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Abstract—Classic opinion dissemination models such as Ma-
jority model, and Voter model are particularly important in
swarms robotics because they regulate the interactions among
the agents while the swarm is engaged in collective decision-
making processes requiring the consensus of the large majority
or the unanimity of the group’s members. In this paper, we
compare the effectiveness of three different opinion dissemination
models in a specific scenario where consensus is searched on an
opinion disseminated within the swarm by a small number of
legitimate agents. The task of the legitimate agents is hindered
by few adversarial agents which disseminate within the swarm
an “invalid” message. This scenario is meant to model a data
communication manipulation attack in a swarm of robots. By
comparing the dissemination models in different experimental
conditions, the results of our study inform us on which model
is more effective in supporting the case of legitimate agents,
while reducing the disruptive effects of the data communication
manipulation attack.

I. INTRODUCTION

Opinion dissemination models concern the way in which

single individuals change opinion based on the interactions

with other individuals. Opinion dissemination dynamics have

been extensively studied to understand the mechanisms that

regulate the dissemination of opinions in human society [4],

[16]. They have also been studied in ethology to unveil

the mechanisms underpinning the processes by which social

insects such as ants and bees make decisions collectively: i.e.,

in a way that, once made, the choice is no longer attributable

to any of the individual members of the group [5]. A collective

decision is made when the large majority or the unanimity of

the group members favour the same option.

In this paper, we focuses on opinion dissemination in swarm

robotics systems. A robot swarm is a group of robots that co-

operate to accomplish a mission that a single robot is unable to

accomplish alone. A robot swarm operates in a self-organised

and distributed manner: there is no leader and coordination is

obtained via interaction between the individual robots [2]. A

robot swarm does not rely on any external infrastructure: each

individual robot acts on the basis of local information obtained

through its sensors or provided via local communication by

neighbouring robots. Opinion dissemination is particularly

important in swarm robotics, since in the absence of a group

leader, any decision in presence of alternative options, has to

be taken collectively, and without relying on concepts such

as reputation and confidence in group mates [13]. This is

because the robots of a swarm are “anonymous”. Thus, they

communicate through modifications of the local environment

(e.g., by emitting sound or by generating other types of

signals that are eventually detected by other agents located

within signals’ range). These characteristics make the swarm

extremely flexible and robust but also particularly vulnerable

to intentional and systematic disruptions from an adversarial

source [12]. In this paper, we focus on an “attack scenario” in

which malicious adversarial agents disrupt a data communica-

tion process in a swarm of mobile robots. Our study aims to

evaluate the extent to which different opinion dissemination

models shield the swarm from such malicious and potentially

disruptive attack.

Within swarm robotics, opinion dissemination mechanisms

are generally studied with respect to the best-of-n problem,

where a swarm is required to chosen the best option out of the

n available. As extensively discussed in [14], quality and cost

of the options can be used to further describe the nature of the

best-of-n decision-making problem. For example, in a foraging

scenario, where food availability is the option quality and time

to reach the food patch is the option cost, the problem can be

symmetric/asymmetric for quality (all food patches have/have

not the same amount of food), and/or symmetric/asymmetric

for cost (all food patches require/do not require the same

amount of time to be reached). When both costs and quality are

asymmetric, we can have scenarios in which the option costs

and quality are synergic (e.g., the best option has maximum

quality and minimum cost) and scenario in which they are

antagonistic (e.g., the best option has maximum quality and

highest costs).

The opinion dissemination scenario for mobile robots in-

vestigated in this paper is adopted from the one described

in [11] to model a data communication manipulation attack

in a swarm of robots. The scenario consists in a very simple

and basic form of the best-of-n problem, where quality of the

options does not need to be evaluated, and the environment

is symmetric with respect to cost of accessing the options.

In particular, robots of a swarm randomly move in a close

arena and communicate each other their current opinion state.
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The opinion space is binary: there is option 0 and option 1.

Moreover, a certain number of robots in the swarm are stub-

born: that is, they never change their opinion. Stubborn robots

differentiate in legitimate and adversarial. Legitimate robots

disseminate the “correct” opinion, and adversarial agents dis-

seminate the “wrong” opinion. The non-stubborn robots in the

swarm can change their opinion based on interactions with

nearby stubborn and non-stubborn robots and according to the

mechanisms of the opinion dissemination model in place. In

similar symmetry breaking scenario, the predicted outcome

is usually consensus to the piece of information held by the

majority of stubborn agents [8], [15]. Thus, since in [11]

the swarm is made in a way to have more legitimate than

adversarial agents, the opinion dissemination process is ex-

pected to converge on a consensus on the opinion of legitimate

agents. However, in [11], the authors show that the addition

of adversarial agents in a smaller number than the legitimate

agents hinders reaching consensus to the majority opinion.

The contribution of the study described in [11] is in the

development of a new opinion dissemination model (referred

to as Probabilistic model in this paper) where each member of

the swarm has a probability p to change its opinion based on

new incoming messages from the neighbours. The parameter

p is initially set to 1 for all non-stubborn agents, but then,

during the course of the simulation, each agent adjusts this

individual probability according to the following information

updating rules: the individual probability to change opinion p
is decreased anytime a robot interacts with an agent committed

to the same opinion; p is increased anytime a robot interacts

with an agent committed to a different opinion. The results il-

lustrated in [11] show that the Probabilistic model managed to

contain and, in several experimental conditions to suppress the

dissemination of wrong information by malicious adversarial

agents, even if its effectiveness progressively vanishes with

the number of malicious agents approaching that of legitimate

agents.

This study aims to further evaluate the effectiveness of the

Probabilistic model in a more informative comparative robot-

based setting. First, we compare the Probabilistic model with

classic opinion dissemination models such as the Majority and

Voter model in the same data communication manipulation

scenario illustrated in [11]. In this scenario, legitimate, mali-

cious, and non-stubborn robots interact and communicate their

opinions for long enough until the opinions’ distribution in

the swarm does not change any longer. The results of our

comparative study offer a more informative perspective to

evaluate the extent to which the Probabilistic model shields a

swarm of robots from the malicious intentions of agents that

act in order to manipulate communication and eventually to

hinder the swarm from achieving consensus on the “correct”

opinion. Second, in [11], the Probabilistic model is evaluated

in a 2D toroidal grid world, in which agents are just points

that communicate anytime they find themselves in the same

grid cell. In [11], the use of this simple environment has

been dictated by the necessity to reduce the computational

costs related to the evaluation of the different parameters

(a)

(b) (c)

Fig. 1. In (a), image of the physical Foot-bot mobile robot. Image downloaded
from www.swarmanoid.org. In (b) and (c) the simulated arena with the
simulated Foot-bots.

of the opinion dissemination model. However, the lack of

properties such as the embodiment of the robots and their

situatedness in world that complies with the laws of physics

largely simplifies the agents’ interactions and the dynamics

of the opinion dissemination process. In this study, we run

our tests in a simulation environments in which robots have

(simulated) bodies based on the characteristics of the physical

robot Foot-bot (see section II for details). The motion of the

Foot-bots in the simulated environment is modelled by taking

into account the physical robots’ kinematics properties. The

interactions between the robots and their physical and social

environment is based on the the characteristics of physical

Foot-bot sensors. Thus, our opinion dissemination dynamics

happen in a simulated word in which communication between

robots does not ignore the physical properties of the agents

and of their environment. On the contrary, it is made possible

by them. In this way, we offer a comparative evaluation of the

effectiveness of different opinion dissemination models which

is more pertinent for the swarm robotics community since it

is not biased by untenable assumptions about how the robots

move and interact.

In the next section, we describe the data communication

manipulation scenario used to compare the opinion dissemi-

nation models and we illustrate these models. In section III,

we describe the results of our study, and in section IV, we

draw our conclusions.

II. METHODS

A swarm of 100 simulated robots is located in a square

arena (10 m x 10 m, see Figure 1b and 1c). The robots moves

according to a isotropic random walk, with a fixed step length



(5 seconds, at 20 cm/s), and turning angles chosen from a

wrapped Cauchy probability distribution characterised by the

following PDF:

f(θ, µ, ρ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ − µ)
, 0 < ρ < 1, (1)

where µ = 0 is the average value of the distribution, and

ρ determines the distribution skewness [7]. For ρ = 0 the

distribution becomes uniform and provides no correlation

between consecutive movements, while for ρ = 1 a Dirac

distribution is obtained, corresponding to straight-line motion.

In this study ρ = 0.5. While moving around, the robots

continuously perform an obstacle avoidance behaviour. To

perform obstacle avoidance, first a robot stops, and then it

keeps on changing its headings of a randomly chosen angle

uniformly drawn in [0, π] until no obstacles are perceived.

To simulate the above mentioned environment we use AR-

GoS multi engine simulator [9]. The simulation environment

models the square arena as detailed above, and the kinematic

and sensors readings of the Foot-bot mobile robot, a circular

based robot of 13 cm diameter [1]. For our experiments, we

made use of only a subset of all possible sensors mounted

on the Foot-bots. In particular, the sensory apparatus of the

simulated robots used in this study includes twelve proximity

sensors positioned in the front half of the robot’s circular body,

and the omni-directional camera. The proximity sensors have a

range of few centimetres and are used for sensing and avoiding

the arena’s walls and also for sensing and avoiding collisions

with other robots. The camera, whose view is limited to a

circular field centred on the robot body with radius 1.2 m,

is used to detect robots within filed of view. Each robot has

a LED located on the top face of its body which can emit

red or blue light. The perception of nearby robots through the

camera, is achieved by detecting coloured blobs generated by

the LEDs’ light.

In our study, robots can have different opinions. Each robot

disseminates its current opinion by appropriately setting the

colour of its LED. In particular, a blue LED signals opinion 1
and a red LED signals opinion 0. While the LED is used

to disseminate the robots own opinions to nearby agents,

the camera is used to sample the opinion of nearby robots.

The robots differ not only in terms of the opinion they are

committed to (i.e., 0 or 1) but also in terms of the capability

to change their opinion. The robots of type “stubborn” never

change opinion during the simulation. They can be fully

committed to the opinion labelled 1 (hereafter, we refer to

these robots as S1) or to the opinion labelled 0 (hereafter,

we refer to these robots as S0). The non-stubborn robots

are initially committed to an opinion that can be either 0
(hereafter, we refer to these robots as NS0) or 1 (hereafter,

we refer to these robots as NS1). Differently from stubborn

robots, non-stubborn robots can change their opinion (from 0
to 1 or vice-versa) based on the opinion dissemination model

that regulates the robots’ interaction. We consider robots S1
as legitimate, and robots S0 as adversarial. The objective of

this study is to evaluate, in different experimental conditions,

which dissemination model facilitates the dissemination of the

legitimate robots’ opinion to non-stubborn robots, thus limiting

the influence of adversarial robots.

All robots disseminates their opinion all the time. Only

non-stubborn robots observe and make use of the opinion of

nearby robots to update their own opinion. The observation

of the opinions of the nearby robots happens at irregular and

individual time intervals which, for each robot, are computed

by sampling an exponential function with λ = 10. With

this exponential function, the average time interval between

two consecutive opinion sampling events (or observations)

corresponds to 1.4 s. During an observation, each non-stubborn

robot samples the opinions of nearby robots and based on the

dissemination model in place it chooses to either change or

not its current opinion. The observation and opinion changing

process is regulated by three different opinion dissemination

models: the voter model (V m), the majority model (Mm),

and the probabilistic model (Pm).

When the opinion dissemination is regulated by the voter

model, at the time of observation each non-stubborn robot

randomly selects a robot among those within camera view. If

the selected neighbour is signalling a opinion different from

the one of the observing robot (e.g., the selected robot is

signalling red and the observing robot is signalling blue, or

vice-versa), the observing robot changes its opinion (i.e., from

0 to 1 or vice-versa). If observing and selected robot share the

same opinion, or if no neighbours are within camera view of

the observing robot, the later agent keeps its current opinion.

When the opinion dissemination is regulated by the majority

model, at the time of the observation each non-stubborn robot

randomly selects two robots among those within camera view.

Then, it applies the majority rule. According to this rule, the

opinion that the observing robot uses for comparison with

its own opinion is the most represented in a group of three

agents made by the two selected robots plus itself. If the most

represented opinion is the same as the one of the observing

robot, this later agent does not change its opinion. If instead,

the most represented opinion is different to the one of the

observing robot, this later changes its opinion to the most

represented one in the group of three agents. If at the time of

the observation there is not enough neighbours within camera

view (i.e., less than two robots), the observing robot does not

change opinion.

The model we referred to as Probabilistic has been firstly

introduced and tested in [11]. When the opinion dissemination

is regulated by the Probabilistic model, at the time of the

observation each non-stubborn robot randomly selects a robot

among those within camera view. Then, if the selected and

observing robots have different opinions (e.g., the observing

robot is currently committed to 1 and the selected robot is

committed to 0, or vice-versa), the observing robot changes

to the opinion of the selected robot with probability p. At the

same time it updates the individual parameter p ∈ [0, 1] in

the following: p = ⌊p/z⌋ with z = 0.4. Since p is bounded

in ∈ [0, 1], anytime p becomes bigger than 1, p is set to 1.

If instead the selected and observing robots share the same



opinion, the observing robot keeps its opinion, and at the same

time it updates the individual parameter p in the following:

p = ⌊p×k⌋ with k = 0.8. In other word, the individual p of a

robot observer increases anytime observer and selected robot

have different opinions, and it decreases anytime observer and

selected robot share the same opinion. Thus, observing robots

with the same opinion reduces the observer probability to

change its opinion in the subsequent observation; observing

robots with a different opinion increases the observer proba-

bility to change its opinion in the subsequent observation.

The parameter p is initialised to p = 1 for all non-stubborn

robots at the beginning of each trial. A trial starts when the

robots are randomly placed in the arena, and lasts 50.000

time steps. At trial start, half of the non-stubborn robots are

randomly chosen to be committed to 1 and half to 0. At

each time steps the position of each robot is updated, and

for those non-stubborn robots that are in an observation state,

the opinion is checked and eventually updated. The updating

of the parameter p is executed regardless of the outcome

of the stochastic opinion changing process regulated by p.

If at the time of the observation there is not neighbours

within camera view, the observing robot does not change

opinion and the parameter p is not updated. The effects of

different values of the parameters k and z on the opinion

dissemination process have been tested in [11]. In the set of

simulations described in this study, we fixed the value of these

parameters to k = 0.8 and z = 0.4 for all non-stubborn robots.

This is because according to the results shown in [11], these

are the parameters’ values that return the highest number of

simulations with robots converging to the legitimate robots’

opinion, even in conditions in which the difference between

the number of legitimate and adversarial robots in the swarm

is just one.

III. RESULTS

Our study compares the effects of the three different opinion

dissemination models described in section II in swarms of

robots that differ for the initial number of stubborn and non-

stubborn robots. In particular, we adopted the experimental

design originally described in [11], with two sets of 15

different experimental conditions. In the first set, the number

of legitimate robots (i.e., stubborn and committed to opinion

1, robots S1) is fixed to five. The number of adversarial robots

(i.e., stubborn and committed to opinion 0, robots S0) is varied

from S0 = 1 to S0 = S1 = 5, by increasing them of

one agent at the time. In the second set of simulations, the

number of legitimate robots is fixed to ten. The number of

adversarial robots is varied from S0 = 6 to S0 = S1 = 10 by

increasing them of one agent at the time. Differently from [11],

we have also run a third set of simulations, in which the

number of legitimate robots is fixed to twenty. In this set of

simulations, the number of adversarial robots is varied from

S0 = 10 to S0 = S1 = 20 by increasing them of two

agents at the time. Since the swarm size is fixed to 100 in

all experimental conditions, the total number of non-stubborn

robots (NS0+NS1) in each experimental condition is given

by 100−S0−S1. For each pair of values S1−S0 (i.e., first set

5-1, 5-2, 5-3, 5-4, 5-5, second set 10-5, 10-6, 10-7, 10-8, 10-9,

10-10, and third set 20-10, 20-12, 20-14, 20-16, 20-18, 20-20),

we have studied the opinion dissemination dynamics with the

three opinion dissemination models described in section II.

For each condition, given by the number of robots type S1,

the number of robots type S0, and the opinion dissemination

model, we have run 50 differently seeded simulation trials. We

remind the reader that the objective of this study is to find out

which opinion dissemination model guarantees the maximum

dissemination of the opinion held by legitimate robots (S1) by

limiting the influence of adversarial robots (S0). To assess the

statistical significance of these results, we utilised the Mann-

Whitney-Wilcoxon test to compare the proportion of NS1
robots generated at the end of the runs by each dissemination

model in each experimental condition, and a generalised linear

model with a binomially distributed response, as each robot in

each run can only converge to two possible outcomes. With

this later model, we tested the effect of all the factors, which

include the utilised model, the number of stubborn robots S0
and S1, and all possible interaction combinations among them.

Figure 2 shows the results of our simulations. Each graph

shows the proportion (i.e., ⌊NS1/(NS1 + NS0)⌋) of non-

stubborn robots NS1 at the end of each trial. The white

boxes refer to the simulations with the Majority model, the

light grey boxes to the Probabilistic model, and the dark

grey boxes to the Voter model. The x-axes refer to the

number of adversarial robots S0. Figure 2a refers to the set

of simulations with five legitimate robots. First, we notice

that when S0 = 1, the medians of the proportion of non-

stubborn robots committed at opinion 1 at the end of a trial

is close to one for all dissemination models. This means that

when the ratio ⌊S0/S1⌋ is ⌊1/5⌋ the large majority (if not the

totality) of the non-stubborn robots end the trial committed to

the opinion of legitimate robots. With the increment of the

number of adversarial robots S0 the median of the proportion

of non-stubborn robots committed to opinion 1 at the end of

the simulation decreases, and the variability increases, at least

for the Majority and the Probabilistic models. The median

decreases slower when the opinion dissemination is regulated

by the Majority model (see Figure 2a, white boxes), than when

the dissemination process is regulated by the Probabilistic and

the Voter model (see Figure 2a, light and dark grey boxes).

This is supported by the fact that the effect of the interactions

between the models and the number of adversarial robots

S0 was found to be significant, which means that the two

regression curves decrease at a significantly different rate. The

Probabilistic model tends to generate results closer to those

generated by the Majority model (see Figure 2a, white and

light grey boxes).

When the ratio ⌊S0/S1⌋ is one (S0 = S1 = 5), three

different end results are the most frequently observed. For

Mm and Pm, the boxes spread along the entire range of

the y-axis’s values (see Figure 2a white and light grey boxes).

For V m the box is more condensed (see Figure 2a dark grey

box). A closer look at the data shows that, for Mm and
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Fig. 2. Graphs showing the proportion of non-stubborn robots committed to opinion 1 (i.e., ⌊NS1/(NS1 +NS0)⌋) at the end of the simulation runs per
experimental condition. The x-axes refers to the number of stubborn adversarial robots S0 committed to opinion 0. The dissemination process is regulated
by the Majority Model in the white boxes, by the Probabilistic Model in the light grey boxes, and by the Voter Model in the dark grey boxes. Each box is
made of 50 observations. Boxes represent the inter-quartile range of the data, while the horizontal line in the middle point of the box marks the median value.
The whiskers extend to the most extreme data points within 1.5 times the inter-quartile range from the box. The number of legitimate stubborn robots S1
committed to 1 is five in (a) and ten in (b), and twenty in (c).

Pm, the number of runs that terminates with a very large

proportion of robots NS1 is roughly equal to the number of

runs that terminate with a very large proportion of robots NS0.

These two possible end results, that is a large dissemination

of opinion 1 and a large dissemination of opinion 0 in the

swarm tend to be equally likely and frequently observed. For

V m, the simulations very frequently terminate with a roughly

equal proportion of robots NS1 and NS0. In summary, when

the number of stubborn robots in the swarm is less than 10

for swarm of 100 robots, with legitimate robots S1 = 5
and adversarial robots S0 ∈ [1, 2, 3, 4, 5], the Majority is the

dissemination model that guarantees the largest dissemination

of the opinion held by the majority of the stubborn robots

(in our case, legitimate robots S1). For each of the five

experimental conditions, the proportion of NS1 in swarms

using the Majority model is significantly different from the

proportion of NS1 in swarms using the Probabilistic and the

Voter model (Mann-Whitney-Wilcoxon Test, p < 0.001).

Figure 2b refers to the set of simulations with legitimate

robots S1 = 10. For all three dissemination models, we

observe similar trends to the one illustrated in Fig 2a. Also in

this set of simulations the median of the proportion of robots

NS1 decays at a different rate for the three dissemination

models, as supported by the statistical analysis. The most

interesting difference from what observed in Figure 2a, is

that the Probabilistic model performs closer to the Majority

model (see Figure 2b white and light grey boxes), while the

Voter model appears to be less reliable in supporting the cause

of legitimate robots S1 even for the smallest ⌊S0/S1⌋ ratio

(i.e., S0 = 6 and S1 = 10). Interestingly, when S0 = 9, the

Probabilistic model generates better results than the Majority

model (see Figure 2b, for S0 = 9, white and light grey boxes).

At 0.001 significant level (Mann-Whitney-Wilcoxon Test), we

conclude that the proportion of NS1 for the Probabilistic

and Majority model are non-identical populations. Moreover,

differently from the previous set of experimental conditions

with S1 = 5, when S0 = S1 = 10 the Majority and the

Probabilistic models appear to generate results closer to the

one generated by the Voter models. That is, the dissemination

process ends more frequently with swarms in which the two

opinions are roughly equally represented rather than swarms

in which one opinion strongly dominates over the other (see

Figure 2b, for S0 = 10).

In addition to these two set of experimental conditions,

we have also run simulations in which S1 = 20, and S0
is set to S0 ∈ [10, 12, 14, 16, 18, 20]. That is, in this set of

simulations the total number of stubborn robots varies from

30% to 40% of the entire swarm. The results of these tests are

shown in Figure 2c. Looking at the graph, we see that both

the Majority and the Probabilistic models are very effective

in generating a consensus for opinion 1 when the ⌊S0/S1⌋
ratio is ⌊10/20⌋ and ⌊12/20⌋. When S0 = 14, we observe

a clear divergence between the results of the Majority and

those of the Probabilistic model. The later model performs

similarly to the Voter model, with a large number of trials

ending with swarms that tend to have a roughly equal numbers



of non-stubborn robots committed to 1 and to 0. It seems

to us that, for Pm and V m this particular final state, in

which both opinions are roughly equally represented is the

only observed end state of the dissemination process when the

total number of stubborn robots in the swarm is bigger than

a given threshold. This effect was already observed in [10] in

a slightly different settings where dissemination times of the

two options was unequal. However, subsequent work [3] has

shown that this effect increases as the difference between the

differential dissemination times between the two options dis-

appears. Therefore, such an effect is particularly expect in the

settings of this experimental work where there is no difference

between the dissemination times of the two options. Contrary

to the Probabilistic and the Voter models, the Majority model

appears to be less affected by this phenomenon. Indeed, the

graph in Figure 2c indicates that, for the Majority model (see

Figure 2c, white boxes) the median of the proportion of non-

stubborn robots committed to 1 tends to decreases without

observable drops, reaching the point 0.5 when the number of

legitimate robots is equal to the number of adversarial robots.

IV. CONCLUSIONS

We have shown the results of a comparative study aimed

at evaluating, in a simulated swarm robotics scenario, the

effectiveness of an opinion dissemination model, referred to

as Probabilistic, originally illustrated in [11]. This model has

been compared with the Majority and Voter model in a data

communication manipulation scenario, in which legitimate

robots disseminate the “correct” opinion and a fewer number

of adversarial robots disseminate an “invalid” opinion. Our

simulations show that, within this simple data communica-

tion manipulation scenario, the Majority model is a better

dissemination model than the Probabilistic model. The Ma-

jority model better supports the case of legitimate agents and

more effectively limits the influence of adversarial agents in

multiple experimental conditions characterised by a different

number of stubborn robots in the swarm and by a different

number of legitimate and adversarial robots. The results of our

simulations allowed us to notice a phenomenon which was not

observed in [11]. That is, the effectiveness of the Probabilistic

vanishes suddenly as soon as the proportion of stubborn robots

in the swarm reaches a certain threshold, regardless of the ratio

of legitimate versus adversarial agents. This phenomenon, also

discussed in [3], [10], does not seem to concern the Majority

model in the same way. However, further research on this is

needed.

Since, in various experimental conditions, the results with

the Probabilistic model are close to those of the Majority

model, and in one condition even better (see Figure 2b, for

S0 = 9), we can not exclude that with a different setting of

the model’s parameters (i.e., the parameters z and k which

regulate the increment/decrement of the individual probability

p to change opinion) the Probabilistic model would perform

better than what observed in our tests. To verify this hypothesis

on a swarm robotics setup, a large number of simulations are

required. Unfortunately, the use of a simulation environment

like the one modelled with the simulator ARGoS, used in this

study, may require a too large computational resources and/or

computational time. Thus, for the future, we intend to rely on

mathematical models similar to the one used in [6], to be able

to evaluate and to predict, for a large range of parameters’

value (including swarm size, total proportion of stubborn

robots, and the ratio between legitimate versus adversarial

agents), how the Probabilistic model would perform compared

to the other dissemination models.
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