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Abstract—In this paper, the influence of the initial population
into successive generations in Evolutionary Algorithms (EAs) is
studied as a problem-independent approach. For this purpose,
the Traceable Evolutionary Algorithm (T-EA) is proposed. This
algorithm keeps track of the influence of the individuals from
the initial population over the generations of the algorithm. The
algorithm has been implemented for both bit-string and integer
vector representations. In addition, in order to study the general
influence of each individual, new impact factor metrics have been
proposed. In this way, we aim to provide tools to measure the
influence of initial individuals on the final solutions. As a proof
of concept, three classical optimization problems (One Max, 0/1
Knapsack and Unbounded Knapsack problems) are used. We
provide a framework that allows to explain why some individuals
in the initial population work better than others in relation with
the corresponding fitness values.

Index Terms—Traceability, Evolutionary Algorithm, Initial
Population

I. INTRODUCTION

Evolutionary Algorithms (EA) can be used to deal with
a large variety of complex NP-hard problems optimization
or problems with no analytical forms such as black-box
optimization problems or simulation-based problems [1].

Inspired by biological evolution, EAs use search mecha-
nisms based on mutation, recombination and selection op-
erators. These mechanisms are applied to individuals of a
population (candidate solutions) for a number of generations
until a stopping criterion is met. One of the main factors when
designing an EA is the seeding of the initial population, which
can largely influence the performance of the algorithm [2].
Population initialization is an important task which can affect
convergence speed and therefore the quality of final solutions.

In the last decade, many problem-based methods have been
developed to seed the initial population [3], [4]. In addition,
general methods for initialising the population without a priori
knowledge have been designed to accelerate the algorithms.
Most of these approaches are based on quasi-random gen-
erators [5], opposition-based learning [6], gap filling [7] or
combining gap filling with extending the edges of the front [8],
among the others. Although these methodologies provide a
great improvement to the algorithmic design, there is little
theoretical work in terms of the convergence behaviour [9],
[10]. In this paper, we aim to provide a new methodology to
better understand the details of the search process such as the
contribution of the individual properties and the components of

EAs to the search. Our major focus is on tracing the influence
of both initial solutions and operators on the final solutions.

In order to achieve this objective, a new algorithm called
Traceable Evolutionary Algorithm (T-EA) is proposed. This
algorithm records traces of the individuals in the initial popula-
tion over the evolutionary process. In this way, it is possible to
measure the amount of the influence of the predecessors of an
individual in the final (or intermediate) generation. Tracking
genes through historical markings was already proposed in
NEAT [11], but in the context of performing artificial synapsis
taking into account homologies, while in this paper the genes
are traced for analytical purpose.

In this paper, we consider both bit-string and integer vector
representations. In addition to T-EA, we propose new metrics
to measure the influence of initial individuals on the final
solutions. In order to provide a proof of concept with the
proposed method, we examine our algorithm on three clas-
sical optimization problems (One Max, 0/1 Knapsack and
Unbounded Knapsack problems). For each of these problems,
different initial populations are used to check the behaviour
of T-EA. The various initial populations contain different
percentages of the initial individuals in terms of quality. Using
the proposed metrics, the obtained results are analysed.

This paper is structured as follows. Section II presents T-EA
and the corresponding operators. In Section III, the different
impact factor metrics are proposed to measure the influence
of initial individuals. Section IV shows the experimental setup
and evaluation of the influence of initial individuals into final
solutions for the selected problems and initial populations.
Finally, in Section V, some conclusions of the work and future
lines of research are provided.

II. TRACEABLE EVOLUTIONARY ALGORITHM

For tracing the influence of the initial population to the final
generation (population in the last generation), we propose the
Traceable Evolutionary Algorithm (T-EA). In this algorithm,
individuals store the information regarding their predecessors.

A. Encoding

More precisely, we add an additional vector with the same
size as of the chromosome vector to each individual. This
vector contains the IDs of the individuals (called trace ID)
from the initial population. In this case, in the initial pop-
ulation, each individual puts its corresponding trace ID into
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all the elements of the trace vector (e.g. for Individual 1, the
elements of the trace vector are equally initialized to 1; for
Individual 2, they are initialized to 2, and so on).

The goal is to propagate the trace IDs over the generations.
In this case, every time a recombination and/or mutation are
performed, the corresponding trace IDs of the genes have to
get updated. An example of a traceable individual with integer
representation is presented in Figure 1. In this paper, we will
focus on two bit-string and integer vector representation and
adapt the crossover operator for trace IDs in T-EA.

Fig. 1: Example of an individual in T-EA consisting of a
genome and a trace IDs.

B. Crossover

Once a crossover is applied to a chromosome of an
individual and the corresponding trace IDs are exchanged
accordingly. This is referred as traceable crossover. In this
way, the trace IDs from the initial population are preserved in
the successive generations which can easily be used to observe
the influence of the predecessors on an individual. Figure 2
shows an example of a 2-point crossover operator. It can be
observed that the trace IDs keep track of the original genes.

Fig. 2: Example of a 2-point crossover in T-EA. Similar to
the genes in the chromosome, every trace ID between the two
crossover points is swapped between the parent individuals.

C. Mutation

Considering a mutation operator in the EAs such as uniform
mutation, the genes are usually altered randomly and therefore
the original information from the older generations get lost.
This is valid for both binary and integer encodings. In T-EA,
we propose a traceable uniform mutation such that every time
a gene is mutated, we change the corresponding trace ID to a
new mutation identifier. We use a global counter to generate
the new trace IDs. With this, the mutations performed over the
individuals during the algorithm are also traced. Therefore, it
will be easily observable which mutations were most relevant
for the final solutions. Figure 3 shows an example of this

traceable uniform mutation, where genes 2 and 5 are selected
to be mutated. As presented in the example, new trace IDs are
created for these genes (m1 and m2). The identifiers in these
mutation traces show that these have been the first and second
ever mutated genes in the algorithm. In later mutations, the
trace IDs would be m3, m4, and so on.

Fig. 3: Example of uniform mutation in T-EA. For every
randomly mutated gene, its trace ID is converted into a new
mutation ID (m1, m2). A global counter generates new IDs.

With these traceable operations, T-EA is able to keep track
of the individuals in the initial population. Additionally, we are
able to follow the newly generated genes with the mutation
operator to the final generation of the algorithm.

III. IMPACT FACTOR METRICS FOR T-EA

In this section, we provide new metrics to measure the
influence of the initial individuals on the final population. The
final population of T-EA contains the vectors of the trace IDs
for each individual including the information regarding the
influence of the initial population and the mutation traces. In
order to describe the impact from an individual of the initial
population on the final solutions, we propose the following
three Impact Factor (IF) metrics: counting-based IF, fitness-
based IF and entropy-based IF.

For formally defining the three IFs, the following notation
is used: n denotes the number of individuals in a population
(we suppose that populations of different generations have the
same size). m denotes the size of the chromosome, i.e. the
number of genes per individual. As this work deals with bit-
string and integer vector representations, it is supposed that
individuals have fixed sizes. P is the number of generations
which additionally represents the index of the last generation.

The notations for individuals, populations and generations
is as follows: the set Gi defines the population in the i-th
generation of the algorithm. For each individual H of a specific
population, the matrix XH = [xH

j |j ∈ 1..m] is defined. Each
element of the matrix represents the genes of that individual,
so Gi = ([XH |H ∈ 1..n])i. Therefore, (xH

j )i represents gene
j of individual H in the population of generation i.

The fitness function f : Zm → R is defined for bit-string
and integer vector representations of individuals. In addition,
a function t : Gene → Trace is defined to obtain the trace
ID of the initial individuals and the mutation that generated
the gene. In order to check whether the trace IDs of a specific
gene correspond to an individual k from the initial population
or not, the following function is defined:

Tk((xH
j )i) =

{
1 if t

(
(xH

j )i
)

== k

0 otherwise
(1)



A. Counting-based IF metric

The counting-based IF IFC computes the influence of each
individual k from the initial population on the final population
by summing the occurrences of the trace IDs of k in the final
population. This is then normalized by dividing the sum by
the population size n and the chromosome size m:

IFC(k) =
1

n ·m

n∑
i=1

m∑
j=1

Tk

(
(xi

j)P
)

(2)

It can be noted that the influence of the mutation can addi-
tionally be computed using this metric by counting all the
mutation trace IDs (or just a specific mutation trace ID if the
influence of just one of these mutations is subject to study).

IFC directly represents the influence of the first generation
on the last in T-EA. However, it does not consider the fitness
(quality) of the individuals.

B. Fitness-based IF metric

In order to additionally consider the impact of the initial
solutions and the mutation on the quality of the solutions in
the final population, we propose the Fitness-based IF metric
IFF . This metric takes the fitness value for each individual in
the final population into account. IFF is calculated in a similar
way as IFC and additionally multiplies the trace IDs by the
corresponding fitness values. In this way, the good individuals
from the initial population have a larger impact on the final
population.IFF is normalized by dividing it with the sum of
all the fitness values in the final population:

IFF (k) =

∑n
i=1

∑m
j=1 Tk

(
(xi

j)P
)
· f((Xi)P )

n ·m ·
∑n

i=1 f((Xi)P )
(3)

Similar to counting-based IF, the fitness-based IF can also
be used to measure the influence of the mutation operations
by counting the number of mutation trace IDs.

C. Entropy-based IF metric

The counting-based IF favors the trace IDs which are
present multiple times in the same individual. Other initial
individuals that survived, but only in a few genes, are then
underrepresented. The Entropy-based IF metric is designed to
measure the influence of such initial individuals, as they have
been able to survive until the last generation.

This metric takes into account the probability of a trace ID
k appearing in a specific gene j

Pk,j =
1

n

n∑
i=1

Tk((xi
j)P ) (4)

Based on the Shannon-Entropy [12], we define:

H
(
Ψg

j

)
= −

∑
k∈Ψg

j

Pk,j · log2(Pk,j) (5)

Where H is the entropy for gene j in generation g, and Ψg
j

represents the trace IDs (including mutation trace IDs) that are
present in gene j for all the individuals of the population in

generation g. This entropy defines a value in [0, 1] representing
the importance of the gene, or how much information this gene
provides to the solution. The entropy-based IF metric IFE

is presented in equation 6, where the previous IFF metric
has been extended by multiplying the entropy factor. As this
entropy is in the range [0, 1] and can be zero, we add 1 to
avoid division by 0. As before, the metric is normalized by
dividing with the sum of the entropy for every gene.

IFE(k) =

∑n
i=1

∑m
j=1 Tk

(
(xi

j)P
)
· f((Xi)P ) · (1 + H

(
ΨP

j

)
)

n ·m ·
∑n

i=1 f((Xi)P ) ·
∑m

j=1(1 + H
(
ΨP

j

)
)

(6)

IV. PROOF OF CONCEPT

The proposed T-EA and the IF metrics are used in the
following experiments for a proof of concept. We intend to
study their usability on different scenarios.

Three classical optimization problems are used for this
purpose. We study two optimization problems based on bit-
string representations (One Max and 0/1 Knapsack) and one
based on integer encoding (unbounded knapsack). The goal of
the One Max problem [13] is to maximize the number of 1s in
a bit-string with a given length. The 0/1 knapsack problem [14]
consists of several objects with specific weight and profit. The
goal is to insert as many as possible objects into the knapsack
with a fixed capacity. A possible solution of such a problem
is a bit-string representing if an object is inserted (1) or not
(0). The length of the bit-string corresponds to the number of
objects. In the unbounded knapsack problem [15], there are
unlimited elements of each object, and the knapsack is meant
to be filled without over-passing the capacity. The solution of
such a problem is represented by an integer vector with the
length equal to the number of objects.

For testing T-EA, we take three different initial populations
which are randomly generated. These populations have various
properties: a large portion with high fitness value (Population
1), uniformly distributed fitness values (Population 2), and one
dominating individual in terms of fitness value (Population 3).

A. Experimental setup

The setup used in T-EA for the experiments consists of
a population size of 20 individuals, the traceable 2-point
crossover and traceable uniform mutation are used. The mu-
tation probability is set to 1%. A tournament selection of size
4 is used, and the algorithm is run for 20 generations. Each
of the tests is repeated 31 times with different seeds, and the
median and interquartile range are computed.

For the One Max problem, a bit-string of length 10 is used.
Three different initial populations with various percentages of
fitness values have been generated as presented in Figure 4.

The 0/1 knapsack problem in these experiments consists of
10 objects to be inserted in a knapsack of capacity 269. The
weights and profits of these objects are presented in Table
I. To deal with the capacity constraint of the knapsack, the
parameter free constraint handling method [16] has been used.
In this method, the worst fitness is defined as 0 and so invalid
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Fig. 4: Fitness of the individuals in the three proposed initial populations for the One Max problem.

solutions have negative fitness (the weight constraint value).
Again, three different initial populations with corresponding
fitness values as shown in Figure 5 are taken.

TABLE I: Weights and profits of the objects in the 0/1
knapsack problem and in the unbounded knapsack problem.

0/1 Knapsack Unbounded Knapsack
Object Profit Weight Object Profit Weight

1 55 95 1 33 15
2 10 4 2 24 20
3 47 60 3 36 17
4 5 32 4 37 8
5 4 23 5 12 31
6 50 72
7 8 80
8 61 62
9 85 65

10 87 46

In the unbounded knapsack we define 5 types of objects
to be packed in a knapsack of capacity 80. The weights and
profits of these objects are presented in Table I. The parameter
free constraint handling is also used here. Figure 6 shows the
three initial populations. In this test problem, the number of
feasible solutions in the initial population is much smaller than
in the 0/1 knapsack problem.

B. Experimental results

The results obtained after running T-EA with the different
problems proposed are studied one by one as follows:

1) One Max problem: Figure 7 illustrates the results for
the One Max problem with the three initial populations. For
each pair of initial population and IF metric, a box plot is
provided to represent the IF metric value for each individual
of the initial population and the mutation operations.

For the Population 1, Figure 7a shows that, according to
IFC , Individual 7 was the most influential, with a median
of IFC(7) = 30%, followed by Individual 15. This makes
sense as these individuals have the highest fitness values
in the initial population. Mutation in general got a median
IFC(Mut) = 10%, becoming the third most influential
component. Individuals 5 and 10 had some influence in some
of the runs, but their median still remains near 0. Individuals

2, 3, 8, 9, 13, 14, 17 and 18 appeared very few times, as
they are outliers in the box plot, meaning that they have less
than 8 appearances in the runs. In some of these cases the
influence was large, like for example Individual 2 who had
IFC(2) = 50% in one run. The rest of the individuals did not
influence the final solutions, as they have low fitness values,
so they probably were lost in most tournament selections.

Looking at the IFF (Figure 7b) for this initial population,
the results are quite similar. That means that either fitness
values of the final solutions are similar, or the influence is well
distributed so all the surviving individual traces appear in most
solutions. In the case of IFE (Figure 7c), the results are also
quite similar except for some outliers whose influence may be
higher due to the entropy as they appear in more “difficult”
genes (a gene that is difficult to get its best value).

The results obtained for Population 2 (Figures 7d-7f) show
a similar behaviour, as the two individuals with highest fit-
ness had the highest influence. Nevertheless, the influence of
Individual 5 was higher than the influence of Individual 15
(more than double) in median. It is observed that there are
many outliers with large influence. It may be that in different
executions, different individuals were used as a backup for the
“difficult” genes in Individuals 5 and 15.

In Population 3 (Figures 7g-7i), the optimal solution was
already in this initial population (Individual 10), so it is clear
that this individual has the highest influence, having almost
IFC(10) = 100%. Individual 8, who had the second best
fitness also got some influence into the final solutions.

As the One Max problem is an easy and straightforward
problem, it is common that most behaviours in the influence of
the final solutions are expected, but still sometimes there could
be unexpected individuals that influence the final solutions due
to the stochastic nature of EAs.

2) 0/1 knapsack problem: Figure 8 shows the results for
the 0/1 knapsack problem with the three initial populations
proposed and the three IF metrics as box plots.

In the results obtained for Population 1 (Figures 9a-9c), it
is interesting that, although Individuals 8 and 12 have very
similar fitness, the first one had a huge influence on the
final solutions, around IFC(8) = 75%, while Individual 12
influence is near 0, except for some outliers. This indicates
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Fig. 5: Fitness of the individuals in the three proposed initial populations for the 0/1 knapsack problem.
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Fig. 6: Fitness of the individuals in the three proposed initial populations for the unbounded knapsack problem.

that these two individuals do not combine well, or even that
Individual 12 is a deceptive individual. Individual 15, on the
other hand, although it has a worse fitness than others, such
as Individuals 1 or 16, obtained a bigger influence in many
cases, probably as a complementary of Individual 8. Although
IFF and IFE got very similar results to IFC , it is appreciable
how the influence of some outliers is increased or decreased,
even generating new outliers, e.g. in Individuals 12 or 16.

For Population 2 (Figures 9d-9f), the individuals with
the best fitness (Individuals 4, 7 and 20) got the highest
influence, with Individual 4 being highly influential in most
cases. Although Individual 20 was not very influential, when
considering the IFE metric, its interquartile range became
higher. That may represent that this individual may have good
genes that are not common with Individuals 4 and 7. It is
interesting to observe how other individuals which have fitness
values not as good as the previous ones, but still quite good,
were almost never considered, just in some outlier runs.

In the case of Population 3 (Figures 9g-9i), solution 4 seems
to have reached the best fitness value and it is in most cases the
highest influence for all the solutions, being near IFC(4) =
100%. The rest of individuals have a very low and outlier
influence, even the mutation was useless in this case.

In the cases studied for the 0/1 knapsack problem, we have
observed that a dominating solution in terms of the fitness
value, tends to become the most influential individual and

overtake the rest of individuals.

3) Unbounded knapsack problem: The unbounded knap-
sack problem was the integer representation tested in this
work. The results are presented in Figure 9. As this problem
is much more complicated than the previous ones, the results
differ from the previous cases.

In the results obtained for Population 1 (Figures 9a-9c),
there is not just one individual which became the most
influential, but instead several individuals (5, 8, 17 especially)
had a moderate influence. This is due to the fact that all of the
individuals in the initial population were infeasible solutions.
In terms of the IFF , it can be observed that the influence
of Individual 8 is larger than its impact with IFC , as this
individual may have appeared in solutions with better fitness
than others. Nevertheless, for the IFE metric, the behaviour
is exchanged and Individual 8 becomes less influential while
Individuals 5 and 17 gain some influence. This behaviour is
due to those two individuals appearing in diverse genes while
Individual 8 always take over the same genes, becoming the
only influence for those genes; and so for IFE it is more
relevant those diverse genes than the static ones. It is also
very interesting to see that the mutation has a considerable
influence according to IFC but becomes irrelevant for IFF

and IFE . The main reason seems to be that these mutations
did not generate good solutions in terms of fitness values.

Population 2 (Figures 9d-9f) presents a similar behaviour,
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(d) IFC in Population 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Mut
individual

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

IF
_F

(e) IFF in Population 2.
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(f) IFE in Population 2.
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(h) IFF in Population 3.
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Fig. 7: Results obtained for the IFC , IFF and IFE metrics for each initial individual and the mutation operation in the One
Max problem with the different initial populations.

as there is no feasible solution among the individuals in the
beginning. Individuals 8 and 13, the ones with higher fitness,
became the most influential ones, especially Individual 8. It
can also be observed that its influence is highlighted by IFF ,
which may indicate that it obtained better results in terms of
fitness for the solutions that were generated from it.

Finally, Population 3 (Figures 9g-9i) got Individual 5 as
the only feasible solution, and so this individual became the
most influential in the entire population. Individual 20 (the
second best) was the other one with any influence, and the
rest of individuals became mere outliers. It is interesting that
the influence of Individual 5 is tighter bounded in terms of
IFF , and the lower thick becomes lower with IFE .

For this last problem, as the complexity is larger than
the previous problems, it gets more difficult to predict the
influence of the individuals. This is due to the constraint
handling method. In the constraint handling method, the

infeasible individuals located very close to the feasible region
do not get a good fitness value when becoming feasible.
We believe that other constraint handling methods such as
Stochastic Ranking [17] could change this behavior.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an extension of the general
evolutionary algorithm that is able to trace the influence of
the individuals from the initial population (and the influence
of mutation operations) into successive generations of the
algorithm and into the final solutions. For this new algo-
rithm, called T-EA, we proposed three IF metrics to measure
the influence of each individual from the initial population:
counting-based IF, fitness-based IF and entropy-based IF.

A proof of concept for this framework was performed
with three classical problems with different initial popula-
tions, illustrating its usability and the usefulness that it can
provide for studying the influence of the initial population
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(e) IFF in Population 2.
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(f) IFE in Population 2.
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Fig. 8: Results obtained for the IFC , IFF and IFE metrics for each initial individual and the mutation operation in the 0/1
knapsack problem with the different initial populations.

and mutation operations into the final solutions. Although in
most experiments the three metrics got similar results, it could
be observed that in some cases one metric would be more
interesting than other in case of measuring the influence in
the fitness values or providing a higher impact on influential
individuals in “difficult” genes.

Experiments were performed for populations of 20 individ-
uals for the sake of simplicity in the analysis and visualization
of results, but it could be tested with larger population sizes
(e.g. 100 individuals). This applies for the genome size, which
can be easily increased without any further change.

We believe that this framework will be very beneficial when
studying new problems and can provide a good insight to
better understand the importance of the different components
(genes) of the solutions and to decide if seeding the initial
population will result beneficial for accelerating the search. For
this further study, the impact metrics can be easily extended to

study the influence of one individual in the final population for
each specific gene of the problem. This will allow to construct
a better initial population by giving a higher probability to
those alleles that repeated for most final solutions.

In future research works, our aim is to extend this frame-
work to support more representations, such as real-valued
vectors and permutations, and also more operators where the
inheritance is not always direct from gene to gene, but some
genes could be influenced by several parents, such as in
arithmetic crossover or polynomial mutation, along with other
building blocks that could be interesting to study.
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