
An Evaluation on Competitive and Cooperative
Evolutionary Algorithms for Data Clustering

Luciano D. S. Pacifico
Departamento de Computacao – DC

Universidade Federal Rural de Pernambuco – UFRPE
Recife, Pernambuco, Brazil

ldsp@cin.ufpe.br

Teresa B. Ludermir
Centro de Informatica – CIn

Universidade Federal de Pernambuco – UFPE
Recife, Pernambuco, Brazil

tbl@cin.ufpe.br

Abstract—Data clustering methods are important tools for
exploratory data analysis in many real world applications, such
as data mining, image understanding, text analysis, engineering,
medicine, and so on. Partitional clustering models are the most
popular clustering methods, but these approaches suffer from
some limitations, like the sensibility to algorithm initialization
and the lack of mechanisms to help them escaping from local
minima points. Evolutionary Algorithms (EAs) are global op-
timization meta-heuristics known for their capabilities to find
optimal solutions even when dealing with hard and complex
problems. Although many EAs are based on competitive behavior
among individuals, its is known that cooperation may lead to
better solutions then sheer competition. In this work, we perform
a comparative analysis among four state-of-the-art EAs (Genetic
Algorithm, Differential Evolution, Particle Swarm Optimization
and Group Search Optimization), implemented in both com-
petitive and cooperative frameworks, in the context of data
clustering problem. Experiments are executed using eleven real
world benchmark datasets as the testing bed, so we could access
whether competitive or cooperative behaviors would prevail. The
experimental results showed that cooperative algorithms are able
to find better solutions, in average, when dealing with clustering
problems, than their corresponding competitive approaches, and
such models also require less storage memory to keep their
population in comparison to competitive methods.

Index Terms—Evolutionary Computing, Data Clustering, Co-
operative Algorithms, Cooperative Coevolutionary Algorithms

I. INTRODUCTION

In the past few decades, the amount of daily produced data
(in electronic devices, such as smartphones, tablets, notebook
and desktop computers, cars, GPS, smart TVs, and so on)
has increased exponentially, in such a way that automatic and
scalable computational systems are even more required, so
useful information would be extracted from such big data
scenario. Nowadays, it is impossible to a real world system
rely in human analysis only, once the need for precise and
reliable information in a short period of time has become
mandatory [1].

As one of the most fundamental exploratory data analysis
tools, clustering algorithms consists in an attempt to categorize
observations (data patterns) in groups (clusters) based only on
their inner properties, in such a way that observations belong-
ing in the same group present a higher degree of similarity than

This work was supported by CNPq, CAPES and FACEPE

observations belonging in different groups, which must present
a high degree of dissimilarity. Clustering techniques require no
prior assumptions concerning the problem to be solved, rep-
resenting the unsupervised learning category of algorithms in
pattern recognition, finding applications in many challenging
knowledge discovery in databases (KDD) tasks, in fields like
medicine, social sciences, engineering, bioinformatics, and so
on.

The most popular clustering approaches are the partitional
clustering algorithms, such as K-Means [2] and K-Medoids
[3]. Partitional clustering methods provide a partition of the
dataset into a prefixed number of clusters. Each cluster is
represented by its centroid vector, and the clustering process is
driven in an effort to optimize a criterion function iteratively,
and, in each step of the execution, all centroids are updated
in an attempt to improve the quality of the final solution.
Partitional methods are known for their sensibility to the
centroid initialization process, since they only perform local
searches on the problem search space, what may lead to poor
solutions, once the initial partition could have been placed in
a region containing local minima points.

Natural-inspired global search meta-heuristics, such as Evo-
lutionary Algorithms (EAs) and Swarm Intelligence (SIs)
methods, that are extensions of EAs, have been increasingly
applied to solve a great variety of difficult problems, including
data clustering [4], [5], which is, from an optimization per-
spective, considered as a particular kind of NP-hard grouping
problem [6]. In EAs, a population of candidate solutions to
the problem at hand is kept and evolved, according to a
generational process to optimize a criterion function (known as
the fitness function). In EAs such as Genetic Algorithm (GA)
[7] and Differential Evolution (DE) [8] (which are genetic-
based approaches), the searching schema is driven by operators
that simulate biological processes like mutation, recombination
and selection. The searching process in SIs is based in an at-
tempt to simulate self-organizing collective behavior of social
animals, like swarming, flocking and herding [9]. Examples of
SI algorithms are the Ant Colony Optimization (ACO) [10],
Particle Swarm Optimization (PSO) [11] and Group Search
Optimization (GSO) [12].

Although the main framework driving evolutionary algo-
rithms is based on sheer competition among population indi-

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

viduals, sometimes cooperation may lead to better situations
than competitive behavior. In this work, we extend the coop-
erative coevolutionary (CC) [13] framework for evolutionary
algorithms (CCEAs) to the context of partitional clustering
algorithms. In CCEAs, the population and the problem search
space are split into k groups using a divide-and-conquer ap-
proach, in such a way that each sub-population is responsible
for the optimization of only a reduced set of the global problem
features each time. This work aims to evaluate the effectivity
and advantages (if any) of cooperative coevolutionary methods
in comparison to competitive approaches when dealing with
real world clustering problems.

This work is organized as follows. Section II offers a brief
introduction on Cooperative Evolutionary Algorithms (Section
II-A), Evolutionary Algorithms and Cooperative Coevolution-
ary Evolutionary Algorithms in the context of partitional data
clustering (Section II-B and Section II-C, respectively). The
experimental analysis is presented in Section III, and, after
that, some conclusions and leads for future works are presented
(Section IV).

II. BACKGROUND

A. Cooperative Evolutionary Algorithms

Cooperation involves a collection (population) of agents
(individuals) that interact by communicating information to
each other while solving problems [14]. In the context of
Evolutionary Algorithms, there are two main ways to im-
plement cooperation among individuals [15]: the Evolution
Islands (EI) framework and the Cooperative Coevolutionary
(CC) framework.

In EI, each population is split into sub-populations (i.e.,
evolution islands) that are geographically isolated from each
other. Each evolution island will execute its search as an
independent population, executing all steps for the correspond-
ing EA (like it would do for the whole population). After a
prefixed number of iterations, the islands will send and receive
some individuals from other sub-populations, promoting an
information exchange among islands. The way islands interact
is determined by their topology of communication (such as
star, ring, Von Neumann, cellular, etc) [16], [17].

In CC framework, the population is also divided into
sub-populations, but instead of having each sub-population
attempting to solve the global problem as a whole (just like in
IE), the problem search space is also divided among the sub-
populations. Thus, the original n-dimensional search space is
split into 1 ≤ k ≤ n partitions of size d, with k × d = n.
Although the n-dimensional search space has been divided
into k d-dimensional partitions, in which local searches are
executed, the global problem remains n-dimensional. The k
sub-populations of d-dimensional individuals need to cooper-
ate, offering their best set of features found so far, so each
individual from the other sub-populations would be able to
complete the information necessary to evaluate their fitness.

The original CC framework was introduced by Potter and
De Jong [13] by means of a cooperative coevolutionary
Genetic Algorithm (CCGA). Potter and De Jong suggested

that the search space should be partitioned by splitting the
solution vectors into smaller ones, and each of these smaller
vectors would then be searched by a separate GA (different
species). CCGA method achieved significant improvement in
performance over the basic GA when dealing with continuous
optimization problems [13]. CC model has also been extended
to the context of other evolutionary and swarm intelligence
methods, such as Evolutionary Programming [18], Differential
Evolution [19], [20], Particle Swarm Optimization [21], [22]
and Group Search Optimization [23], [24].

An interesting survey on Cooperative Coevolutionary ap-
proaches can be found in [25].

B. Evolutionary Algorithms for Partitional Data Clustering

This section explains the most commonly adopted rep-
resentation schema for evolutionary algorithms when such
techniques are used as partitional clustering methods [26].

Firstly, consider a partition PC of a dataset with NO

patterns (each pattern represented by a vector oj ∈ <m,
where j = 1, 2, ..., NO) in C clusters (where C is a given
input parameter for the partitional algorithm). Each clus-
ter is represented by its centroid vector gc ∈ <m (where
c = 1, 2, ..., C). Each population individual Xi ∈ <n (where
n = m × C) in population G represents C cluster centroids
at the same time, one for each cluster [26]. For example,
if m = 4 and C = 3, each individual will be a vector
Xi ∈ <12, where the first four features will represent the
centroid g1, features 5-th to 8-th will represent the centroid g2,
and the last four features will represent the centroid g3. In Fig.
1, Xi = {1.2, 4.6, 0.3, 5.9, 2.1, 5.2, 0.8, 2.0, 0.3, 6.1, 2.2, 0.9},
and it codifies centroids g1 ∈ <4, g2 ∈ <4 and g3 ∈ <4,
such that g1 = {1.2, 4.6, 0.3, 5.9}, g2 = {2.1, 5.2, 0.8, 2.0}
and g3 = {0.3, 6.1, 2.2, 0.9}.

Fig. 1. Individual representation (g1, g2 and g3 represent cluster centroids).

The population of evolutionary algorithms is generally ini-
tialized by a random process, but in the context of partitional
data clustering, an initialization by the random choice of C
patterns from the dataset in analysis to compose the initial
cluster centroids, for each individual, leads to a faster explo-
ration of the problem search space.

As the fitness function, many works adopt the Within-
Cluster Sum of Squares (eq. (1)) or some alternative function
that takes such criterion as its main component, just like in
[4], [24], [26]–[29].

J(PC) =

C∑
c=1

∑
∀i∈c

d(oi, gc) (1)

Once the initial population is obtained and the fitness value
for each individual X(0)

i in population G is computed, the
evolutionary operators for the selected evolutionary algorithm
are applied to evolve the cluster centroids represented by each
individual through a generational process, until a termination
condition is reached. The global best individual found by the
EA is furnished as the clustering solution. A generic evolu-
tionary algorithm for partitional data clustering is presented in
Algorithm 1.

Algorithm 1 Generic Partitional Evolutionary Algorithm
t← 0.
Initialize each individual X(0)

i ∈ G(0) by randomly picking
C patterns from the current dataset as its initial cluster
centroids.
Generate the initial partition X(0)

i .P
(0)
C , assigning each

pattern oi to its closest cluster, for each individual X(0)
i .

Calculate the fitness function for each individual X(0)
i .

while (termination conditions are not met) do
Execute all evolutionary operators, according to the se-
lected evolutionary algorithm, on current population Gt.
Assign each pattern oi to its closest cluster in Xt

i.P
t
C , for

each Xt
i.

Calculate the new fitness value for each population
individual Xt

i ∈ Gt.
t← t+ 1.

end while
Return Xtmax

best .

C. Cooperative Coevolutionary Algorithms for Partitional
Data Clustering

Although the most popular way to codify the population
for EAs when dealing with partitional data clustering is by
representing each individual as a set of cluster centroids (see
Section II-B), such representation may increase the compu-
tational cost in terms of storage space significantly, if the
number of intended clusters is to high, or if the data patterns
are composed of a large set of features. To reduce the space
complexity of partitional EAs, the cooperative coevolutionary
framework can be easily adapted to the context of partitional
data clustering. Instead of having a single population G, where
each individual represents a set of C cluster centroids in
parallel, we have C sub-populations composed by individuals
which represent only one cluster centroid each time [22], [24].
That way, each sub-population will perform local searches in
an attempt to optimize just one cluster centroid as well.

Formally, consider a partition PC of a dataset with NO

patterns oj ∈ <m in C clusters. Each cluster is represented by
its centroid vector gc ∈ <m. The population G of S individuals
is divided into C sub-populations. The i-th individual of the
k-th (1 ≤ k ≤ C) sub-population Gk.Xi ∈ <m represents
only one cluster centroid.

Although the search space has been divided in C m-
dimensional sub-regions, the original problem remains (m ×
C)-dimensional. The cooperation is employed in such a way

that each sub-population will contribute with the best set of
features they have found so far (i.e., the best cluster centroid
they represent), so the individuals of other sub-populations
would be able to evaluate their fitness: the i-th individual of
the k-th (1 ≤ k ≤ C) sub-population will be concatenated to
the best centroids found so far by the other sub-populations,
originating its own partition Gk.Xi.PC of the original dataset.
The fitness value f : <(m×C) → < for Gk.Xi is computed as
in eq. (2):

f(Xi) = f([G1.Xbest1 , ..., Gk.Xi, ..., GC .XbestC]) (2)

The final solution furnished by the CCEA is obtained by
the concatenation of the local best solutions found so far by
each sub-population (eq.(3)):

Xbest = [G1.Xbest1 , ..., Gk.Xbestk , ..., GC .XbestC] (3)

A generic cooperative coevolutionary algorithm for parti-
tional data clustering is presented in Algorithm 2.

Algorithm 2 Generic Partitional Cooperative Coevolutionary
Algorithm
t← 0.
Divide the population in C sub-populations.
for all sub-population G

(0)
k (k = 1, . . . , C) do

Initialize each individual from G
(0)
k by the random choice

of one pattern from the original dataset as its initial cluster
centroid.

end for
Generate the initial partition G

(0)
k .X(0)

i .P
(0)
C , assigning

each pattern oi to its closest cluster, for each individual
G

(0)
k .X(0)

i .
Calculate the fitness value for each individual G

(0)
k .X(0)

i ,
according to eq. (2).
while (termination conditions are not met) do

for all sub-population Gt
k(k = 1, . . . , C) do

Execute all evolutionary operators, according to
the selected evolutionary algorithm, on current sub-
population Gt

k.
Assign each pattern oi to its closest cluster in
Gt

k.X
t
i.P

t
C , for each Xt

i ∈ Gt
k.

Calculate the new fitness value for each individual
Xt

i ∈ Gt
k, according to eq. (2).

end for
Determine the global best member Xt

best according to
eq. (3).
t← t+ 1.

end while
return Xt

best.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the behavior of both competitive
and cooperative evolutionary algorithms when dealing with

TABLE I
BENCHMARK DATASETS DESCRIPTION.

Dataset Attributes Classes Patterns
Blood Transfusion 4 2 748
Banknote Authentication 4 2 1372
Cancer 9 2 699
Diabetes 8 2 768
E. Coli 7 8 336
Glass 9 6 214
Heart 13 2 270
Ionosphere 34 2 351
Iris 4 3 150
Seeds 7 3 210
Wine 13 3 178

TABLE II
PARAMETERS FOR ALL ALGORITHMS.

Algorithm Parameter Value

All EAs tmax 200
S 5× C

GA and CCGA Cr and Mr 0.8 and 0.05
Sr 0.2

DE and CCDE F and Cr 0.8 and 0.9

PSO and CCPSO w 0.9 to 0.4
c1 and c2 2.0 and 2.0

GSO and CCGSO Scroungers % and θmax 80% and π/a2
α0 and αmax π/4 and θmax/2

data clustering problem. Eleven well-known real world bench-
mark datasets from UCI Machine Learning Repository [30]
are selected as the testing bed. The selected real datasets are
presented in Table I. These datasets present different degrees
of difficulties, exploring aspects as unbalanced classes, over-
lapping among classes, different number of features, different
number of classes, and so on.

Two evolutionary algorithms with genetic inspiration (Ge-
netic Algorithm and Differential Evolution) and two swarm in-
telligence algorithms (Particle Swarm Optimization and Group
Search Optimization) are selected for comparison purposes.
The selected approaches represent state-of-the-art models on
evolutionary algorithms and data clustering literature, being
successfully applied in many applications [24], [29], [31]–
[36]. All selected algorithms have been implemented as both
competitive and cooperative partitional clustering models, as
described in Section II-B and Section II-C, respectively.

The parameters for each model (obtained from [12], [24],
[37], [38]) are presented in Table II. The population size for
all evolutionary algorithms is equal to five times the number
of intended clusters for each dataset, as a manner to assure
that CCEAs sub-populations (mainly, CCDE and CCGSO) will
fit the algorithm restrictions (such as, minimum number of
individuals [8], [39], at least one of each kind of individual
[12], [24], etc.).

All algorithms have been implemented in a Python program-
ming language. Thirty independent tests have been executed
for each dataset, and all evolutionary methods started with the
same initial random population in each test, as explained in
Sections II-B and II-C. For all tests, the adopted number of
clusters C is equal to the number of classes per dataset.

As comparison measures, four well-established clustering
metrics from literature are employed: the Within-Cluster Sum
of Squares (J , eq.(1)), the Quantization Error (Je, eq. (4)), the
Intra-Cluster Distance (Dmax, eq. (5)), and the Inter-Cluster
Separation (Dmin, eq. (6)) [40], [41].

Je(Xi.PC) =

∑C
c=1

∑
∀oj∈c d(oj , gic)/|Nic|

C
(4)

Dmax(Xi.PC) = max
c=1,...,C

{
∑
∀oj∈c

d(oj , gic)/|Nic|} (5)

Dmin(Xi.PC) = min
∀c1,c2,c1 6=c2

{d(gic1 , gic2)} (6)

where |Nic| is the cardinality of cluster gc from individual
Xi. The within-cluster sum of squares gives an overall view
on how close objects are in their clusters in a given partition
PC , while the quantization error gives us an average view on
how objects are distant in relation to their cluster centroid.
The intra-cluster distance shows the highest average degree of
scattering in a cluster in PC , and the inter-cluster separation
shows how close the two closest clusters are. Once clustering
models aim to find the best partition, where cluster objects
in the same cluster are more similar to each other, and with
the highest degree of separation among different clusters,
its desirable that the final solution obtained by a clustering
algorithm will present lower values for J , Je and Dmax and
higher values in relation to Dmin.

The evaluation criterion includes a rank system employed
through the application of Friedman test [42], [43] for all
the comparison clustering measures. The Friedman test is a
non-parametric hypothesis test that ranks all algorithms for
each data set separately. If the null-hypothesis (all ranks are
not significantly different) is rejected, Nemenyi test [44] is
adopted as the post-hoc test. According to Nemenyi test, the
performance of two algorithms are considered significantly
different if the corresponding average ranks differ by at least
the critical difference

CD = qa

√
nalg(nalg + 1)

6ndata
(7)

where ndata represents the number of data sets, nalg represents
the number of compared algorithms and qa are critical values
based on a Studentized range statistic divided by

√
2 [45].

Once our experiments are executed with ndata = 11 and
nalg = 8, we have a CD = 3.1656. Since J , Je and Dmax are
minimization metrics, the best methods will obtain lower ranks
for the Friedman/Nemenyi test, while for Dmin (maximization
metric), the best methods will find higher average ranks in the
Friedman/Nemenyi test.

The experimental results are shown in Table III and Table
IV.

The experimental results show that CCPSO and CCGSO are
able to obtain better performances than their corresponding
competitive models (PSO and GSO, respectively) in most of

TABLE III
EXPERIMENTAL RESULTS. FOR EACH CLUSTERING METRIC, Mean REPRESENTS THE AVERAGE VALUES OBTAINED IN THIRTY EXECUTIONS OF THE

EXPERIMENTS, WHILE Std REPRESENTS THE STANDARD DEVIATION FOR THE THIRTY EXECUTIONS OF THE EXPERIMENTS.

Dataset Algorithm J Je Dmax Dmin

Mean Std. Mean Std. Mean Std. Mean Std.
GA 45053.3467 820.1455 33.7543 0.4798 37.8211 1.9842 142.1931 19.1010
CCGA 45284.2152 1096.0931 33.9297 0.7868 38.0610 2.3412 145.2388 17.9120
DE 44052.5239 14.4696 33.0608 0.0072 35.9766 0.0103 149.3565 0.2159

Banknote CCDE 44688.7940 1100.0716 33.5348 0.7556 37.2892 2.2269 145.1725 12.7306
Authentication PSO 44049.4561 0.0257 33.0591 0.0 35.9779 0.0 149.3964 0.0471

CCPSO 44049.4431 0.0004 33.0591 0.0 35.9779 0.0 149.3832 0.0056
GSO 44060.2157 14.2291 33.0703 0.0180 35.9978 0.0706 149.1498 1.0336
CCGSO 44052.3708 3.6081 33.0616 0.0040 35.9811 0.0100 149.2133 0.4496
GA 686116142.1 12417025.2 2152217.8 98709.4 3923789.7 160775.4 9533964.7 857713.7
CCGA 697062207.7 23405975.0 2137727.1 141926.9 3893675.4 220196.6 9248724.0 1622835.7
DE 677749653.3 295.0 2108932.0 0.7748 3859382.4 1.3294 9268164.1 2975.5

Blood CCDE 686685421.4 36314502.5 2097425.0 74565.4 3832792.4 149633.4 9307484.2 398442.2
Transfusion PSO 677757987.6 20008.8 2108942.7 19.0838 3859392.5 19.1046 9267824.9 1100.9

CCPSO 677755370.2 16431.6 2108938.8 14.3657 3859388.0 15.3665 9267537.6 47.4385
GSO 677776016.8 25303.6 2108981.7 41.9005 3859453.1 68.6110 9261178.1 15352.6
CCGSO 677822811.7 137698.8 2109054.7 152.2089 3859541.2 226.5976 9263743.2 11043.0

Cancer

GA 251.39556 4.22867 0.47533 0.00830 0.82229 0.01067 2.46162 0.17984
CCGA 250.84247 2.90897 0.47445 0.00530 0.82516 0.01094 2.41455 0.18860
DE 249.35570 14.69270 0.47326 0.03236 0.82597 0.06268 2.36323 0.14057
CCDE 266.57653 25.67322 0.50960 0.05658 0.88883 0.10486 2.62479 0.45659
PSO 254.06655 11.87852 0.47495 0.01575 0.82114 0.02087 2.55737 0.14402
CCPSO 246.07225 2.47213 0.46491 0.00504 0.81067 0.00963 2.44748 0.05851
GSO 245.20692 1.72360 0.46478 0.00267 0.80580 0.00450 2.25988 0.05812
CCGSO 243.75571 0.35020 0.46254 0.00083 0.80578 0.00131 2.30797 0.02957

Diabetes

GA 5337576.5 169125.5 10372.6 543.86 16797.4 637.21 49910.0 8457.1
CCGA 5346897.1 158120.6 10391.7 543.32 16780.5 626.41 49314.0 9992.1
DE 5162293.3 71008.5 10305.4 175.78 16713.5 226.66 49427.9 1703.5
CCDE 5319990.4 194186.1 10155.4 361.97 16500.0 492.67 48198.9 4798.1
PSO 5155270.0 36696.0 10369.0 35.794 16787.7 72.028 49979.5 336.03
CCPSO 5171653.6 98411.4 10319.5 173.63 16719.8 252.80 49905.5 450.99
GSO 5149710.3 9466.6 10382.5 46.970 16808.7 51.406 49993.3 518.19
CCGSO 5148361.0 5459.0 10366.2 13.543 16786.4 23.303 50001.3 323.14

E. Coli

GA 18.17744 0.80208 0.06955 0.00740 0.15747 0.03541 0.05761 0.02364
CCGA 15.45975 0.40937 0.05666 0.00260 0.13250 0.01144 0.04753 0.01611
DE 20.72997 0.76786 0.06627 0.00581 0.12051 0.02841 0.03337 0.02261
CCDE 15.05779 0.82346 0.05526 0.00369 0.12767 0.02106 0.05195 0.00806
PSO 15.14878 0.71929 0.05132 0.00350 0.11253 0.02440 0.04803 0.00884
CCPSO 14.49937 0.60067 0.05058 0.00142 0.12305 0.01732 0.04946 0.00643
GSO 15.15042 0.41485 0.05473 0.00296 0.12473 0.02007 0.04823 0.01123
CCGSO 14.28233 0.35180 0.05121 0.00153 0.12634 0.01209 0.04697 0.00881

Glass

GA 421.24000 21.10890 3.71332 0.72592 8.05231 2.12889 3.99240 3.02430
CCGA 379.40753 15.83310 3.34341 0.64554 7.82575 1.51687 3.19245 1.37435
DE 538.75474 26.50355 4.82566 1.21121 11.89588 4.46998 1.52952 1.27193
CCDE 360.88782 21.10689 3.71055 0.70515 9.19618 2.85249 3.24326 0.82053
PSO 364.34764 20.67760 3.80791 0.58070 9.37955 1.87793 3.33399 0.52022
CCPSO 351.93828 14.82960 3.49792 0.68658 8.71667 2.09562 3.23621 0.66857
GSO 378.47152 17.51526 3.76134 0.48432 9.07024 1.75713 2.84770 1.25433
CCGSO 353.48994 15.09140 3.28826 0.61295 7.98469 1.79633 2.85007 0.72967

the cases in terms of the final best fitness value (J). CCGA
presented performances (in terms of the best fitness value) in
most cases at least as good as GA algorithm. Also, CCGA
showed an overall average performance (according to the
Friedman/Nemenyi test - see Table V) significantly better than
GA considering the within-cluster sum of squares.

An evaluation considering the convergence rate (Fig. 2 to
Fig. 4) of competitive and cooperative EAs reveals that CCEAs
present a faster convergence speed than their corresponding
competitive EAs, once they may perform better exploitations
of the problem space than sheer competitive methods. The
CCEAs also presented better capabilities to escape and avoid
local minima points than their corresponding competitive

models.
An overall evaluation considering the Friedman/Nemenyi

ranks showed that CCPSO was able to achieve the best average
performances considering J , Je and Dmax measures. CCGA
and CCGSO have also presented better average performances
(considering J , Je and Dmax) than their corresponding com-
petitive approaches (GA and GSO, respectively). The only
situation where a CCEA presented a slightly worse average
performance considering these three metrics than its corre-
sponding competitive model was for Differential Evolution.
In terms of Intra-Cluster Separation, both CCDE and CCGSO
presented better average performances than their correspond-
ing competitive methods, what means that CCEAs are able

TABLE IV
EXPERIMENTAL RESULTS (CONT.).

Dataset Algorithm J Je Dmax Dmin

Mean Std. Mean Std. Mean Std. Mean Std.

Heart

GA 558525.8 4550.3 2190.7 2214.4 2738.7 59.982 7043.7 976.57
CCGA 564903.9 9443.7 2214.4 66.859 2751.2 56.246 6941.5 1288.2
DE 551505.1 3371.8 2177.3 23.434 2731.5 22.271 6647.8 185.98
CCDE 557510.8 10537.2 2195.8 37.920 2754.8 50.464 6751.6 442.00
PSO 549643.0 284.51 2166.1 4.2396 2718.1 4.2788 6656.7 30.730
CCPSO 549730.0 289.64 2166.2 3.8776 2717.8 3.9176 6658.5 26.112
GSO 551582.3 2547.6 2178.5 15.425 2735.7 28.319 6685.1 82.991
CCGSO 550639.1 1363.8 2172.1 7.8469 2724.9 11.878 6677.0 63.619

Ionosphere

GA 2930.71372 187.655 8.58926 1.2672 11.68574 1.85489 11.36489 3.66450
CCGA 2720.01382 89.102 7.91464 0.41943 11.13668 0.68372 9.94826 2.51786
DE 2678.01868 132.450 7.97840 0.66261 10.96695 0.74460 9.36215 1.92786
CCDE 2636.94547 108.718 7.85082 0.45704 11.10343 0.52975 9.72613 2.00591
PSO 2509.50569 87.622 7.38134 0.41593 10.46709 0.32101 10.93054 1.11969
CCPSO 2463.46297 28.96170 7.23143 0.10799 10.54692 0.16089 10.25182 0.84376
GSO 2550.97605 93.76644 7.55314 0.23765 10.59834 0.30448 7.86152 1.18567
CCGSO 2482.01837 32.69989 7.37320 0.14909 10.67072 0.20967 8.78221 0.64195

Iris

GA 81.22521 1.18469 0.54166 0.00787 0.69786 0.04512 3.02611 0.31315
CCGA 82.55626 1.64062 0.55035 0.01052 0.69955 0.03424 3.15443 0.49260
DE 79.88360 2.12919 0.53309 0.01602 0.66097 0.03956 3.12798 0.26966
CCDE 80.18489 2.35443 0.53512 0.01626 0.66589 0.03444 3.19794 0.30647
PSO 79.03144 0.40391 0.52682 0.00308 0.64571 0.00459 3.21821 0.01732
CCPSO 78.96015 0.32592 0.52672 0.00300 0.64696 0.00476 3.21388 0.01590
GSO 79.40203 0.98442 0.53077 0.00684 0.66376 0.03141 3.17729 0.11815
CCGSO 78.87785 0.03219 0.52656 0.00143 0.64839 0.00473 3.19795 0.03038

Seeds

GA 610.08371 12.47485 2.90747 0.05113 3.17072 0.12631 13.17701 1.63531
CCGA 610.57837 13.78568 2.90862 0.06466 3.17043 0.15618 13.58649 1.69849
DE 609.25667 27.82266 2.91437 0.13069 3.15599 0.17468 13.38245 0.87344
CCDE 594.23178 14.68215 2.84236 0.06575 3.11244 0.30702 13.31207 0.51383
PSO 589.37119 3.02828 2.82295 0.01458 3.02836 0.02927 13.40255 0.13293
CCPSO 587.53163 0.50746 2.81255 0.00381 3.01836 0.00038 13.36232 0.02987
GSO 591.87508 3.95263 2.82763 0.01939 3.07430 0.10329 13.11010 0.38706
CCGSO 588.08559 0.77466 2.81156 0.00529 3.01942 0.00170 13.29216 0.12147

Wine

GA 2428579.2 88192.5 15179.8 484.96 27628.6 3116.5 85034.1 24907.4
CCGA 2478201.0 99223.4 15474.5 596.21 27858.8 2969.1 85211.5 24882.3
DE 2378836.1 4609.2 14884.3 25.236 29005.7 35.057 73099.7 1534.6
CCDE 2433167.2 108972.6 15193.1 616.22 27074.7 3521.2 88177.3 27335.6
PSO 2372065.9 6263.5 14845.9 30.248 28957.4 1.0027 73150.9 226.75
CCPSO 2404824.1 87992.3 15034.0 502.70 27895.5 2752.3 81489.3 21769.2
GSO 2379558.9 32743.0 14890.0 189.12 28905.5 357.80 72529.7 1549.9
CCGSO 2438745.2 114474.3 15227.8 653.90 26834.2 3580.9 89865.6 28307.2

TABLE V
OVERALL EVALUATION: AVERAGE RANKS FOR THE FRIEDMAN/NEMENYI

TEST FOR EACH METRIC, WITH CD = 3.1656. BOLD: THE BEST
AVERAGE RANK BETWEEN AN EA AND THE CORRESPONDING CCEA; † :

THE OVERALL BEST AVERAGE RANK.

Algorithm RankJ RankJe RankDmax RankDmin

GA 192.1273 174.4394 160.9561 128.7606
CCGA 184.7848 163.8091 153.4045 124.0545
DE 136.1333 132.1939 130.6576 106.2394
CCDE 139.5152 137.6970 134.1879 126.7788
PSO 74.0970 83.4758 92.1273 140.5576†
CCPSO 49.1333† 59.6424† 69.5121† 134.7242
GSO 111.3667 121.8242 122.4121 94.8394
CCGSO 76.8424 90.9182 100.7424 108.0455

to find more compact clusters than competitive EAs, but they
may generate partitions with clusters that are not very much
distant one from the other.

The experimental results showed that CCEAs are able to
obtain better average performances than their corresponding
competitive EAs is most of the cases, so they are good

solutions to tackle clustering problems. Also, with the adopted
encoding schema for the population individuals, such method-
ologies present huge advantages in relation to competitive
methods in terms of storage memory when the number of
intended clusters increases.

IV. CONCLUSION

In this work, a we evaluate the cooperative coevolutionary
framework for evolutionary algorithms in the context of par-
titional clustering problems. We also compare the behavior
of cooperative coevolutionary methods in relation to standard
competitive evolutionary approaches when tackling clustering
task.

In the adopted population encoding schema the population
is split in several sub-populations, in such a way that each
sub-population is responsible for the optimization of only one
cluster centroid each time. The clustering problem (global
problem) is solved by the combination of the best local
solutions found so far by each sub-population. This repre-
sentation requires less storage memory in comparison to the

Fig. 2. Convergence graph for Cancer dataset.

Fig. 3. Convergence graph for E. Coli dataset.

standard representation approach for partitional evolutionary
algorithms, once each individual represents just one cluster
centroid each time, instead of representing a complete set of
cluster centroids.

The comparison framework took into consideration four
well-established evolutionary and swarm intelligence algo-
rithms from evolutionary computing literature: Genetic Al-
gorithm, Differential Evolution, Particle Swarm Optimization
and Group Search Optimization. Each one of the selected al-
gorithms has been implemented as both competitive and coop-
erative partitional clustering models (GA/CCGA, DE/CCDE,
PSO/CCPSO, and GSO/CCGSO). Eleven benchmark real
world problems from UCI Machine Learning Repository have
been selected as the testing bed for the experimentation.
The evaluation included a rank system obtained by Fried-
man/Nemenyi hypothesis test in relation to four clustering
quality measures (the Within-Cluster Sum of Squares, the
Quantization Error, the Intra-Cluster Distance, and the Inter-

Fig. 4. Convergence graph for Ionosphere dataset.

Cluster Separation). The experimental results showed the
potential of CC approaches over sheer competitive methods,
according to Friedman/Nemenyi tests, considering three out
of four clustering metrics (J , Je and Dmax), except for Dif-
ferential Evolution algorithm, where the competitive method
showed performances slightly better than the corresponding
cooperative coevolutionary model.

As future works, we intend to evaluate the behavior of
other EAs and SIs when adapted to CC model as partitional
clustering methods. We also intend to extend the testing bed
by adding other real world problems, as much as synthetic
datasets, so we could have a better evaluation on the gener-
alization performances of such approaches and their behavior
when dealing with specific clustering problems (such as unbal-
anced datasets, classes with different shapes, and so on). It is
worth to mention that the main advantages offered by CCEAs
when dealing with data clustering problems are highlighted
when the number of intended clusters increases, so the future
evaluations will also include tests with datasets presenting a
high number of classes.

ACKNOWLEDGMENT

The authors would like to thank FACEPE, CNPq and
CAPES (Brazilian Research Agencies) for their financial sup-
port.

REFERENCES

[1] M. C. Naldi and R. J. G. B. Campello, “Evolutionary k-means for
distributed data sets,” Neurocomputing, vol. 127, pp. 30–42, 2014.

[2] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1. California,
USA, 1967, pp. 281–297.

[3] L. Kaufman and P. Rousseeuw, Clustering by means of medoids. North-
Holland, 1987.

[4] E. R. Hruschka, R. J. Campello, A. A. Freitas et al., “A survey of
evolutionary algorithms for clustering,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 39, no. 2,
pp. 133–155, 2009.

[5] S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, and S. U. Rehman, “Research
on particle swarm optimization based clustering: a systematic review
of literature and techniques,” Swarm and Evolutionary Computation,
vol. 17, pp. 1–13, 2014.

[6] M. C. Naldi, R. J. Campello, E. R. Hruschka, and A. Carvalho,
“Efficiency issues of evolutionary k-means,” Applied Soft Computing,
vol. 11, no. 2, pp. 1938–1952, 2011.

[7] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–72, 1992.

[8] R. Storn and K. Price, “Differential evolution—a simple and efficient
adaptive scheme for global optimization over continuous spaces. inter-
national computer science institute, berkeley,” CA, 1995, Tech. Rep.
TR-95–012, Tech. Rep., 1995.

[9] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial systems. Oxford university press New York, 1999,
vol. 4.

[10] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,” Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, vol. 26, no. 1, pp. 29–41, 1996.

[11] J. Kennedy, R. C. Eberhart, and Y. Shi, “Swarm intelligence. 2001,”
Kaufmann, San Francisco, 2001.

[12] S. He, Q. H. Wu, and J. Saunders, “Group search optimizer: an
optimization algorithm inspired by animal searching behavior,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 973–990,
2009.

[13] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in International Conference on Parallel Prob-
lem Solving from Nature. Springer, 1994, pp. 249–257.

[14] S. H. Clearwater, T. Hogg, and B. A. Huberman, “Cooperative problem
solving,” in Computation: The micro and the macro view. World
Scientific, 1992, pp. 33–70.

[15] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing.
Springer Berlin, 2010, vol. 2.

[16] E. Cantu-Paz, Efficient and accurate parallel genetic algorithms.
Springer Science & Business Media, 2000, vol. 1.

[17] E. M. Figueiredo and T. B. Ludermir, “Investigating the use of alternative
topologies on performance of the pso-elm,” Neurocomputing, vol. 127,
pp. 4–12, 2014.

[18] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proceedings of the 2001
Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546),
vol. 2. Ieee, 2001, pp. 1101–1108.

[19] Y.-j. Shi, H.-f. Teng, and Z.-q. Li, “Cooperative co-evolutionary differ-
ential evolution for function optimization,” in International Conference
on Natural Computation. Springer, 2005, pp. 1080–1088.

[20] G. A. Trunfio, “A cooperative coevolutionary differential evolution
algorithm with adaptive subcomponents,” Procedia Computer Science,
vol. 51, pp. 834–844, 2015.

[21] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE transactions on evolutionary
computation, vol. 8, no. 3, pp. 225–239, 2004.

[22] K. Georgieva and A. P. Engelbrecht, “A cooperative multi-population
approach to clustering temporal data,” in 2013 IEEE Congress on
Evolutionary Computation. IEEE, 2013, pp. 1983–1991.

[23] L. D. S. Pacifico and T. B. Ludermir, “Cooperative group search
optimization,” in 2013 IEEE Congress on Evolutionary Computation.
IEEE, 2013, pp. 3299–3306.

[24] ——, “A partitional cooperative coevolutionary group search optimiza-
tion approach for data clustering,” in 2019 8th Brazilian Conference on
Intelligent Systems (BRACIS). IEEE, 2019, pp. 347–352.

[25] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, and Z. Zhu, “A
survey on cooperative co-evolutionary algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 23, no. 3, pp. 421–441, 2018.

[26] C.-Y. Chen and F. Ye, “Particle swarm optimization algorithm and its
application to clustering analysis,” in Networking, Sensing and Control,
2004 IEEE International Conference on, vol. 2. IEEE, 2004, pp. 789–
794.

[27] A. Ahmadyfard and H. Modares, “Combining pso and k-means to
enhance data clustering,” in Telecommunications, 2008. IST 2008. In-
ternational Symposium on. IEEE, 2008, pp. 688–691.

[28] K. A. Prabha and N. K. Visalakshi, “Improved particle swarm optimiza-
tion based k-means clustering,” in 2014 International Conference on
Intelligent Computing Applications. IEEE, 2014, pp. 59–63.

[29] L. D. S. Pacifico and T. B. Ludermir, “Hybrid k-means and improved
self-adaptive particle swarm optimization for data clustering,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–7.

[30] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[31] M. Akbari and H. Izadkhah, “Gakh: A new evolutionary algorithm for

graph clustering problem,” in 2019 4th International Conference on
Pattern Recognition and Image Analysis (IPRIA). IEEE, 2019, pp.
159–162.

[32] A. Mortezanezhad and E. Daneshifar, “Big-data clustering with genetic
algorithm,” in 2019 5th Conference on Knowledge Based Engineering
and Innovation (KBEI). IEEE, 2019, pp. 702–706.

[33] V. S. Srinivas, A. Srikrishna, and B. E. Reddy, “Automatic feature subset
selection for clustering images using differential evolution,” in 2018
IEEE Conference on Multimedia Information Processing and Retrieval
(MIPR). IEEE, 2018, pp. 216–217.

[34] T. Li and H. Dong, “Unsupervised feature selection and clustering
optimization based on improved differential evolution,” IEEE Access,
vol. 7, pp. 140 438–140 450, 2019.

[35] L. Xiao, Q. Ma, and H. Wang, “Improved pso ert image reconstruction
algorithm for human lung based on prior knowledge and clustering,” in
2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018,
pp. 5840–5844.

[36] L. D. S. Pacifico and T. B. Ludermir, “Hybrid k-means and improved
group search optimization methods for data clustering,” in 2018 Inter-
national Joint Conference on Neural Networks (IJCNN). IEEE, 2018,
pp. 1–8.

[37] R. F. Abdel-Kader, “Genetically improved pso algorithm for efficient
data clustering,” in Machine Learning and Computing (ICMLC), 2010
Second International Conference on. IEEE, 2010, pp. 71–75.

[38] L. D. S. Pacifico and T. B. Ludermir, “A group search optimization
method for data clustering,” in Intelligent Systems (BRACIS), 2014
Brazilian Conference on. IEEE, 2014, pp. 342–347.

[39] R. Storn and K. Price, “Differential evolution–a simple , efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[40] M. Omran, A. Salman, and A. P. Engelbrecht, “Image classification us-
ing particle swarm optimization,” in Proceedings of the 4th Asia-Pacific
conference on simulated evolution and learning, vol. 1. Singapore,
2002, pp. 18–22.

[41] M. T. Wong, X. He, and W.-C. Yeh, “Image clustering using particle
swarm optimization,” in Evolutionary Computation (CEC), 2011 IEEE
Congress on. IEEE, 2011, pp. 262–268.

[42] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the american statistical
association, vol. 32, no. 200, pp. 675–701, 1937.

[43] ——, “A comparison of alternative tests of significance for the problem
of m rankings,” The Annals of Mathematical Statistics, vol. 11, no. 1,
pp. 86–92, 1940.

[44] P. Nemenyi, “Distribution-free multiple comparisons,” in Biometrics,
vol. 18, no. 2. INTERNATIONAL BIOMETRIC SOC 1441 I ST,
NW, SUITE 700, WASHINGTON, DC 20005-2210, 1962, p. 263.

[45] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
The Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

