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Abstract—The inference of Gene Regulatory Networks (GRNs)
from gene expression data is a hard and widely addressed
scientific challenge with potential industrial and health-care use.
Discrete and continuous models of GRNs are often used (i)
to understand the process, and (ii) to predict the values of
the relevant variables. Here, we propose a procedure to infer
models of GRNs from data where (i) the data is binarized, (ii) a
Boolean model is created using a Cartesian Genetic Programming
technique, (iii) the obtained Boolean model is converted to a
system of ordinary differential equations, and (iv) an Evolution
Strategy defines the parameters of the continuous model. As a
result, we expect to reduce the effect of noise and to improve
biological interpretability. The proposed method is applied to
two ODE systems that describe the circadian rhythm network
dynamic, with 5 and 10 state variables. The models created by the
proposed procedure are able to reproduce the behavior observed
in the original data.

I. INTRODUCTION

Systems Biology is an interdisciplinary research area that

involves Biology, Chemistry, Physics, etc. This area focuses

on the interaction among the components of a biological sys-

tem [1]. For instance, to understand the behavior of organisms

at the molecular level, one needs to know what/where/when

genes are expressed. Gene expression is a complex process

regulated at different levels in protein synthesis [2]. All cellular

activities are controlled by their genes through a complex

network that forms proteins from DNA and the gene expres-

sion depends on the relationship of the genes in this network,

known as Gene Regulatory Network (GRN).

In GRNs representations, genes are the network nodes and

the regulatory relationships between genes are the network

edges [2]. E.g., Figure 1 shows a GRN with three genes

where a direct arrow indicates the activation of the regulatory

relationship between two given genes; otherwise, it indicates

its inhibition.

Most GRNs present several components connected via

feedback loops. Thus, computational methods for modeling

and simulating GRNs are indispensable [3]. Also, the under-

standing of complex patterns of gene interactions represents

a scientific challenge with high biotechnological and health

applicability [2].

GRNs can be modeled by a continuous or discrete model.

Typically, the former approach is represented by an ordinary

differential equations (ODE) system and the latter uses a

Fig. 1. A GRN Illustration composed of three genes: G1, G2, and G3. The
gene G2 inhibits both G1 and G3. The genes G1 and G2 are activated by
genes G3 and G1, respectively.

boolean network on your representation. Also, these models

can be deterministic or stochastic. The choice of the network

model is commonly based on the type of data available [2].

Although continuous models have been widely applied [2],

their use is limited for modeling biological systems where

the kinetic parameters are unknown. On the other hand,

qualitative insights have been obtained when Boolean models

are analyzed [4].

In this work, we propose a procedure for the GRNs in-

ference from continuous data using evolutionary computation

techniques; where: (i) the original time-series data is binarized,

(ii) a Boolean model is obtained using Cartesian Genetic

Programming (CGP), (iii) a continuous model in the form

of an ODE system is created through the Boolean model,

and (iv) the numerical coefficients of the ODE system are

optimized by Evolution Strategy (ES). Thus, the proposed

method produces three GRN models: a qualitative Boolean

model, a continuous model in the form of an ODE system

with undefined numerical coefficients, and a final model in

the form of an ODE system. The Boolean models represent

the interactions between the proteins and, as a consequence,

allow for insights in systems biology. Also, ODE systems

are accurate symbolic GRN models, providing knowledge

concerning the phenomenon of interest.

More precisely, the data discretization highlights the ac-

tive/inactive genes. It is possible to binarize the data using

the z-score, such as in [5]. Moreover, the CGP [6], a Genetic

Programming (GP) technique widely applied to the design of

digital circuits, is suited to the task of inferring the Boolean

model. The Boolean model is then transformed into an ODE

system through the techniques presented in [7], which are

based on multivariate polynomial interpolation. ES [8] is
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typically applied to numerical optimization and is known as a

good optimizer for problems in continuous search spaces [9].

ES concludes the modeling process determining the numerical

coefficients of the ODE system. The use of time-series data

to determine the numerical coefficients of the ODE system

makes possible to reproduce the biochemical processes, and

this cannot be done with Boolean models [7].

Preliminary experiments using two Circadian Rhythms, with

5 and 10 variables, evaluate the proposal. The results are

promising as the proposed method is able to generate inter-

pretable models with the behavior of the observed phenomena.

Also, these problems have complex behaviors, such as oscilla-

tions, and are considered as important to be investigated in [7].

The remainder of this paper is organized as follows. Related

work is presented in Section II. In Section III, the methods

used here are described and the proposed procedure is defined.

The computational experiments for preliminary evaluate the

proposal are presented in Section IV. Finally, concluding re-

marks and suggestions of future works are shown in Section V.

II. RELATED WORK

Some procedures for modeling GRNs can be found in the

literature and we present here some methods related to the

proposal. Boolean model is the simplest form to represent

GRNs, where the variables represent the expression level of a

gene. In this model, each variable of interest is defined as a

discrete function that determines the next state of the biolog-

ical system (protein concentration level in the next time step,

for example) [2]. The inferred models provide a qualitative

measure of gene regulatory mechanisms [4] and are able to

represent the dynamics of several biological phenomena.

For instance, Boolean models are discrete and the choice

of a discretization procedure depends on many factors, such

as supervision, data sample, technology, level of discretization,

and scope [5]. Commonly, the discretization of GRN data uses

an alphabet of two symbols [10], [11] to represent activation

and inhibition. An alphabet with three symbols {−1, 1, 0}
is also common and indicates, respectively, the activation,

inhibition, and unchanging regulation. There is a trade-off

between the level of discretization and the loss of information

(and computational complexity) [12].

Ordinary Differential Equations [3] can be used to model

the concentrations of RNAs, proteins, and other molecules,

using time-dependent variables. Regulatory interactions take

the form of functional and differential relationships between

the variables [4]. More specifically, a gene regulation is

modeled by an ODE system that expresses the production rate

of a component as a function of the concentrations of the other

ones. These functions are commonly named kinetic equations.

ODE systems for modeling gene regulatory networks are

inferred by a GP technique in [13]. Least mean square (LMS)

error was used, and accurate models were created when the

proposal was applied to three networks.

Sirbu et al. [14] present a comparison of evolutionary

techniques when inferring gene regulatory network models.

The authors analyze several existing algorithms for models in

the ODE system form. They have presented seven evolutionary

algorithms and applied to both synthetic and real gene expres-

sion data from DNA microarrays. The authors conclude that

pure evolutionary algorithms are useful to analyze only small-

scale systems. Then, they propose hybrid methods to increase

scalability and, their best results refer to the hybridization for

larger networks (up to 30 genes). The authors also have shown

that the convergence has a speed up by splitting the objectives

and applying a multiobjective approach.

III. METHODS AND PROPOSED APPROACH

The current proposal involves (i) the data discretization, (ii)

the inference of a Boolean model via CGP, (iii) the generation

of an ODE system from the Boolean model, and (iv) the

numerical coefficients optimization of the continuous model.

In the following sections, we describe the methods we use in

each step of the proposed approach.

A. Data Discretization

The gene expression data considered in this work is a time-

series. A common discretization technique standardizes the

values using z-scores with a normal distribution N (0, 1) [5].

The values a′ij generated by this transformation are then used

to calculate

aij =

{

1, a′ij − a′
i(j−1) ≥ 0

0, a′ij − a′
i(j−1) < 0,

(1)

where i is the index of the variable and j is the instant of

time. According to this discretization, the value is 1 (active)

when the observed values increase, and 0 (inactive) otherwise.

Other procedures can be found in the literature for discretiza-

tion [15], [16]. However, these works present more than two-

level of discretization (future work) or require user-defined

parameters. The binarized data makes it possible to create a

state transition diagram and, as a result, one can create a truth

table. There might occur ambiguities between transitions and,

in this case, (i) the most frequent transition is chosen and,

(ii) when a tie occurs, the different outputs in the possible

transitions are considered “don’t care". CGP is then applied

to the truth table to evolve the Boolean model.

B. Cartesian Genetic Programming (CGP)

CGP is a technique to generate programs (computer pro-

grams and other complex structures) encoded by Directed

Acyclic Graphs (DAGs). In particular, CGP has been widely

applied to the design of digital circuits [17]. One of the

advantages of a graph-based representation is its capacity of

reusing sub-components of the programs [17].

The CGP encodes DAGs by a two-dimensional matrix of

nodes, with nc columns and nr rows. The genes are integer

values and, for each node, there are inputs (called connection

genes) and the operation/function that node performs (called

function genes). Given a node in the matrix, the nodes at its

left side can be used as inputs. To constrain the connectivity

of the graph, a user-defined parameter called levels-back (lb)

limits the number of columns at the left side where inputs



Fig. 2. Representation of a CGP’s individual. The nodes labeled with integer
values from 4 to 12 represent components of the genotype, where the grey
ones are active nodes and the white are inactive. The dashed lines are the
connections that do not interfere in the phenotype. I0, I1, and I2 are the
primary inputs and O0 and O1 are the outputs.

can be selected from. A special case occurs when the nc = 1
and lb= nc, in which the genotype can represent any DAG

formed by nc nodes [17]. The function set is user-defined and

problem-dependent. For example, logic functions or gates are

used when designing digital circuits.

Figure 2 shows a CGP’s individual with nc = 3, nr = 4,

and lb= nc. The gray nodes are considered active as they

effectively contribute to the individual’s phenotype and white

nodes are inactive. The dashed lines show the connections of

these inactive nodes, and the solid lines show the connections

between the active nodes. The illustrative example shows the

genotype with (i) the program inputs (I0, I1, and I2), (ii) the

internal nodes (indexes 4 to 12) with their inputs and functions,

and (iii) the outputs of the program (O0 returns the output of

node 11, and O1 returns the output of node 9).

CGP uses a simple Evolution Strategy variant, (1 + λ)-ES,

as its search procedure. In this optimization method, λ new

candidate solutions are generated based on one parent. Origi-

nally, these new individuals were generated by a simple point

mutation, but currently, other approaches are widely used, such

as the single active mutation. In CGP, small populations are

more efficient in obtaining feasible circuits [17] and, normally,

λ = 4. Also, CGP uses elitism, keeping the best individual

from the previous generation.

For the inference of Boolean models, we adapt the truth

table obtained we obtain from the discretization procedure

as input to CGP. The goal is to find a Combinational Logic

Circuit (CLC) whose outputs depend only on the combinations

of the current states, meeting the transitions provided by the

truth table. We may have not all possible inputs to address the

current problem since: (i) the data is a (short) observation of

the phenomenon modeled, and (ii) some transitions may never

occur. Thus, any transition that is not present in the original

truth table is considered irrelevant (called don’t care).

The circuit is evolved using two steps: (i) increasing the

number of matches concerning the truth table, and (ii) reducing

the number of logic gates (nodes). The first step generates a

solution which models the discretized data, and the second step

decreases the complexity of the model. The latter is important

as a smaller number of logic gates makes it easier to obtain

the continuous model.

C. Determining the Continuous Model from the Discrete One

The methodology we consider to obtain continuous models

from Boolean models is based on Wittmann et al. [7]. In gen-

eral, a Boolean model consists of N species, X1, X2, . . . , XN ,

and each species takes values xi ∈ {0, 1}. In addition, there is

a discrete update function Bi for each species Xi(t), at time

t, that gives its value at the instant t+ 1, as

Xi(t+ 1) = Bi(xi1(t), xi2(t), ..., xiNj
(t)). (2)

The first step for obtaining a continuous model equivalent

to the Boolean model is to transform each discrete variable xi

into a continuous variable xi ∈ [0, 1], where concentrations are

normalized in the unitary interval [7]. To do so, Bi is trans-

formed into a continuous update function Bi. The continuous

update function (Bi) is defined here using HillCubes. Initially,

BooleCubes are obtained through a multivariate polynomial

interpolation, according to

Bi(x1, ..., xN ) =

1
∑

x1=0

...

1
∑

xN=0

B(x1, ..., xN )P (xi, xi) (3)

where B(x1, x2, ..., xn) represents the update function of the

species Xi, and P (xi) =
∏N

i=1(xixi + (1− xi)(1− xi)).
However, BooleCubes are not able to represent the sig-

moidal shape commonly present in biological interactions.

HillCubes are used here, as they can represent this “switching”

behavior using Hill’s sigmoid functions [7]. A Hillcube can be

defined as

f(x) =
xn

xn + kn
, (4)

where n determines the slope of the curve (interaction coop-

erativity) and k is a threshold.

The continuous variables xi are replaced by the Hill’s

functions in Bi and the new continuous update function, called

HillCube, can be defined as

B
H

i (xi1, ..., xiNi
) = Bi (fi1(xi1), ..., fiXi

(xiNi
)) . (5)

As a HillCube never equals 1, normalization is applied:

B
Hn

i (xi1, ..., xiNi) = B
I

i

(

fi1(xi1)

fi1(1)
, ...,

fiNi
(xiNi

)

fiNi
(1)

)

(6)

Finally, the normalized HillCubes are applied to

ẋi =
1

τi
(B(xi1, xi2, ..., xiNi

)− xi) (7)

to obtain the temporal variation of xi. This value is composed

of (i) the continuous update function B (here we adopt the

HillCubes), which describes the production of the species

Xi and a first-order decay term, and (ii) its corresponding

parameter τi, that can be understood as the lifetime of the

species Xi.

In brief, an ODE system is determined using HillCubes by

the following steps: (i) to obtain a BooleCube through the

multivariate polynomial interpolation presented in Equation 3,

and (ii) to transform this BooleCube into a HillCube. The

model generated contains numerical coefficients (n, k, and

τ ) which should be determined. For this task, an Evolution

Strategy approach is proposed here.



D. Evolution Strategy (ES)

Evolution Strategy (ES) [9] is an evolutionary computation

method widely used for solving optimization problems involv-

ing continuous search spaces [18]. Normally, this technique

self-adapts its mutation parameters, making it possible to

change its behavior during the searching process. The individ-

uals are composed of (i) decision variables, and (ii) strategy

parameters. Here we used a simple ES approach in which these

strategy parameters are the lengths of the mutation steps.

Algorithm 1 presents a pseudo-code of ES where P (t) is the

set of individuals in the generation t, p ∈ P (t) is a tuple (x,Ψ),
ΨV is the set of variation parameters, and ΨAge represents the

ages of the individuals. The user-defined parameters are the

number of parents µ, the amount of offspring λ, the number

ρ of parents that generate offspring, and the maximum age κ
a candidate solution can reach. The value of κ also defines

the replacement operator. When κ = 1, the parents of the

next generation will be the offspring created in the current

generation. This is called the (µ, λ)-ES. One has the (µ+ λ)-

ES when κ is an infinite lifetime, and the selection occurs

among the best individuals considering the µ parents and the

λ offspring. The mutation is performed adding a random value

taken from a Multivariate Normal Distribution [9], i.e., a new

individual is created by x′ = x+ΨV ×N (0, I).

Algorithm 1 Pseudo-code of an ES. Adapted from [9].

1: Initialization of P (0) with µ individuals

2: ∀ p ∈ P: p.ΨAge ← 1, p.f ← f(p.x)

3: while stop criteria is not reached do

4: Qt ← ⊘
5: for i = 1 → λ do

6: Randomly select p parents p1, . . . , pp ∈ P (t)

7: q ← Variation(p1, . . . , pp, p1.ΨV , . . . , pp.ΨV )

8: q.ΨAge ← 0, q.f ← f(q.x)

9: Q(t) ← Q(t) ∪ {q}
10: end for

11: P (t+1) ← best(µ,Q(t) ∪ {p ∈ P (t) : p.ΨAge < k})
12: ∀p ∈ P (t+1): p.ΨAge ← p.ΨAge+1 and update p.ΨV

13: t ← t + 1

14: end while

The parameters n, k and τ in the HillCubes are the

numerical coefficients to be optimized. In the proposal, each

candidate solution in ES contains the parameters n, k and τ of

all HillCubes present in the continuous model. One can notice

that the complexity of the optimization problem is directly

proportional to the size of the ODE system.

To conclude the used ES and, consequently, the proposed

procedure, we present the adopted objective function. We

desire to determine g(x, t) such that x′(t) = g(x, t) fits the

observed data (xi, ti), with i = 1, . . . ,m. A dynamic model

can be evaluated by numerically integrating the ODE system

x′(t) = g(x, t), corresponding to candidate g(x, t), and

comparing these values to the observed data. Although other

approaches can be found in the literature, such as those using

numerical derivatives [19], [20], the use of numerical integra-

tion tends to generate more accurate models. The optimization

problem solved by ES is the minimization of the absolute

difference between the values calculated by the numerical

integration and those in the original data (1-norm). Preliminary

experiments were carried out with the minimization of the

quadratic difference (2-norm) but the results were worse than

those obtained with the use of the 1-norm. No comparison is

provided here due to the lack of space.

It is important to highlight that BooleCubes and HillCubes

use normalized data (xi) [7]. Here the normalization is per-

formed into the ODE system during the numerical integration.

An example of this normalization applied to G2 is

Ġ2 =
1

τG2

(

N(G1)nG2G1

N(G1)nG2G1 + knG2G1

G2G1

−N(G2)

)

, (8)

where N(v) = v
max(v) , G1 and G2 are variables of interest,

and max(G1) and max(G2) are, respectively, their maximum

values in the data.

IV. COMPUTATIONAL EXPERIMENTS

The proposed method was applied to two datasets generated

by two gene regulatory networks whose dynamic is described

by ODE systems. Both ODE model the Drosophila’s circa-

dian rhythm network. Circadian rhythm, or circadian cycle,

designates the period of approximately 24 hours on which

the biological cycle of almost all living beings is based,

influenced mainly by the variation of light, temperature, tides,

and winds during the day. Hence, each data set corresponds

to the network species concentration that is repeated in a 24-

hour cycle. One of the ODE systems has five state variables

(thus, five ODEs) and the other one has ten state variables.

The five variables model is a GRN that has been proposed for

circadian oscillations in the Drosophila PER protein and its

respective gene and mRNA [21]. The ten variable model takes

into account more details about the cyclic GRN describing

the dynamic of circadian rhythm [22]. For more details we

refer the reader to [21] and [22]. Through the MATLAB R©
ODE solver, we solve both ODE systems and generated a

time series containing 50 points evenly spaced in a simulation

time interval from 0 to 72 hours. So, no experimental data

(RNASeq, for example) was used. They are artificial data

obtained from real GRN models.

The parameter setting used in CGP is: 20 independent runs,

maximum number of objective function evaluations equal to

50.000, nr = 1, nc = 100, lb= nc, and function set Γ = {AND,

OR, NOT, XOR}. As previously indicated, ES is proposed

to find the best values for the numerical coefficients τ , n,

and k in every equation of the ODE system. We applied ES

to the circuit obtained by CGP with the smallest number of

logic gates. The used parameters are: µ = 15, λ = 105 (as

typically λ = 7 × µ), and maximum number of objective

function evaluations equal to 10.000. The source code of the

proposed approach and supplementary material are available1.

1https://github.com/ciml/
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Fig. 3. Plots and state transition diagram – 5 Variables Circadian Rhythm.

The methods were implemented using Python 3.6 and the

odeint function of SciPy2 numerically solves the initial value

problem of the first order ODE system. The error of the model

was defined as the absolute difference (1-norm) between the

actual and predicted values. Also, n ∈ Z and k, τ ∈ R, and

these variables are bounded as 1 ≤ n ≤ 25, 0.1 ≤ k ≤ 1 and

0.1 ≤ τ ≤ 5 [23]. In the ES, the variables are evolved in R

and the integer part is used for the n values.

A. Circadian Rhythm with 5 Variables

The first model created here is for a circadian rhythm with

5 variables, namely, A, B, C, D, and E. The data (time series)

of the 5 variables is presented in Figure 3a.

Initially, the data is binarized as described in Section III-A.

The new data can be shown in Figure 3b, where 0 represents

inactivation and 1 indicates activation. The values 0 and 1

were translated with respect to the ordinate axis to improve

readability. Ten different states and 11 state transitions were

2https://scipy.org/

TABLE I
BOOLEAN EXPRESSIONS FOR THE 5 VARIABLE CIRCADIAN RHYTHM

Variable Expression

A not(E)

B A

C B

D C

E D

TABLE II
BOOLEAN EXPRESSIONS FOR THE 10-VARIABLE CIRCADIAN RHYTHM.

Variable Expression

A not(J)

B E

C (B xor F) or E

D E

E not(J)

Variable Expression

F A

G (B xor F) or E

H F

I C and D

J I

determined using these data and the state transition diagram

can be seen in Figure 3c. One expects a truth table composed

of 25 = 32 rows as the modeled phenomenon involves 5

variables. As indicated in Section III-B, the states not observed

are considered “don’t care".

CGP is applied to the obtained truth table to generate the

discrete model. The simplest solution in terms of the number

of logic gates was chosen as the Boolean Model. This chosen

model can be found in Table I.

The discrete model generated by CGP is used to deter-

mine the BooleCubes through the multivariate polynomial

interpolation presented in Section III-C. In the sequence, the

BooleCubes are converted to HillCubes. Finally, the temporal

behavior of the continuous update functions is obtained us-

ing Equation 7. Considering this normalization, the obtained

model in the form of an ODE system is

dA

dt
=

(

1−
N(E)nAE

(N(E)nAE + knAE

AE )
−N(A)

)

/τA (9)

dB

dt
=

(

N(A)nBA

(N(A)nBA + knBA

BA )
−N(B)

)

/τB (10)

dC

dt
=

(

N(B)nCB

(N(B)nCB + knCB

CB )
−N(C)

)

/τC (11)

dD

dt
=

(

N(C)nDC

(N(C)nDC + knDC

DC )
−N(D)

)

/τD (12)

dE

dt
=

(

N(D)nED

(N(D)nED + knED

ED )
−N(E)

)

/τE (13)

Finally, the numerical coefficients conclude the model and

an ES is used to solve this problem. The numerical coefficients

found by ES, and plots of the actual data and those values

predicted by the obtained model are presented in Figure 4.

This model achieved an error equal to 27.96.

B. Circadian Rhythm with 10 Variables

The original data of the circadian rhythm with 10 variables,

the data discretized, and the state transition diagram generated

using this data are presented in Figure 5. The variables of
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Fig. 4. Results for the Circadian Rhythm with 5 variables. Circle (orange)
and triangle (blue) marks are the actual and the predicted values, respectively.

this problem are labeled as A, . . ., J. The states transition

diagram is composed by 12 possible transitions (Figure 5c)

and the maximum number of rows in the truth table is

210 = 1024. However, one can see in this problem that

2 states (1111111111 and 0000000000) produce more than

one alternative states. As Boolean models considered here are

deterministic, it is important to reduce these ambiguities in

the state transition set. Also, as the data represents a sequence

of activation/inactivation of the modeled phenomenon, the

state transitions should form a cycle. Thus, any successor

0 10 20 30 40 50 60 70
Time (h)

0.0

0.5

1.0

1.5

2.0

2.5

Co
nc

en
tra

tio
n

A
B
C
D
E
F
G
H
I
J

(a) Original data.

0 10 20 30 40 50 60 70
Time (h)

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

Bi
na

ry
 L
ev

el
s

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

(b) Binarized data.

(c) Initial state transition diagram.

Fig. 5. Plots and initial state transition diagram – 10 Variables.

appears as a precursor of another state transition. In order

to determine the unique resulting state for these 2 cases, we

select the most frequent transition in the data. Figures 6a

and 6b present the 2 two ambiguity, the number of times

each state transition occurs, and the chosen state transition.

It is important to highlight that the solution presented in

Figure 6a still contains an ambiguous state transition. In this

case, a don’t care situation allows CGP to find the model that

better represents the state transitions observed. Also, unlike the



(a) Ambiguous transitions of 1111111111, the number of times each
transition is found, and the transition used.

(b) Ambiguous transitions of 0000000000, the number of times each
transition is found, and the transition used.

(c) Final state transition diagram.

Fig. 6. Ambiguous cases and final state transition diagram – 10 Variables.

alternatives for the state 0000000000, both possible successors

of 1111111111 exist in the state transition diagram. The final

state transition diagram is presented in Figure 6c.

The states that are not present in Figure 6c and the ambigu-

ity in the transition from state 1111111111 are treated here as

irrelevant (don’t care) situations in CGP. The expressions of

the Boolean model obtained by the evolutionary process are

presented in Table II. It is important to highlight the presence

of more complex logic operators in this model, such as XOR.

The same procedures to determine the model in the form

of an ODE system from the Boolean model and its numerical

coefficients are applied to this problem. The error of this model

is equal to 50.87. The plots of the actual and predicted values,

and the numerical coefficients are presented in Figure 7. The

continuous model created is not presented here due to the lack

of space, but it can be found in the supplementary material.

V. CONCLUSIONS AND FUTURE WORK

Systemic biology models can be used to test new hypotheses

formulated using prior knowledge or data from experimen-

tation. New hypotheses often arise in the form of a set of

regulatory mechanisms. Recently, there has been a growing in-

terest in the application of logic-based approaches in systemic

biology, and advances in the estimation of gene regulatory

networks (GRN) have led to a greater understanding of cellular

regulation. However, additional methodological advances are

still needed. We proposed here a procedure to infer models of

GRN from data where (i) the data is binarized, (ii) a Boolean

model is created via Cartesian Genetic Programming, (iii) a

continuous model in the form of an ODE system is obtained

from the Boolean model, and (iv) the numerical coefficients

of the ODE system are optimized by an Evolution Strategy.

Boolean models are less susceptible to noise while ODE

systems have a high degree of interpretability. Thus, combin-

ing both models may infer an accurate and symbolic GRN

model, leading to interpretability. Also, it is expected that

novel solutions, not commonly intelligible to humans, are

explored using metaheuristics in the inference process.

In sum, our computational experiments indicate that the

proposed method is capable of successfully generating GRN

models. In addition, the obtained model in symbolic form can

be used to extract biological knowledge. Finally, future work

includes the evaluation of the proposed method in existing

competitions. Moreover, we intend to model the GRNs of

yeasts, which are highly explored in the literature.

In addition, we will further expand our proposal work with a

higher level of discretization of gene expression data. We also

intend to investigate the scalability of the proposed approach.
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