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Abstract—This paper presents a new methodology for complex
system design by means of optimisation techniques. Within the
Model-based Engineering approach, optimisation algorithms are
used to explore optimal solutions of highly coupled and nonlinear
systems. In such scenario, the optimal technology has to be
identified and its settings have to be optimised. Relying on optimi-
sation strategies for both the challenges brings to complex mixed-
variable problem formulations involving continuous, integer and
categorical parameters. Furthermore, part of the parameters
are required only if certain technologies are adopted, bringing
to variable-size formulations that standard optimisers cannot
manage. Therefore, the proposed methodology relies on the
use of variable-size mixed-variable global optimiser Structured-
Chromosome Genetic Algorithm (SCGA). The advantages of
this new method are shown by applying it for solving a space
system preliminary design. In particular, two variants have been
implemented distinguished by two different levels of complexity.
To better appreciate the proposed approach, the same problems
have been reformulated to be treated by a well known and
appreciated optimiser in the field of spacecraft design, Multi–
Population Adaptive Inflationary Differential Evolution Algo-
rithm (MP–AIDEA). The final results of the two approaches are
compared and commented.

Index Terms—Space systems, Optimisation, Mixed-variable,
Variable-size

I. INTRODUCTION

The complexity of the man-made world is increasing and
technology is the environment to which men is subjected [1].
Dynamical systems can be chaotic, having a deterministic
behaviour but giving a stochastic output. Similarly, the man-
made complex systems we are creating are defined by rational-
ity but can produce completely irrational consequences if we
are not able to deal with them and understand their complexity.
For this reason, in the recent years, the concept of complexity
and its application to engineering systems attracted the interest
of researchers and engineers. The 21st century, indeed, has
been defined as the ”Systems Century” [2]. Most of the
engineering systems are systems-of-systems and/or complex
systems with intrinsic interactions and nonlinear dynamics
between components [3]. To mitigate these difficulties, mod-
eling and simulation-based systems engineering and model-
based systems engineering (MBSE) have started to be used.
These methods adopt models of the engineering system that,
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even if not perfect physical representations and intrinsically
wrong, can be useful for virtual prototyping, exploring, and
communicating system aspects. Models also allow engineers
to quickly and incrementally learn about the system under
development before the cost of change gets too high.

This paper presents a new methodology for complex sys-
tems design, within MBSE, based on optimisation algorithms
in order to meet the growing needs required by space applica-
tions. In particular, the paper focuses on the application of the
proposed approach for the preliminary design of a spacecraft.
Nowadays, the success of a spacecraft design heavily relies on
both the choice of the correct technology to be employed and
its components settings definition. As for the latter, common
optimisation algorithms represent a valid assistant that helps
the designer to get the maximum of performance given a
predefined set of parameters, they are still of too little practical
use to help with the former.

Here, we suggest to capture the complexity of a space sys-
tem (and in general of any engineering system), by means of a
network representation as already proposed in [4]–[12]. In this
way, the problem formulation is characterised by a hierarchical
structure where the possible values and even the existence
of variables are conditional on others. Such problem formu-
lation cannot be handled by standard optimisers. Therefore,
the proposed methodology relies on Structured-Chromosome
Genetic Algorithm optimiser [13]–[15]. This is a variable-
size mixed-variable global optimiser. Among others variable-
size optimisation strategies, it allows a more flexible formula-
tion of interdependence between variables. Yet, they already
found successful applications in the context of spacecraft-
design [16]. The hidden gene adaptation of Genetic Algorithm
(GA) for the optimisation introduced in [17] activates variables
with the introduction of an additional set of variables called
activation genes. Thus, the selection of the activate set of
variables is part of the decision space and then out of the
control of the user. In [18] an algorithm to solve metameric
variable-size optimisation problems is presented. Though, the
formulation only allows having, beside of variables present in
all the candidate solutions, a variable number of repetitions
of a set of variables gathered in a template. Then, the set of
variables cannot change between solutions, so it is unsuitable
for this kind of problems. An adaptation of GA able to handle
hierarchical formulation is used in [19]. However, it cannot

978-1-7281-6929-3/20/$31.00 ©2020 IEEE



handle problem’s formulations where the value of a given
variable influences which are the set of its dependent variables.
Furthermore, it implements operators that are not specifically
designed to cope with continuous (numerical continuous), in-
tegers (numerical discrete) and categorical (nominal) variables.

In the spacecraft design problem, many of the choices of the
different technologies are encoded as categorical variables. To
be effective, the operators for mixed-variable problems have
to be specifically designed as in the case of SCGA [20].
Two models for the space system, with different order of
complexity, have been implemented. To validate the proposed
methodology, the performance of SCGA has been compared
with the ones obtained with an established optimiser in the
field, namely Multi–Population Adaptive Inflationary Differ-
ential Evolution Algorithm [21], [22].

The paper is structured as follows. In Section II the models
adopted to represent the spacecraft will be described. Then,
in Sections III and IV details of the algorithms employed
will be given. Sections V and VI will focus on describing the
experiments and commenting the results. Finally, a summary
of the paper will be given in Section VII.

II. SPACE SYSTEM

The two optimisers, SCGA and MP–AIDEA, are applied
to the design of system and operations of a Cube-Sat in
Low Earth Orbit (LEO). For this problem, two test cases
have been developed using two different mass models for
the cubesat. The objective function, equal to the total mass
of the satellite, uses either lower-complexity models (f1) or
higher-complexity models (f2) with a larger number of design
parameters. Both the models have been constructed following
the network approach proposed in Refs [4]–[12]. The network
representation, indeed, has been shown to be advantageous in
order to model complex systems and the interactions between
their subsystems and components.

The spacecraft’s model is build up by the coupling of the
following 6 nodes: Orbit, Telemetry, Tracking and Command
Subsystem (TTC), Attitude and Orbit Control Subsystem
(AOCS), On-board Data Handling Subsystem (OBDH),
Power Subsystem (P) and Payload Subsystem (PL). The
objective function is the overall mass of the satellite fi(d)
where i ∈ {1, 2} and d is the design vector. It is given by the
sum of the masses of the subsystems:

fi(d) = Mi,ttc +Mi,obdh +Mi,aocs +Mi,pl +Mi,p (1)

The calculation of the subsystem masses Mi,ttc, Mi,obdh,
Mi,aocs, Mi,pl and Mi,p will be described in more details in
the following sections with reference to both f1 and f2.

The test case’s models use both continuous (numerical) and
categorical (nominal) variables. To note that categorical vari-
ables have been mapped in to sequences of integers going from
0 to the number of available choices. Moreover, the number of
active parameters varies as function of the values assumed by
a subset of the categorical parameters. The list of parameters
grouped by node is described in Tables I to VI where it is
possible to see: the identification number of each variable
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Fig. 1: Representation of the spacecraft as a complex system. The
objective function is the overall mass f .

(ID), their lower (LB) and upper (UB) bounds, the type (CO
for continuous variables, CA for categorical variables), the
influence on the activation of dependent parameters, and in
which test case they are used.

A. System Models

This section presents the mathematical models used to
simulate each subsystem and calculate its contribution to the
objective function fi. Part of the models has been described
in details in Ref. [23]. Thus, the following subsections will
highlight only the differences and novelties of f1 and f2.

TABLE I: Design parameters of the orbit node.

Description ID LB UB Type Dependencies Function
Altitude 1 100 1400 CO – 1 & 2
Elevation agle 2 10 20 CO – 1 & 2
Inclination 3 0 10 CO – 1 & 2

1) Orbit: this node is used to determine, based on the input
parameters listed in Table I, some of the coupling values
shared with other nodes as in Fig. 1. They are the altitude
h, the orbit time To, the day-light time Tdl, the gravitational
field Kg , the magnetic field Km, dynamic pressure pd and the
access time Tac.

This node does not refer to any of the cube-sat physical
subsystems and indeed it does not contribute to the overall
mass of the satellite. In fact it is: M1,orbit = M2,orbit =
0, where M1,orbit and M2,orbit are the masses of the orbit
subsystem when considered for f1 and f2, respectively. To
note that the same orbit model is used within both f1 and f2.

2) Payload Subsystem: the task of this sub-system is to
take images of the Earth during daylight-time Tdl, with a
camera, and send them to the OBDH for compression. The



TABLE II: Design parameters of the payload node.

Description ID LB UB Type Dependencies Function
Maximum incidence
angle 4 70 75 CO – 1 & 2

Max along-track ground
sampling distance 5 60 80 CO – 1 & 2

With for square
detector 6 20 40 CO – 1 & 2

Quality factor Q 7 0.5 1 CO – 1 & 2
Operating
wavelength 8 3 4 CO – 1 & 2

design parameters are the variables in Table II. The payload
node is influenced by the orbit node through h and Tdl as in
Fig. 1. Following the design process in [24], the mass (Mi,pl)
and power (Pi,pl) of the payload node are evaluated through
a procedure of scaling based on the aperture ratio R = A

A0

where A is the optical aperture of the instrument under design
and A0 the optical aperture of the selected instrument from
the catalogue.

Mass and Power are finally defined as:

Mi,pl = KR3Mpl,0Cpl,i,m + C∗
pl,i,m (2)

and
Pi,pl = KR3Ppl,0Cpl,i,p (3)

where K = 2 if R < 0.5 and K = 1 otherwise. The terms
C and C∗ assumes different values for the two test cases.
For f1, Cpl,1,m = Cpl,1,p = 1 and C∗

pl,1,m = 0 , while for f2,
Cpl,2,m = 10+10 sin(π+10R), Cpl,2,p = 1+10 sin(π+10R)
and C∗

pl,2,m = |d5 sin(d6)− d7cos(d8)|.

TABLE III: Design parameters of the OBDH node.

Description ID LB UB Type Dependencies Function
Type of OBDH 9 0 3 CA – 1 & 2
Margin on mass 10 0 20 CO – 1 & 2
Margin on power 11 0 20 CO – 1 & 2
Compression rate 12 0.2 0.6 CO – 1 & 2

3) On-board Data Handling Subsystem: the main purpose
of the OBDH is assumed to be the compression and storage of
the images coming from the payload. The design parameters
are listed in Table III. In both f1 and f2 the coupling variable
DV , that is an output of the Payload node, is directly propor-
tional with mass and power of OBDH. The type of OBDH
hardware, d9, is here considered as a categorical variable
given that it selects a particular component from a list of four
unordered possibilities.

An additional term, Cobdh, has been multiplyed to mass
(M2,obdh) and power (P2,obdh) of OBDH in f2. In particular
it is: Cobdh = (1 + d12)3.

4) Attitude and Orbit Control Subsystem: the AOCS is
in charge of controlling the orientation of the cube-sat with
a three axis stabilisation system. The actuators are reaction
wheels, magneto-torquers and thrusters. During the mission,
the cube-sat is assumed to be affected by a number of
disturbances and then it has to perform some manoeuvres
to compensate the solar radiation pressure Ts, the magnetic

TABLE IV: Design parameters of the attitude and orbit node.
Description ID LB UB Type Dependencies Function
Reflectance factor 13 0,5 0,7 CA – 1 & 2
Spacecraft residual dipole 14 0,0005 0,0015 CO – 1 & 2
Drag coefficient 15 2 10 CO – 1 & 2
Actuator type for dumping 16 0 1 CA – 1 & 2
Slew angle (deg) 17 10 60 CO – 1 & 2
Time for slew manoeuvre (s) 18 10 20 CO – 1 & 2

Flag reaction wheel 19 0 1 CA if 0 ⇒ 16 1 & 2if 1 ⇒ –

TABLE V: Design parameters of the TTC node.

Description ID LB UB Type Dependencies Function
Frequency 20 7 10 CO – 1 & 2
Modulation type 21 0 7 CA – 1 & 2
Antenna efficiency 22 0.6 0.9 CO – 1 & 2
Antenna gain 23 1 5 – 1 & 2
Mass of distribution 24 0.1 0.5 CO – 1 & 2network
Type amplifier 25 0 1 CA – 1 & 2

Type antenna 26 0 2 CA
if 0 ⇒ 27, 28

1 & 2if 1 ⇒ 29
if 2 ⇒ 30, 31, 32

Density copper 27 8000 10000 CO – 1 & 2
Density dielectric 28 1500 3000 CO – 1 & 2
Density surface 29 10 20 CO – 1 & 2
Parameter a 30 2.5 5 CO – 1 & 2
Parameter b 31 6 12 CO – 1 & 2
Parameter c 32 2.5 5 CO – 1 & 2

torque Tm, the torque due to aerodynamic drag Ta and the
gravity gradient torque Tg [4]. The parameter d16 decides
if the thruster has to be used. If not, d19 decides between
reaction wheels and magnetic-torques. The mass (Mact) and
power (Pact) of the actuators are computed by interpolation
from available real data.

Finally, the evaluated mass and power of the AOCS node
are multiplied:

Mi,aocs = MactCaocs,i,m (4)
Pi,aocs = PactCaocs,i,p (5)

where Caocs,1,m = Caocs,1,p = 1 in f1 while
Caocs,2,m = 10 + sin(π + Td) and Caocs,2,p = 10 + sin(Td)
in f2 and Td = Ts+Tm+Ta is the sum of all the disturbances.

5) Telemetry, Tracking and Command Subsystem: The
TTC is composed of an antenna, an amplified transponder and
a Radio Frequency Distribution Unit (RFDU). TTC connects
the transmitter antenna mounted on the CubeSat with the
receiving antenna on the ground station. The design param-
eters are in Table V. Also, TTC is coupled with the Orbit
node through h, ε, Tac and with OBDH through DV c. The
parameter d26 is a categorical parameter that selects the type
of antenna between three possible options: patch, horn and
parabolic antenna. As Table V shows, the value taken by that
parameter has also the effect of activating only a subset of
{d27, d28, d29, d30, d31, d32}. It, indeed, select a specific model
of the antenna in order to evaluate its mass Mant.

The RFDU mass Mrfdu is the variable d24. The amplified
transponder mass Mamp and the power requirement Pamp are
derived from available data as a function of the transmitter
power Pt (power in output from the antenna).

The mass of the whole TTC system is the sum of its
components and the same models are considered for both f1



TABLE VI: Design parameters of the power node.
Description ID LB UB Type Dependencies Function
Type of solar cell 33 0 8 CA – 1 & 2
Required bus voltage 34 3 5 CO – 1 & 2
Eps configuration 35 0 1 CA – 2
Cell packing efficiency 36 0,8 0,9 CO – 1 & 2
Harness mass factor 37 0,01 0,1 CO – 1 & 2
Allowable voltage drop 38 1 3 CO – 1 & 2
Worst case angle of incidence 39 20 40 CO – 1 & 2
Bus regulation 40 0 1 CA – 2
Efficiency primary fuel cell 41 0,4 0,6 CO – 1 & 2
Efficiency secondary fuel cell 42 0,34 0,54 CO – 1 & 2
Tank figure of merit 43 1700 1900 CO – 1 & 2
Fuel cell voltage discharge 44 0,75 1,68 CO – 1 & 2
Fuel cell specific area 45 1500 1600 CO – 1 & 2
Fuel cell temperature 46 180 220 CO – 1 & 2
Max tank operating temperature 47 5 10 CO – 2

Type of energy source 48 0 2 CA

0 ⇒ 33

1 & 21 ⇒ 41 43:46 50:59
2 ⇒ 42:47 60:61
3 ⇒ 49

Type primary battery 49 0 11 CA – 2
FC1 oxidant air filter size 50 5 10 CO – 2
FC1 oxidant air filter
efficiency 51 0,7 0,9 CO – 2

FC1 oxidant air pump
pressure 52 5 20 CO – 2

FC1 particulate filter density 53 10 50 CO – 2
FC1 humidification
module size 54 5 10 CO – 2

FC1 check valve pressure 55 5 10 CO – 2
FC1 converter efficiency 56 0,8 0,9 CO – 2
FC1 purge particulate
filter density 57 12 21 CO – 2

FC1 pressure transducer
efficiency 58 0,7 0,9 CO – 2

FC1 purge valve efficiency 59 0,69 0,99 CO – 2
FC2 oxidant air filter size 60 5 10 CO – 2
FC2 oxidant air filter
efficiency 61 0,7 0,9 CO – 2

Rastrigin parameter 1 62 5 20 CO – 2
Rastrigin parameter 2 63 10 50 CO – 2
Rastrigin parameter 3 64 5 10 CO – 2
Rastrigin parameter 4 65 5 10 CO – 2
Rastrigin parameter 5 66 0,8 0,9 CO – 2
Rastrigin parameter 6 67 12 21 CO – 2
Rastrigin parameter 7 68 0,7 0,9 CO – 2
Rastrigin parameter 8 69 0,69 0,99 CO – 2

and f2:

Mttc,1 = Mttc,2 = Mant +Mamp +Mrfdu. (6)

6) Power System: The Electrical Power System (EPS) node
is composed of a Power Generator (Electric Generator), an
Energy Storage and a Power Control and Distribution Unit
(PCDU) subsystems. The design parameters are listed in Ta-
ble VI. As Fig. 1 shows, the EPS is coupled with all the
other nodes in the network. The parameter d48 (type of power
generator) is a categorical parameter selecting a particular
type of power generator. For f1 the power source can be:
solar array, primary fuel cell, and secondary fuel cell. For f2,
instead, besides the former possibilities, also primary battery is
considered. Each choice brings to a specific model for the mass
estimation of the power source and to the activation of different
variables as in Table VI. Furthermore, d48 has also influence
on the energy storage system and in the PCDU. The solar
array generates energy only during light-time and requires
an energy storage for eclipse periods with a corresponding
mass Mes. Fuel Cells and Primary Battery, instead, allows
for a continuous generation of energy and do not require an
energy storage system. The evaluation of the mass of the solar
array Msa follows what presented in Ref. [23], however, an
additional part Csa,i,m has been added:

Msa = Asaρsa + Csa,i,m. (7)

In order to increase the complexity of f2, Csa,i,m is considered
0 when i = 1 and is a Rastrigin function over the exchange
parameters Tecl and To and over the design parameters h, bus
voltage Vbus and temperature margin ∆T when i = 2.

The design of the primary and secondary fuel cell proceeds
following the suggestions of [25] and uses the parameters from
d50 to d61.

The design of the mass Mb1 of the primary battery follows
the same procedure used for the secondary battery, however a
different catalogue has been considered.

The PCDU is a modular unit. The number of its modules,
and thus the mass of the unit, depends on the categorical
parameters d48 and d35 that are respectively the type of power
generator and the type of electrical configuration.

Finally, the mass of the EPS is the sum of the individual
masses of power generator, energy storage and power condi-
tioning and distribution unit:

Mp = Mpg +Mes +Mpcdu (8)

where Mpg ∈ {Msa,Mfc1,Mfc2,Mb1} and Mes ∈ {∅,Mb2}.
To further increase the complexity of f2, a translated and
rotated version of the Rastrigin function has been applied to
the categorical parameters of the problem d19, d21 and d26.
For each possible value assumed by these parameters, different
values d ∈ {d62, ..., d69} are activated for the rotated version
of the Rastrigin function.

III. SCGA

SCGA is a heuristic algorithm that aims at coping with
mixed-variable variable-size optimisation problem by using
revised genetic operators. Notably, it’s main purpose is to
handle problem definitions as flexible as possible. This feature
is particularly useful in designing.

In this context, either tunable parameters or actual design
choices appear in the problem formulation and have to be
encoded as variables. For instance, the choice of the type
of antenna to use for the TTC can be encoded as a design
variable. As a consequence, depending on the value assumed,
it may be necessary to specify or not additional characteristics.
Standard approaches require encoding of all possible necessary
variables and, using flags or other ad-hoc criteria, interpret
which variables have to be neglected and which considered.
This limits considerably the possible applications. Moreover,
the most obvious drawback, in the case of complex systems, is
the dimensionality explosion. On the contrary, the flexibility
of SCGA allows avoiding redundancies and permits to use
straightforward formulations. This is possible thanks to the
introduction of the concept of hierarchy in the problem for-
mulation. Some variables can be set as dependent by others
so their presence and bounds are influenced by their corre-
lated variables. Furthermore, while continuous optimisers, as
MP–AIDEA, require tricks as bounding or interpolation to
treat integers or nominal categorical variables, SCGA allows
indicating whether a variable belongs to the continuous space,
whether it can be assumed as sortable (integer) or not sortable
(nominal categorical).



SCGA, as extensively described in [13]–[15], makes use
of revised genetic operators that help to make meaningful
and effective transformations taking into account the hierarchy
in the problem formulation. SCGA adopts the crossover and
mutation operators to evolve the population over the opti-
misation. The crossover is an operator that exchanges genes
between two different chromosomes (parents) to produce
two new candidates (children). This aims at combining and
transferring the information contained in the parents to the
children. In such a way, hopefully, the children will contain
the relevant characteristics that originated the performance of
their parents. One of the main features that distinguish the
crossover implementation in SCGA is that if a variable that
has dependent variables is selected to be swapped between two
candidates, also all the dependent variables are swapped. This
expedient helps at preserving the overall information contained
in the selected variables. The second main operator in SCGA
is the mutation. This aims at avoiding premature convergence
and to mitigate the collapse to the current optimum found
adding perturbing the candidates. Depending on the strength
of the perturbation, can be introduced a different level of
randomness in the population. As a rule of thumb, important
perturbations are usually desirable at the beginning of the
search whereas small ones are preferred towards the end.
However, this is strongly problem dependent and difficult to
foresee without a deep knowledge of the problem. In light
of these considerations, the mutation employed in SCGA
implements a self-adaptive step size mutation that aims an
adequate strength of the perturbations autonomously. As in
the case of crossover, the mutation is applied also to the vari-
ables dependent. The operator acts differently on continuous,
integers and categorical variables.

IV. MP-AIDEA

MP–AIDEA [21], [22] was developed in order to improve
the performance of existing Differential Evolution (DE) ap-
proaches [26]. It is a population-based memetic algorithm -
it combines global search with local search - for continuous
optimisation. An adaptive version of Inflationary Differential
Evolution Algorithm (IDEA), Adaptive Inflationary Differen-
tial Evolution Algorithm (AIDEA) [27], was then proposed to
enhance its robustness. It was indeed pointed out that IDEA
is highly influenced by the Monotonic Basin Hopping (MBH)
parameters and, like any DE-based algorithm, by the values
of the DE parameters. AIDEA is then able to automatically
adapt crossover probability (CR) and differential weight (F).
The final version of the algorithm, MP–AIDEA [22], evolves
multiple populations and allows for different DE strategies.
Besides CR and F it also automatically adapts the maximum
number of local restart (ius) and the bubble’s dimension for the
local restart (ρlocal). MP–AIDEA was extensively tested over
51 test problems from the single objective global optimisation
competitions of the Congress on Evolutionary Computation
(CEC) 2005, 2011 and 2014. For more details about the
algorithm and its results, please refer to [22].

A. Approach for mixed-variable problems

To apply MP–AIDEA to mixed-variable problems, an ap-
proach that converts a mixed-varaible problem into a contin-
uous problem by means of an interpolation procedure is here
explored.

Consider, for example, the generic categorical or integer
parameter τ ∈ {τ1, τ2, ..., τn} with the elements of the set
sorted as τ1 < τ2 < ... < τn. The approach for MP–AIDEA
replaces τ with the continuous parameter τc ∈ [τ1, τn]. For any
possible value τc we can check in which subset [τm−1, τm] ⊂
[τ1, τn] it is included, where {τm−1, τm} ∈ {τ1, τ2, ..., τn}.
The specific part of the objective function f directly depending
on τc, fτ , is then evaluated for both the values τm−1 and τm
and finally a piece-wise interpolation is performed:

fτ (τc) = fτ (τm−1) + (τc − τm−1)
fτ (τm)− fτ (τm−1)

τm − τm−1
(9)

The parameter τc has been seen to converge, during the
optimisation, to a discrete value τ ∈ {τ1, τ2, ..., τn}.

V. EXPERIMENTAL SETUP

Both the algorithms SCGA and MP–AIDEA have been used
to optimise the functions introduced in Section II. For all
the instances 50 independent runs have been performed to
have statistically significant results. A budget of 5e5 objective
function evaluations have been used for both the test cases.
Because of the available computational resources, a rigorous
parameter tuning of the algorithms was not possible. However,
the impact of the hyperparameters settings have been mitigated
by testing the two algorithms with a number of different
settings. The settings used for this study are summarised
in Table VII. However, for the sake of simplicity and clear
visualisation, only the results of the best performing settings
(bold in Table VII) have been deeply analysed.

TABLE VII: Algorithms parameters settings.

Parameter f1 f2

M
P-

A
ID

E
A

Populations [1∗, 2] [1∗, 2]
Agents [30∗, 45] [30∗, 45]
Max Local restart [0∗, 10, adaptive] [0,5∗, adaptive]
CR adaptive adaptive
F adaptive adaptive
DE strategy DE/Rand and DE/CurrentToBest DE/Rand and DE/CurrentToBest
prob DE strategy 0.5 0.5
fmincon interiorpoint interiorpoint
delta local 0.1, adaptive 0.1, adaptive
delta global 0.1 0.1
ρ 0.25 0.25

SC
G

A

popSize [15, 30∗, 60] [60∗, 70, 80]
Tournament size [%] [5, 10, 20∗, 30] [5, 10, 20∗, 30]
localOptGenerations round(900/popSize) round(1800/popSize)
mutRate size 0.05 0.05
percCross size 0.3 0.1
percMut 0.1 0.1
localOpt d1800/popSizee d1800/popSizee

Since MP–AIDEA cannot handle integer, categorical and
inactive variables, but only continuous variables, a mask
function has been interposed between the optimiser and the
objective function to map the continuous to the mixed-discrete
formulation as stated in Section IV-A. This implies a higher
number of computations of the mass in the subsystems where



categorical or integer variable appear. However, this different
computational cost has been neglected in the comparison of
the two algorithms.

VI. RESULTS

In this section the results obtained employing SCGA to
minimise f1 and f2 and the ones obtained using MP–AIDEA
are presented, compared and discussed, with the main focus
being on the best and worst configurations of the tested
strategies. In both the optimisations of f1 and f2 SCGA
converges faster than MP–AIDEA using either the best either
the worst settings as can be seen from Figs. 3a and 3c. This
suggests that SCGA is more robust to the settings chosen than
MP–AIDEA when facing problems of this type. Therefore,
it represents a wiser choice when the characteristics of the
objective function are unknown. This can be clearly seen
analysing Fig. 2 that shows, through box-plots, the dispersion
of the results of all the instances tested to optimise f2. As
one can see, all the instances of SCGA obtain similar results,
contrary to what happens to the ones of MP–AIDEA.
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Fig. 2: Box-plot representation of the optimal solutions
found minimising f2 with all the instances of SCGA and
MP–AIDEA.

In both cases, SCGA needs less than a fifth of the avail-
able budget to find solutions relatively close to the best-
known solutions. When optimising f1, MP–AIDEA converges
slightly slower than SCGA. Contrary, when optimising f2,
this converges significantly slower than SCGA. This is due
to the greater complexity of the function that emphasises the
differences between the two solvers. By looking more closely
to the later phase of the optimisation of f2, it can be seen
that the two instances of SCGA perform very similarly and
find solutions lower than 10 after 1000 evaluations. Contrary,
MP–AIDEA, as well as being slower than SCGA, behaves
very differently depending on the settings used. With the
best settings, MP–AIDEA reaches the performance values
of SCGA when half of the budget is exhausted, while with
the worst settings, it does not converges within the available
budget and does not find solutions lower than 12.5. The

statistical validity of these comparisons is tested using the non-
parametric Wilcoxon signed-rank test [28]. This test is used
to compare the output of experiments (in this case the final
best results of the optimisation runs) and assess whether the
difference in their mean ranks is significant. Conventionally,
the difference between sets of data are considered as signif-
icant if the output of the test, the so-called p-value, is lower
than 0.05.

The results showed in Table VIII indicate that, when opti-
mising f1, the difference between the best solutions found
by MP–AIDEA, either using the best or the worst con-
figuration, and the ones found by SCGA, using both the
configurations, are significant. So can be said that SCGA
outperformed MP–AIDEA with both configurations. Whereas,
when optimising f2, the difference between the best solutions
found by MP–AIDEA using the best configuration and the
ones found by SCGA is not significant. So SCGA does
not outperform MP–AIDEA using the best settings when
minimising f2 in terms of best solutions found. Though, can be
seen from Fig. 3d that finds these results considerably faster.

Interesting insights about the behaviour of SCGA and the
reasons why it outperforms MP–AIDEA can be found looking
at Fig. 4. In this figure the evolution of the best found solution
in every generation of the run in which SCGA found the
best known solution of f2 is represented. Specifically, the
evolution of each variable is shown separately. Every dot
represents the assumed value. Because of the value assumed
by the certain variables, namely d(19), d(26) and d(49), some
variables do not appear in best solution. This is the case of
d(16), d(27)−d(32), d(33), d(41)−d(47) and d(49)−d(61).
Firstly, it can be seen that, due to the dedicated operators, the
optimum values of categorical variables are usually quickly
found. In fact, after every re-initialisation of the population
following the local optimisations, SCGA quickly rediscov-
ers the optimum values (denoted by the black dotted line)
of the categorical variables. Secondly, many variables are
indeed deactivated and do not appear in the best solutions
found by SCGA. This increases the operations efficiency and
so the performance of the optimiser. In fact, they do not
contribute to the objective function evaluation and are then
redundant and misleading. If classical optimisation strategies,
as MP–AIDEA, are used, they are always part of the solution
encoding event if they do not contribute to the objective
function evaluation and are then redundant. The presence of
unnecessary variables, not only brings to useless numerical
operations, but can worsen the behaviour of the algorithm. An
example of this is the following: MP–AIDEA, as commented

TABLE VIII: Non-parametric Wilcoxon signed-rank test. Sta-
tistically significant differences (p-value<0.05) are denoted by
bold font.

Algorithm MPAIDEA-Best MPAIDEA-Worst SCGA-Best
f1 f2 f1 f2 f1 f2

MPAIDEA-Worst 3,43E-02 2,98E-15 – – – –
SCGA-Best 1,48E-02 7,91E-01 1,41E-02 8,58E-16 – –
SCGA-Worst 1,09E-07 7,64E-01 4,71E-02 3,88E-15 4,97E-11 4,89E-01



21

22

23

24

25

300 1000 3000 10000 30000
Evaluations

O
bj

ec
tiv

e 
fu

nc
tio

n

Algorithm:
MPAIDEA−Pop.1−Agent.30−LR.0
MPAIDEA−Pop.1−Agent.45−LR.0
SCGA−Pop.30−Tourn.6
SCGA−Pop.50−Tourn.6

Best solution found history 

(a) f1. Complete optimisation history (x axis in log-scale).

20.82

20.84

20.86

20.88

20.90

10000 20000 30000 40000 50000
Evaluations

O
bj

ec
tiv

e 
fu

nc
tio

n

Algorithm:
MPAIDEA−Pop.1−Agent.30−LR.0
MPAIDEA−Pop.1−Agent.45−LR.0
SCGA−Pop.30−Tourn.6
SCGA−Pop.50−Tourn.6

Best found solution history 

(b) f1. Zoomed in to show final iterations.
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(c) f2. Complete optimisation history (x axis in log-scale).
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(d) f2. Zoomed in to show final iterations.

Fig. 3: Best found solution history of the best and worst configurations of both the tested algorithms. The solid lines represent
the mean value of all the 50 independents runs. The dotted lines and the shaded areas show the 25-th and 75-th percentiles.

in Section IV, bases its main strength on the the succession
of local and global restarts that autonomously balances the
exploration and exploitation of the search space. This mech-
anism heavily relies on the measure of the diversity of the
population. In case of inactive variables, the optimiser might
erroneously consider a population that is already converged
as still very variegated. Being these variables ineffective, they
will not naturally converge to a value.

Given the analytical complexity introduced in f2, a physical
interpretation of the results is meaningful only for the first
model f1. In particular, both approaches choose the solar array
option for the power system that is in accordance with a long
mission in LEO. The selected antenna is the patch one that
assure the minimum mass. The type of OBDH has instead
a higher mass compared with the other options, however a
reduced power consumption leads to an overall improvement
of the global objective function.

VII. CONCLUSIONS

This paper presents a new methodology for preliminary
spacecraft design using Structured-Chromosome Genetic Al-
gorithms. Adopting the complex network representation, two
models of a Cube-Sat in Low Earth Orbit distinguished by
two different levels of complexity have been created to model
the overall mass of the spacecraft. This performance has been

chosen as quantity of interest of an optimisation that was
carried out employing two different approaches. In the first,
the problem has been framed under a hierarchical problem
formulation composed by variables of different types, con-
tinuous (numerical) and categorical (nominal). The presence
of a hierarchy between variables permitted to dynamically
activate and deactivate sets of variables as consequence of the
values assumed by the variables creating the first level of the
hierarchical structure. The Structured-Chromosome Genetic
Algorithm has been employed as search algorithm. This in
fact, contrary to standard optimisers, is able to efficiently
manage complex variables encoding with dynamically search
spaces. In the second case, the problem has been refor-
mulated to be treated by standard optimisers. Specifically,
Multi–Population Adaptive Inflationary Differential Evolution
Algorithm has been used to solve it.

The actual potential and benefits of the proposed method
have been assessed by comparing the results obtained with
the two approaches. Particularly, the results demonstrate the
enhancements due to the employment of an optimisers able
to reduce the inactive search-space and to treat efficiently
different types of variables. SCGA proved to be faster and
reliable than standard optimisers and less sensitive to the
choice of the settings when coping with problems presenting
configurational decisions. As a future work, more complex and



Fig. 4: Evolution of the best found result over the optimisation. Colours denote categorical (•) and continuous (•) variables.
The optimum values are indicated by ( ).

detailed models can be implemented and tested. Furthermore,
uncertain parameters can be introduced to model more real-
istic scenarios. From an optimisation standpoint, a restarting
strategy will be investigated and tested in SCGA.
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