recent years, the interest in global
optimization methods have been constantly increasing. Gen-
erally, two different kinds of global optimization algorithms
are distinguished: deterministic and stochastic. Deterministic
optimization focuses on providing theoretical proofs that the
found solution is indeed the global best one, within a defined
tolerance interval. Deterministic methods do not include any
randomness, and they typically guarantee a finite amount of

work for reaching the solution within certain tolerances. How-
ever, they also require physical insight into the problem, which
can allow to formulate them rigorously from a mathematical
point of view.

On the other hand, stochastic methods use randomly gener-
ated variables, and they basically provide optimization meth-
ods without the need for any particular insight into the
problem. This means that the optimization problem can be
treated as a black box. Furthermore, most of the stochastic
methods are heuristic (i.e., it cannot be proved that they can
find a global optimal solution within a certain amount of time).
These heuristic methods seem very suitable for trajectory
optimization problems, where the domain is typically too
complex and large to be represented in a closed mathematical
form or fully explored. Some of the most important stochastic
algorithms are evolutionary algorithms (EA) (among which
we distinguish: genetic algorithms (GA), differential evolution
(DE), and many other forms), ant colony optimization (ACO),
and particle swarm optimization (PSO). Also, many other
variants of these algorithms have been derived (e.g., extended
ant colony optimization (EACO), self-adaptive differential
evolution (SADE), etc.). The European Space Agency (ESA),
during the first years of the 21st century, has extensively
studied GA, PSO, MPSO, DE, and ASA, to find the best
algorithms for trajectory optimization using certain benchmark
problems. It has been shown in those years (see for instance
[1] and [2]) that MPSO, DE, ASA seem to be most promising
for trajectory optimization. However, recently it has also been
suggested that ACO might even outperform these algorithms
for those types problems [3], [4], [5]. However, the extended
ant colony optimizer that currently shows such performance
is not available in an open-source fashion. Moreover, its
multi-objective (MO) extension makes use of a Utopia-Nadir
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balance decomposition method [6], whose performance is
highly dependent on the available information about the nadir
and utopia points for each objective function, and on the
established weights for constructing the target functions. For
overcoming these difficulties, we propose an extended ant
colony optimizer whose evolutionary strategy is inspired by
[3], but it implements a new technique for handling multi-
objective problems by using the hypervolume metric and the
nondominated sorting strategy for assessing the quality of the
solutions. To sum up, on the one hand, such algorithm is
intended to exploit the suggested good performances of single-
objective ACO on trajectory optimization types of problems,
on the other, it is meant to retain these capabilities to MO
problems, thanks to the fact that the hypervolume metric
combines both the diversity and convergence information in
one single value. Furthermore, we make this algorithm avail-
able in pagmo2 [7]: the parallel global optimization software
developed and maintained by the European Space Agency, so
that everybody can access and improve the algorithm or test
its performances, in an open-source fashion1. The algorithm
can handle mixed-integer variables as well as concave, convex
and discontinuous Pareto fronts as verified from several tests
made on the ZDT, DTLZ and WFG test suites (which are also
reported as test cases in the software implementation of the
algorithm).

II. METHODS

A. Multi-Objective Optimization

Assuming that there are M objective functions, the problem
can be mathematically formulated as follows:

min
xxx∈Σ

(fff(xxx)) = min
xxx∈Σ

[f1(xxx), ..., fM (xxx)]T (1)

where xxx is a vector of N variables, which can be both
integer and continuous, defined in the search space Σ. The
problem is generally subjected to equality and inequality
constraints, which can be expressed, respectively, as:

hi(xxx) = 0 i = 1, ...,m (2)
gi(xxx) ≤ 0 i = m+ 1, ..., p (3)

For multi-objective optimization, the problem is thus to
simultaneously minimize the components of a vector of
functions (fff = (f1, ..., fM )T ), which is subject to several
constraints. The problem is typically not uniquely solvable, but
a set of equally efficient alternative solutions is possible. These
solutions, among all the found ones, constitute the Pareto-
optimal front, when they are plotted in the objective space.
When comparing individuals i and j, with objective vector
functions fffi and fffj we affirm that i dominates j in the Pareto
sense if and only if:

∀k ∈
{

1, ..,M
}

: fi,k ≤ fj,k, ∃k ∈
{

1, ..,M
}

: fi,k 6= fj,k

1https://esa.github.io/pagmo2/docs/cpp/algorithms/maco.html, date of ac-
cess: January 2020.

The Pareto-optimal set is thus a set of individuals that has
the best performance taking all the objectives into account. It
is clear that, among the population, it is possible to remove
the Pareto front and identify the second best Pareto front, and
so on. In this way, one is able to rank the various fronts. For
establishing the Pareto front rank number of each solution,
the concept of dominance is used. Indeed, the individuals that
dominate all the others are checked so that the first and all
the other fronts are established. Then these individuals are
excluded and the same operation is repeated. Therefore, it is
possible to obtain an integer number of Pareto fronts. Many
multi-objective optimization techniques leverage this con-
cept for evolving the population throughout generations. The
methodology and implementation of MO algorithms are thus
completely different from the single-objective ones. In this
study, we have only applied these algorithms in the framework
of space trajectory optimization. Moreover, we have employed
and benchmarked three different multi-objective optimizers:
a nondominated sorting genetic algorithm (NSGA-II) [8],
a multi-objective evolutionary algorithm with decomposition
(MOEA/D) [9], and a multi-objective ant colony optimizer
(MHACO), which has entirely been developed in this study,
and whose detailed description is presented in Section II-C.
Furthermore, all these algorithms have only been applied in
the framework of space trajectory optimization.

B. Hypervolume Metric

Before going into details in the algorithm description, it is
first necessary to introduce the concept of hypervolume, as
this has not only been used for assessing the performance of
the algorithms, but also in the design of the novel ant colony
optimizer. As we have already mentioned, MO optimizers
often return a Pareto-front of several individuals, rather than
a single-best individual. Moreover, for general optimization
problems, the returned Pareto fronts are often different when
different algorithms are used. Therefore, there is the need
for assessing the quality of each Pareto-front compared to
the others. For doing this, several convergence and diver-
sity metrics exist. These typically assess whether the found
individuals belong to the Pareto front and how diverse the
Pareto front is (i.e., how distant the individuals are within
the same front). The hypervolume metric is a popular metric
that combines both the diversity and convergence information
in one single value. This metric was first introduced in [10]
and it has soon become one of the most used performance
metrics for MO algorithms. Indeed, not only does this metric
evaluate both convergence and diversity using a single value,
but it also has the property of being strictly Pareto compliant,
meaning that the Pareto-optimal front has the key characteristic
of maximizing the hypervolume value. This means that any
dominated set will result in a lower hypervolume value.

Given a set of xxx ∈ Rn decision vectors and a set of fff(xxx) ∈
Rm objective functions, we have already discussed that we
can define the Pareto-optimal set as: {xxx ∈ Rn| @ xxx′ ∈ Rn :
xxx′ ≺ xxx}. The corresponding image in the objective space Rm

is called Pareto front.



Typical definitions of the hypervolume indicator are based
on polytopes [11]. Nevertheless, without introducing this con-
cept it is still possible to introduce the hypervolume concept
(which is nothing more than a generalization of the area,
and volume concepts in n-dimensions) in a simpler way. The
computation of the hypervolume in 2-dimensions is shown in
Fig. 1.

Fig. 1. Graphical representation of the hypervolume computation in two
dimensions 3.

By taking a sub-set B of the objective functions space and
letting Λ denote the Lebesgue measure (which is the common
method to measure subsets of n-dimensional Euclidean space,
and which corresponds to the concepts of length, area and
volume for the case of n=1, 2 and 3, respectively), then the
hypervolume (IH ) can be defined as:

IH(B,yyyref ) = Λ

( ⋃
yyy∈B

{
yyy′|yyy ≺ yyy′ ≺ yyyref

})
, B ⊂ Rm (4)

where m is the objective space dimension, yyy, yyy′ ∈ B belong
to a sub-set of the overall objective function vectors and where
yyyref ∈ Rm refers to a reference point that should be dominated
by all Pareto-optimal solutions. It is important to notice that
the hypervolume value can be computed both on a single
individuals and on a set of individuals: we will exploit both
these features. The former, in particular, will be leveraged
to perform the internal ranking of the algorithm, whereas
the latter will especially be used when the hypervolume is
used as performance metric to evaluate and compare different
algorithms performances.

Albeit recent improvements, the exact computation of the
hypervolume for high dimensions is still a bottleneck and
quickly becomes unfeasible for objective space dimensions
higher than 10. For overcoming this problem, a lot of research
has been carried out for approximating the hypervolume com-
putation for high dimensions, while still using exact algorithms
for low dimensions (such as 2, 3 or 4). In particular, in [12], a
study is performed to benchmark the state-of-art hypervolume
algorithms. From this study, it is concluded that for two
and three dimensions, two exact algorithms shall be used
[13], [14], due to their low computational time. However,

for higher dimensions (i.e., from four to ten), the Walking
Fish Group algorithm [15] seems to be the most suitable.
This algorithm takes advantage of the bounding boxes to
compute the exclusive contributions of points that are then
used for the hypervolume computation. The asymptotic time
does not seem to be very good, but experimental and theo-
retical evidence shows that is the fastest exact algorithm for
high dimensions [16], [17]. For dimensions bigger than 10,
however, the computation time increases toward unfeasible
values. Typically, this forced researchers to scale down the
problems before treating them. In [12], it is demonstrated
that for the dimensions larger than 10 the best approximation
algorithm in terms of accuracy of the approximation and run-
time is the algorithm by Bringmann and Friedrich [18], which
uses a Monte Carlo-like sampling method together with a
racing approach to approximate the hypervolume computation.

To conclude, we will make use of these studies to establish
the algorithm to be used for either computing the hypervolume
exactly or for approximating it (depending on the objective
function dimension). In particular, we will use the following
algorithms:
• For M = 2: dimension-sweep exact algorithm [13].
• For M = 3: Beume exact algorithm [14].
• For 4 ≤ M ≤ 10: Walking Fish Group exact algorithm

[15].
• For M > 10: Bringmann and Friedrich approximation

algorithm [18].

C. Algorithm Description

The original ACO, inspired by the biological process
through which real ants forage food, was proposed by Dorigo
in his PhD thesis [19]. However, we based our research on an
extension of the original ACO version [20], [21]. This type
of ACO is called extended ACO and its working principle
consists in first randomly generating the initial population,
with a uniform distribution, and then evolving the future
generations of ants according to a solution archive, where
the best and worst individuals are stored. In particular, the
evolutionary operator used for evolving the individuals from
the archive consists of a multi-kernel normal distribution that
is the weighted sum of different normal probability density
functions (PDF):

Gh(x, ω, µ, σ) =

K∑
k=1

ωh
k

1

σh
√

2π
e
−

(x− µh
k)2

2(σh)2
(5)

where h = 1, ..., ncon (in which ncon is the continuous
dimension), whereas the triplet (ωh

k , µ
h
k , σ

h) represent the
mean values, the standard deviations and the weights, of each
normal distribution. These values are defined depending on the
kth position of the individual in the archive of size K (which
is updated continuously throughout the evolution process) and
on the integer or continuous variable considered (i.e., h). In
particular, while the mean values µh

k and the weights ωh
k are

3http://lopez-ibanez.eu/hypervolume, date of access: December 2019.



uniquely defined for each single ant in the archive, on the other
hand, the standard deviations are the same across different
ants, if the variable taken into account is the same. In other
words, the standard deviations are only dependent on which
variable h is being considered.

However, the practical strategy implemented for generating
new individuals according to this weighted multi-kernel dis-
tribution did not make direct use of (5). Indeed, this strategy
uses the same concept as the multi-kernel distribution, but
employing a different method. Also, it allows the user to
establish whether to focus more on the first individuals of
the archive, for producing the offspring. This was achieved
thanks to a peculiar formulation of the weights. In particular,
for generating the weights, we have employed the following
formulation [22]:

ωh
k =

1

qK
√

2π
e
−

(k − 1)2

2q2K2 (6)

where k refers to the kth individual in the solution archive,
whose members range from 1 to K (which represents the
solution archive size). Also, q is a user-defined parameter that
substantially regulates the weights’ definition. Indeed, if q is
set to high values, then the resulting weights will be of similar
magnitude and every individual in the solution archive will
have a similar probability of being selected. Whereas if q is
chosen to be very small, then the algorithm will focus more
on the very first individuals of the solution archive (which are
considered to be the best), assigning them higher values of the
weights.

As a consequence, the sampling process is not done any-
more by directly using the multi-kernel normal distribution
function shown in (5), but it is performed by randomly
selecting a single normal, taking into account that those with
higher weights are more likely to be selected. This is carried
out by only selecting one of the normal probability density
functions of the multi-kernel PDF, whose selection is done
by taking into account the probability phk of choosing the
kth normal function, for each variables’ component h. This
probability is computed as:

phk =
ωh
k∑K

k=1 ω
h
k

(7)

Of course, these probability functions have the property of
having a sum equal to one (for each variable h). Mathemati-
cally, this means that:

K∑
k=1

phk = 1 (8)

The process of sampling the chosen normal distribution
is then executed as follows: from the probability values the
cumulative probability is extracted, and each individual is
assigned with that cumulative distribution function value. Af-
terwards, a random number between 0 and 1 is generated using

a uniformly distributed random number generator, and the
normal function is chosen accordingly. For how the weights
are defined, the q parameter plays a pivotal role: if this
parameter is set to low values, the chosen normal will more
likely be among the top rated individuals, whereas if it is set to
high values, a more uniformly distributed selection among all
the members of the archive would be achieved. Usually, in the
first phase of the algorithm optimization process, more evenly
distributed weights are desirable, so that all the individuals
in the archive are used for the generation of the offspring.
Whereas when the generations’ number is high and the evolu-
tion process is mature, we would like the algorithm to focus
more its evolution process around the very first individuals in
the archive, to possibly achieve convergence. For taking this
into account another user-defined parameter was introduced,
called the threshold (T ). This parameter is an integer that
can range between 1 and the generation number. When the
generation’s value reaches the T value, then the q value is
changed from the user-defined choice to a value of 0.01 (which
makes sure that the algorithm focuses more on the very best
individuals for generating new ones).

The parameters µh
k are simply the values of each variable

component related to the kth individual of the archive and they
can be computed using the variables vector of each individual
contained in the archive.

Finally, the standard deviations are computed as:

σh =
Dh

max −Dh
min

G
(9)

where G is a parameter, whereas Dmax and Dmin are the
maximum and minimum distances between all the vectors in
the archive (i.e., (xxx)k=1,...,K), for each variable dimension (h).
These distances can therefore be computed as:

Dh
min = min

{
|xph − x

q
h| : p, q ∈ N, p 6= q ≤ K

}
Dh

max = max
{
|xph − x

q
h| : p, q ∈ N, p 6= q ≤ K

}
Equation (9) resembles the one introduced in [20]. However,

in that case, the number of generations were used instead
of the parameter G. The main reason why this modification
was done in this work, is that by using the original formula,
the standard deviations were soon driven to zero (as the
number of generations increased), thus causing the algorithm
not to generate offspring far enough from previous individuals,
and to prematurely converge towards local optima during
the evolution process. For avoiding this, a new user-defined
parameter has been introduced: NG. Basically, G plays the
same role as the number of generation, with the difference that
when G reaches the NG value, it is restarted again from 1 and
it is increased again by one as the generation counter increases
by one as well. For instance, let us assume that the user
chooses NG = 7, then, this means that the G parameter will be
increased until 7, when the population is evolved until the 7th

generation. Afterwards, the G parameter is started again from
1 and then increased until 7, when the generation value reaches
14. This is repeated again with the same logic for the entire



evolution process. In this way, as long as the Dh
max −Dh

min

parameter is different than zero, σh is ensured not to reach very
small values if the user decides so (by selecting a low value for
the NG parameter). Of course, there is also the risk that NG
is chosen so small that the consequent standard deviations are
too large and the algorithm thus struggles to converge. For this
reason, this parameter often requires to be adjusted according
to the problem (especially when it is particularly cumbersome).

Two parameters are used to allow the user to monitor
the spread of the individuals stored in the solution archive
and thus establish how to set NG. This aspect is strictly
related to the standard deviation values since very spread out
individuals might require a lower standard deviation value
(hence a higher NG), whereas very cluttered individuals might
require a higher standard deviation value (hence a lower NG),
which may ensure a wider search in the variables’ domain. For
allowing the user to determine this more easily, the flatness
in the variables (i.e., dx) and in the hypervolume (i.e., dh)
of the individuals in the solution archive are saved for each
generation. These are defined as:

dx =

n∑
i=1

(
|xw,i − xb,i|

)
(10)

dh = |hw − hb| (11)

where hw is the hypervolume value of the last (i.e., the
worst) individual in the solution archive, whereas hb of the
first (i.e., the best). Also, n is the variables’ dimension, i is
the ith variables’ component, xb,i indicates the components of
the first decision vector (i.e., the best in the solution archive)
and xw,i the components of the last decision vector (i.e., the
worst in the solution archive).

Once the triplet of pheromone values is defined, it is only
necessary to establish how the solutions are ranked within
the archive of size K. Indeed, having done the ranking, the
evolutionary operator expressed in (5) is then capable of
generating new ants from those in the archive, according to
their positions. For ranking the individuals we have decided to
implement an hypervolume-based strategy: meaning that the
individuals with the highest hypervolume values will be placed
at higher positions of the archive.

Having discussed the evolutionary operator, we needed to
make sure to establish an effective strategy for ranking the in-
dividuals within the solution archive. As a novel approach, we
propose to use a combination of the Pareto dominance concept
and the hypervolume value, for ranking the individuals after
they have been generated: this will allow us establish a ranking
of the individuals and to have an update of the solution archive
(in case new individuals that outperform those in the archive
are generated). In particular, the population is first divided
into nondomination levels, using the fast nondominated sorting
strategy (the same as NSGA-II [8]), and then, the hypervolume
metric is computed for each individual at each nondomination
level. In this way, a sorting strategy is established: in case
the individuals have different nondomination ranks, the lower

nondomination level is preferred, whereas in case that the non-
domination level is the same, then the hypervolume value of
the single individual within the nondomination level is used for
the ranking (where individuals with higher hypervolume values
are preferred). Mathematically, this can be expressed using an
hypervolume-comparison operator (i.e., <h). According to this
operator, an individual i is considered better than an individual
j (and thus placed higher in the ranking) if the following is
verified:

i <h j if (irank < jrank)

or ((irank = jrank) and (hv(i) > hv(j)))

where the hv(i) represents the hypervolume contribution of
the ith individual. The hypervolume is computed by taking as
reference point the nadir point of each nondomination level
set of individuals, and by shifting it by 1% in each coordinate
(in orther to ensure that the reference point is dominated by
all the individuals in that level).

The algorithm strategy can be summarized as follows:

1) The initial population of size NP is randomly generated
within the box-bounds of the variables. Also, a solution
archive of size K < NP is also generated using the
individuals of the initial population.

2) If the generation number is higher than 1, then a merged
list of NP + K individuals is created, combining the
archive and the newly generated offspring.

3) The hypervolume-comparison operator is used for rank-
ing the individuals of the merged list, and establish
which ones will be kept in the archive: this is updated
only if at least one individual in the offspring outper-
forms the worst in the archive.

4) Once the archive is updated new offspring is generated
using the evolutionary operator expressed in (5).

5) The algorithm goes back to Step 2 and repeats itself.
It is thus clear that at the first iteration, only the initial
population will be ranked, whereas, for all the others,
both the solution archive and the population are sorted.

The user is thus left to choose the solution archive size
(K) and the three parameters (i.e., T , NG and q) to tune the
pheromone values, and the optimization algorithm is capable
of running. Furthermore, it is also possible, if needed, to make
the search greedier by introducing a focus parameter (focus)
(which will result in a contraction of the standard deviations),
or to employ a stopping criterion (evalstop) that interrupts the
evolution when the archive is not updated for a certain number
of function evaluations.

Concerning the computation speed, MHACO has the pos-
sibility to parallelize the fitness computation of the indi-
viduals of the same generation on multiple threads (since
the evaluation of each individual does not depend on the
others), thus making the optimization process considerably
faster for problems that require a high computation time of
each individual fitness. However, for employing this strategy,
it is required that the problem is thread-safe.



III. SPACE TRAJECTORY OPTIMIZATION PROBLEMS

The developed algorithm was tested on four space trajectory
problems. Three can be found in pykep [23]: the scientific
open-source library developed at the European Space Agency
to provide basic tools for astrodynamics research4. The first
two of these problems represent single leg transfers between
two planets (in our case Mars and Venus) allowing up to three
impulsive deep space maneuvers, with a time of flight between
20 and 400 days and with an infinite velocity between 0 and
4 km/s. On the other hand, the third of these problems is a
more complex one and it represents a rendezvous mission to
Jupiter modelled as a multi-gravity assist transfer with one
deep space maneuver. The selected fly-by sequence is Earth-
Venus-Earth-Mars-Earth and the spacecraft departs from the
Earth and arrives at Jupiter. This problem is inspired by the
ESA JUpiter ICy moons Explorer (JUICE) mission, which
is a large-class mission within ESA’s Cosmic Vision 2015-
2025 programme5. It is planned to be launched in 2022 and
to arrive at Jupiter in 2029. The spacecraft will then spend
three years observing the gaseous planet and three of its
moons: Ganymede, Callisto and Europa. A launcher model
(i.e., Ariane 5) is also modeled within the problem, so that
the final mass delivered at Jupiter is included in the objectives,
together with the time of flight. Finally, the fourth problem we
optimized, is a difficult low-thrust problem that simulates the
journey of a solar sail towards a polar orbit around the Sun for
exploring the Sun poles, starting from a GTO orbit. A thorough
description of the general framework of this last problem can
be found in [24]. The first three problems are bi-objective: in
the case of the planet-to-planet transfers, 7 global variables are
optimized over two objectives (an encoded version of the time
and the total ∆V ). Also in the case of the JUICE problem two
objective are optimized (i.e., an encoded version of the final
mass and the time of flight), but in this case with 27 variables.
On the other hand, for the solar sailing mission, the problem
has 12 variables and 4 objectives (i.e., the sail mass, the time
of flight, and two penalties that regulate how precise the final
orbit is both in terms of time of arrival and orbital elements).
These problems have all been optimized with the same strategy
and using the hypervolume metric as performance indicator
(which encapsulates both the quality and diversity information
of the Pareto front). The employed strategy for comparing the
algorithms is the same as the one described in [25]. Each k
algorithm (i.e., NSGA-II, MOEA/D and MHACO) was run t
times with a controlled seed (for both the initial population and
the internal evolutionary operators) for each run (so that not
only each algorithm starts from the same initial population
but the results are also reproducible when setting the same
seeds) and over a G number of total generations. After the
algorithms are run over all the generations, all their objective
function vectors are normalized so that each component spans
between 1 and 2. This mapping is applied to all the ktG
populations (which size is 100 for the three pykep problems

4https://esa.github.io/pykep/, date of access: January 2020.
5https://sci.esa.int/web/juice, date of access: January 2020.

and 56 for the solar sailing problem). This means that all the
coordinates of all the individuals across the algorithms are
always bounded between [1,2]. Therefore, the reference point
(for the hypervolume computation) can be chosen equal to 2.1
in each of its components (e.g., in the case of a bi-objective
problem, it will be aref = [2.1, 2.1]). Furthermore, in this way,
we are able to track the evolution of the hypervolume values
of the populations throughout the generations, and compare
those values (averaged through the number of trials t) across
different algorithms (as both the mapping procedure of the
objective function vectors and the reference point are the same
for all of them).

IV. RESULTS

As already discussed in Section III, MOEA/D, NSGA-II
and MHACO have been compared on the four space trajectory
problems. In particular, besides using a population size of 100
and a generation size of 500 for all the problems except for the
solar sail one (where a population size of 56 and a generation
size of 40 was selected), NSGA-II was run with the following
input parameters: a crossover probability of 0.9, a distribution
index for crossover of 10, a mutation probability of 0.01 and
a distribution index for mutation of 10. On the other hand,
MOEA/D was run with the following input parameters: a
grid weight generation method, a Chebyshev decomposition
method, a size 20 of the neighbors, a crossover (CR) parame-
ter equal to 1.0, an F parameter of 0.5, a distribution index for
polynomial mutation of 20, a chance that the neighborhood is
considered at each generation of 0.9 and a maximum number
of copies reinserted in the population of 2 (where two diversity
preservation mechanisms, discussed in [26], are used). Both
NSGA-II and MOEA/D have not been tuned in their input
parameters, as there is a wealth of knowledge and previous
studies on the selection of these input parameters, that one
can rely on, including the scientific publications where these
algorithms have been introduced [8], [26], [9]. Finally, as far
as MHACO is concerned, the chosen input parameters (for
the Earth-Mars, Earth-Venus, JUICE and solar sail problems,
respectively) are K = 50, 25, 75, 56, NG = 2, 1, 57, 8,
q = 0.75, 0.75, 0.85, 1.0, T = 100, 100, 200, 35. The general
strategy is to choose the archive size (K) as large as the
number of individuals in the population, only if the problem
is very difficult (e.g., the solar sail problem), and to select it
around 25%, 50% or 75% of the population size otherwise
(depending on the difficulty of the problem the archive size
is typically increased). It is important to notice that the
size of the archive only influences the internal evolutionary
mechanism of the algorithm and not the number of solutions
in which the hypervolume metric is computed for comparing
the performance across different algorithms. Concerning the q
parameter, a fixed value of 0.75 was chosen as baseline for
the easier problems, and increased (to 0.85 and 1.0) for the
JUICE and solar sailing problems, as they result to be more
cumbersome. Concerning the NG parameter, a very low value
(e.g., 1 or 2) was chosen for the easiest problems (e.g., Earth-
Mars and Earth-Venus transfers), but its value was increased



to either 1/8 or 1/5 of the number of generations for the others.
The reason is that for more difficult problems, we would
like to allow the algorithm to search more around the local
found optimal solutions (by reducing the standard deviations)
before making the search spreader in the search space. On
the other hand, for easier problems, the search space around
the local optimal solutions is explored more rapidly and we
therefore want to allow the algorithm explore other regions
of the search space more often. Finally, the threshold value
(T ) was set to either 20% or 40% or around 90% of the
total generations number, depending on the difficulty of the
problem (the higher, the more difficult). Furthermore, all the
algorithms have been run (with the same initial populations)
over t trials, where t = 100 for the first three problems and 10
for the solar sail one. The reason why this trial number was
reduced for the latter case, is that the solar sail problem is
way more computationally expensive, due to the long mission
duration (i.e., each function evaluation takes 50 times the time
it takes to run the other problems, on average). In Fig. 2, 3,
4 and 5, we show the average (across the trials) hypervolume
values together with the standard deviations (highlighted as
vertical bars up and below the mean values) as a function
of the function evaluations. As can be seen, NSGA-II always
outperforms the other algorithms for the easier Earth-Mars
and Earth-Venus problems, whereas MHACO shows the best
performances on both JUICE and the solar sailing problem.
To corroborate this, the final average hypervolume values (at
the latest generation) are also shown in Table I. Furthermore,
as shown in the figures, the hypervolume curves have a
tendency to grow and the standard deviations to diminish, as
the function evaluations are increased. This is reasonable, as
we would expect the population of the algorithms to improve
the convergence (i.e., to find better Pareto-optimal fronts),
as the number of evaluations are increased (i.e., exploitation
is favoured w.r.t. exploration, as the num). Moreover, we
also observe a different convergence behavior for the algo-
rithms, especially in the solar sailing problem. Indeed, as can
be seen from Fig. 5, both MHACO and NSGA-II have a
wobbling behavior across the first function evaluations. The
reason is due to the convergence behavior of MOEA/D, which
monotonically improves the hypervolume values in the first
evaluations, with strong and fast improvements. Therefore,
since all the hypervolume values of all the algorithms are
normalized and computed for the same reference point, if an
algorithm strongly improves its population with respect to the
others, this causes a decreasing behavior for the hypervolume
of the latter algorithms. However, for the solar sailing problem,
MOEA/D does not seem to be able to maintain such a behavior
for higher function evaluations. Indeed, as the evaluations
increase, MHACO manages to outperform its competitors.

V. CONCLUSIONS

In this paper, we have introduced a novel multi-objective
ant colony optimizer for space trajectory optimization prob-
lems. As hinted from recent research, when applied to such
problems, this type of algorithm seems to be competitive with

TABLE I
AVERAGE HYPERVOLUME VALUES AT THE LAST GENERATION FOR
MOEA/D, NSGA-II AND MHACO ON THE EARTH-MARS (EM),

EARTH-VENUS (EV), JUICE AND SOLAR SAIL (SS) TEST PROBLEMS.

EM EV JUICE SS
NSGA-II 1.209978 1.209992 1.2054 1.4482
MOEA/D 1.194581 1.198877 1.2051 1.4530
MHACO 1.209960 1.209973 1.2062 1.4562
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Fig. 2. Average hypervolume evolution of MOEA/D, NSGA-II and MHACO
on the Earth-Venus bi-objective transfer problem.
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Fig. 3. Average hypervolume evolution of MOEA/D, NSGA-II and MHACO
on the Earth-Mars bi-objective transfer problem.
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Fig. 4. Hypervolume evolution of MOEA/D, NSGA-II and MHACO on the
JUICE bi-objective problem.
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Fig. 5. Hypervolume evolution of MOEA/D, NSGA-II and MHACO on the
four objectives solar sail problem.

the most used multi-objective algorithms (i.e., NSGA-II and
MOEA/D). In particular, the developed algorithm has shown
a better convergence behavior both on the difficult solar sail
problem and on the bi-objective formulation of the ESA’s
JUICE mission. Furthermore, this algorithm was developed
and made available in ESA’s pagmo2 optimization toolbox,
which therefore allows future researchers to test and enhance
the algorithms capabilities, in an open-source fashion.
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