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Abstract—This paper proposes a novel archive maintenance
for adapting weight vectors to improve the performance of
the decomposition-based evolutionary algorithms for multi- and
many-objective optimization problems with different Pareto front
shapes (called AMAWV). AMAWV adopts a novel archive main-
tenance strategy for avoiding the dominance resistant solutions,
as well as retaining the good diversity of non-dominated solution
set. In addition, guided from the information of the archive, an
adaptive weight vector method is designed to solve problems
with various Pareto fronts. The proposed algorithm is compared
with state-of-the-art algorithms on a number of test problems
with different Pareto front shapes (the simplex-like, the inverted,
the disconnected, the degenerated, the scaled, the mixed, the
high dimensional). The experimental results have shown the
superiority and versatility of the proposed algorithm.

Index Terms—multi-objective optimization, many-objective op-
timization, evolutionary algorithm, decomposition-based, archive
maintenance, weight vector adaptation

I. INTRODUCTION

In many real-world applications, a decision-maker often
needs to handle different conflicting objectives. Problems with
more than one objective are called multi-objective optimization
problems (MOPs). If an MOP has more than three objectives,
it is often referred to as many-objective problem (MaOP).
Multi-objective evolutionary algorithms (MOEAs) have been
developed to solve these problems, which can be classified
into three categories: Pareto dominance-based, decomposition-
based and indicator-based MOEAs [1].

MOEA/D [2] is a general decomposition-based MOEA
framework, where the decomposition approaches are used
to decompose an MOP into a number of single-objective
(or multi-objective) optimization subproblems. Recently, the
MOEA/D framework has achieved great success and received
much attention. However, since the diversity of the solutions is
associated explicitly with the weight vectors, the quality of the
non-dominated solution set generated by decomposition-based
algorithms depends heavily on the Pareto front shapes. A set
of uniform weight vectors distributed on a simplex often leads
to a set of well-distributed solutions on a Pareto front with a
simplex-like shape, but struggles to do so for various other
shapes (e.g., inverted, degenerated, disconnected and scaled).

It is an open problem to find methods to adapt weight
vectors in the evolutionary process for various different Pareto
front shapes. Jiang et al. [3] proposed a Pareto-adaptive
weight vector MOEA (paλ-MOEA/D), which used the ex-
ternal archive information to sample the regression curve
of the weight vectors. The weakness of paλ-MOEA/D is
the assumption of symmetry and continuity of the Pareto
front, and paλ-MOEA/D could not obtain solutions with
good distribution for disconnected problems. Qi et al. [4]
proposed an adaptive weight adjustment (MOEA/D-AWA) for
irregular Pareto fronts. In MOEA/D-AWA, an external elite
population is applied to help to add new weight vectors
into sparse regions of the complex front. The weight vector
adjustment is only operated during the last 20% of generations
in MOEA/D-AWA, which may deteriorate the convergence of
the algorithm. Lucas et al. [5] proposed the MOEA/D with
uniformly randomly adaptive weights (MOEA/D-URAW) for
different Pareto fronts. MOEA/D-URAW adopted the same
weight vector adjustment strategy in MOEA/D-AWA but with
different weight vector update frequency. Both MOEA/D-
URAW and MOEA/D-AWA used the distance as criteria to
select sparse solutions without normalizing the objectives,
they could face difficulties in dealing with disparately scaled
problems. Jain and Deb [6] presented an adaptive version of
NSGA-III [7] (A-NSGA-III) for irregular fronts. In A-NSGA-
III, the reference with an empty niche is deleted and the ran-
domly new reference points are added into crowded reference
points. Cheng et al. [8] introduced an adaptive version of
RVEA (RVEA*) for irregular fronts. In RVEA*, two reference
point sets have existed, one of which stores a set of uniformly
distributed reference points and the other one is randomly
adding new reference points based on the information of
the current population. Li and Yao [9] put forward adaptive
weights for any Pareto front shape in decomposition-based
algorithms (AdaW). AdaW could achieve good performance
for different shapes. However, there still exists a chance
that the dominance resistant solutions in the archive may
deteriorate the convergence, especially for MaOPs.

Following the above ideas, we present a novel archive
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maintenance for adapting weight vectors in the decomposition-
based multi-objective evolutionary algorithms (called
AMAWV). The main contributions of this work are
summarized as follows: 1) A novel archive maintenance
strategy is proposed for deleting the dominance resistant
solutions and retaining good diversity. 2) An efficient weight
vector adaptation method is presented for various Pareto front
shapes. 3) The proposed AMAWV is competitive compared
with other five state-of-the-art algorithms on test problems
with a variety of Pareto front shapes.

The rest of this paper is organized as follows. Section
II briefly introduces the background and the details of the
proposed AMAWV are described in Section III. Section IV
presents the experimental results of AMAWV compared with
other state-of-the-art algorithms. Finally, Section V summa-
rizes and presents the conclusion and future work.

II. BACKGROUND

In this section some background concepts are provided.

A. Multi-objective Optimization

A multi-objective optimization problem (MOP) can be de-
fined as follows:

min F (x) = (f1 (x) , f2 (x) , · · · , fm (x))
T

subject to x ∈ Ω ⊆ Rn,
(1)

where Ω is the decision space and x is a solution; F : Ω →
Θ ⊆ Rm denotes the m-dimensional objective vector and Θ
is the objective space.

A solution x0 is said to dominate another solution x1,
denoted by x0 ≺ x1, if{

fi
(
x0
)
≤ fi

(
x1
)
, ∀i ∈ {1, 2, · · · ,m}

fj
(
x0
)
< fj

(
x1
)
, ∃j ∈ {1, 2, · · · ,m} . (2)

A solution x0 is called a Pareto optimal solution, if ¬∃x1 :
x1 ≺ x0.

The set of Pareto optimal solutions is defined as PS ={
x0
∣∣¬∃x1 ≺ x0

}
.

The Pareto optimal solution set in the objective space is
called Pareto front (PF).

B. Modified Tchebycheff Approach

The modified Tchebycheff approach is defined as follows:

min
x∈Ω

g (x |λ, z∗ ) = min
x∈Ω

max
1≤i≤m

{
1

λi
|fi (x)− zi∗|

}
, (3)

where λ = (λ1, λ2, · · · , λm)
T is a weight vector

and
∑m

i=1 λi = 1, λi ≥ 0, i = 1, 2, · · · ,m. z∗ =

(z∗1 , z
∗
2 , · · · , z∗m)

T is the reference point, for each objective,
z∗i = min {fi (x) |x ∈ Ω} , i = 1, 2, · · · ,m. It has been proven
that the modified Tchebycheff approach can produce more
uniformly distributed solutions [4]. We adopt this approach
in this paper.

III. THE PROPOSED AMAWV

This section presents the details of the proposed algorithm.

A. General Framework
The general framework of the proposed AMAWV is

described in Algorithm 1. First, the population P ←{
x1, x2, · · · , xN

}
are randomly generated in the whole deci-

sion space, then the reference point z∗ = (z∗1 , z
∗
2 , · · · , z∗m)

T is
initialized. After that we can initialize the archive A by adding
the non-dominated solutions from the population P . A set of
uniformly random weight vectors Λ =

{
λ1, λ2, · · · , λN

}
are

generated as follows [5].
First, 5000 weight vectors are uniformly randomly

generated for forming the set Λ1. Λ is initialized
as the set containing all the weight vectors
(1 0 ... 0 0), (0 1 ... 0 0), ..., (0 0 ... 0 1). Second, the
weight vector in Λ1 with the largest distance to Λ is found,
added to Λ, and removed from Λ1. This process is repeated
until the size of Λ is N .

The AMAWV adopts the uniformly random weight vectors
method instead of Das and Dennis’s systematic approach
[10]. The advantage of this approach is that the population
size is flexible, which is independent on the number of
objectives. In the light of the generated weight vectors, the
neighborhood set of subproblem i as B (i) = {i1, · · · , iT }
can be obtained by computing the Euclidean distance, where
T is the neighborhood size. Steps 8-28 in Algorithm 1 are
iterated until the termination criterion is met. At each iteration,
the mating pool is allowed to be selected from the whole
population with a low probability 1 − δ. The widely used
simulated binary crossover (SBX) and polynomial mutation
are randomly selected mating solutions from E to generate
offspring y. Then offspring y is used to update the reference
point, the population and the archive. When the size of the
archive exceeds the predefined limit size (NA), a novel strategy
is adopted to maintain the archive (Steps 20-22 in Algorithm
1), which will be introduced in Section III-B. When the
frequency of updating the weight vectors is satisfied with the
designed requirements, the weight vector adaptation method
is conducted (Steps 23-26 in Algorithm 1), which will be
presented in Section III-C.

B. Archive Maintenance
In AMAWV, we use the Pareto dominance to select the

non-dominated solutions to be added to the archive, when
the size of the archive exceeds the pre-set capacity (NA).
A novel archive maintenance strategy is applied to remove
some dominance resistance solutions and some other solutions
with poor distribution. The archive maintenance strategy is
presented in Algorithm 2.

Aiming at dealing with the scaled problems with differ-
ent objectives ranges, the adaptive normalization approach
in NSGA-III [7] is adopted to normalize the solutions in
the archive (Step 2 in Algorithm 2). The main idea of this
approach is to find some extreme solutions to construct the
hyperplane. The extreme solutions are determined by mini-
mizing the achievement scalarizing function (ASF):

ASF (x,w) =
m

max
i=1

fi (x)− z∗i
wi

, for x ∈ St, (4)



Algorithm 1: Framework of AMAWV
Input: A set of weight vectors

Λ←
{
λ1, λ2, · · · , λN

}
, the maximum number

of generations tmax

Output: The final population P
1 Initialize the population P ←

{
x1, x2, · · · , xN

}
;

2 Initialize the reference point z∗ ← (z∗1 , z
∗
2 , · · · , z∗m)

T ;
3 Initialize the archive A;
4 for i = 1 : N do
5 B (i)← {i1, i2, · · · , iT }, where λi1 , λi2 , · · · , λiT

are T closest weight vectors to λi;
6 end
7 t← 1;
8 while t < tmax do
9 for i = 1 : N do

10 if uniform (0, 1) < δ then
11 E ← B (i);
12 else
13 E ← {1, 2, . . . , N};
14 end
15 y = offspring creation (E);
16 z∗ = Update Ideal Point (y, z∗);
17 P = Update Population (y, z∗,Λ, P );
18 A = Update Archive (y,A);
19 end
20 if |A| > NA then
21 Maintain the archive A;
22 end
23 if

t > tmax×10%∧t == tmax×5%∧t < tmax×90%
then

24 Λ = Weight Vector Adaption (t, P,A,Λ);
25 Update the neighborhood set of each weight

vector of Λ;
26 end
27 t = t+ 1;
28 end

where St represents the current population. w is the axis
direction, wi = 10−6 when it is zero. After m extreme
solutions have been adopted, they are used to construct a
hyperplane and the intercept aj of the j-th objective axis
on the hyperplane can be computed. Then the solutions are
normalized as follows:

f̄j (x) =
fj (x)− z∗j

aj
, (5)

where fj (x) is the j-th objective value of solution x, f̄j (x)
is the normalized objective value.

According to the non-dominated solutions in the archive
during the evolution process, we can estimate the shape of PF
(Step 3 in Algorithm 2). The PF shape can guide the search
direction [11]. First, the m solutions in the archive closest
to the m-dimensional vector V = (1, 1, . . . , 1) are identified

Algorithm 2: Archive Maintenance
Input: The archive A (|A| > NA)
Output: The new archive newA

1 newA← φ;
2 A← normalization (A);
3 r ← estimateShape(A);
4 Set the reference point z∗ to znad if r < 1.1, or itself

otherwise;
5 {S+, S−} ← classificationByHypercube (A);
6 if |S+| > NA then
7 /*——— newA← selection (S+, S−) ———*/
8 Add m extreme solutions into newA and remove

them from S+;
9 repeat

10 Add into newA the solution in S+ that has the
maximum angle to newA;

11 until |A| = NA

12 else
13 newA = S+;
14 end

based on the angle between the non-dominated solutions and
vector V . Then the ratio

r =
d

d⊥
(6)

is used to estimate the PF shape, where d is the average
Euclidean distance from m closest solutions to the coordinate
origin, and d⊥ is the Euclidean distance from coordinate origin
to the hyperplane

∑m
i=1 fi = 1. Since d⊥ = |−1|√

m
= |1|√

m
, we

obtain
r = d×

√
m. (7)

Therefore, the shape of PF can be estimated as convex (if
r < 0.9), linear (if r ∈ [0.9, 1.1]), and concave (if r > 1.1).

According to the estimated PF shape, we set the reference
point z∗ to znad if r < 1.1, or itself otherwise (Step 4 in
Algorithm 2). The nadir point znad is usually estimated to be
znad = zmax = (zmax

1 , zmax
2 , · · · , zmax

m ). But in this paper,
we set the znad = I = (1, 1, · · · , 1). Then the solutions in
the archive can be divided into two repositories (S+ and S−)
inside and outside the hypercube (Step 5 in Algorithm 2),
which is bounded by z∗ and znad.

The new archive (newA) will select the non-dominated
solutions from the S+ and S− (Steps 6-14 in Algorithm 2).
When the size of S+ is beyond NA, the m extreme solutions
are added into newA and removed from S+. Then we use the
one by one adding solution procedure to choose the solutions
from S+. At each stage, the solution in S+ that has the
maximum angle to newA will be placed into the newA [12].
The above operation is repeated until the size of the new
archive is equal to NA. When the size of S+ is smaller than
NA, all the solutions in S+ will be added into newA. In the
literature [11] the Pareto-adaptive reference points are used
to calculate fitness values and the union population selects



both the dominated and non-dominated solutions based on
the fitness values. Also, the solutions outside the hypercube
can be added to the population. In this paper, only the non-
dominated solutions inside the hypercube are added to the
archive to adjust the weight vectors for various PF shapes,
which can avoid the dominance resistant solutions to improve
the convergence.

The reference point set (z∗ ← znad if r < 1.1) plays an
important role in the archive maintenance strategy, we will
explain the process using the 2-dimensional example as shown
in Fig. 1. Through the adaptive normalization procedure and
classification by the hypercube, we can delete some dominance
resistant solutions such as the solution C (or D), if C has
an extremely poor value in the second objective (f2) but has
optimal value in the first objective (f1). In this way, some
extremely poor solutions in the archive can be deleted and
will not guide the solutions to search in the wrong direction.
This improves the convergence of the algorithm. On the other
hand, in the one by one adding solution procedure, we use the
maximum angle as the criteria to select the solution with good
distribution. If the PF shape is very convex, there are many
solutions along the coordinate (such as A and B), the angle
between the vector

−−→
z∗A and

−−→
z∗B is close to zero. At this

time, it is easy to ignore the solutions along the coordinate
and finally obtain the non-dominated solution set with poor
distribution. But the angle between the vector

−−−→
znadA and−−−−→

znadB is clear in this situation, we can differentiate these
solutions by substituting the reference point z∗ with znad.
Therefore, we use different reference points (z∗ or znad) based
on the different PF shapes in order to obtain a good spread of
non-dominated solutions in the archive.

1

1O

I

nadz

maxz

*z A B

C

D

2f

1f

Fig. 1. Illustration of the reference points.

C. Weight Vector Adaptation
The non-dominated solutions in the archive can reflect the

PF shape to some extent, hence it is necessary to use the
information of the archive to guide the search direction of
the decomposition-based algorithms for solving problems with
irregular Pareto fronts. The weight vector addition and deletion
method is an effective way to adapt the weight vectors for
various PF shapes. We select an efficient strategy to add and
delete some weight vectors.

Inspired by the literature [9], we first compare the popu-
lation with the archive to find the undeveloped solutions. If
a solution in the archive is located in a niche which has no
solution in the population, the solution is considered as an
undeveloped solution. The radius of the niche is set to the
median of the distances from all the solutions to their closest
solution in the archive. After finding all the undeveloped
solutions we then compute the corresponding weight vectors
of these solutions. Formally, let z∗ ← (z∗1 , z

∗
2 , · · · , z∗m)

T be
the reference point and λ = (λ1, λ2, · · · , λm)

T be the optimal
weight vector to a solution q in the modified Tchebycheff
approach. Then it holds that

f1 (q)− z∗1
λ1

=
f2 (q)− z∗2

λ2
= · · · = fm (q)− z∗m

λm
. (8)

Since λ1 + λ2 + · · ·+ λm = 1, we get

λ =

(
f1 (q)− z∗1∑m
i=1 fi (q)− z∗i

, · · · , fm (q)− z∗m∑m
i=1 fi (q)− z∗i

)
. (9)

After obtaining the undeveloped solutions and their corre-
sponding weight vectors, we need to determine whether the
found undeveloped solutions are promising or not. For each
of these undeveloped weight vectors, we find its neighboring
weight vectors as well as their associated solutions in the
population. Let q be an undeveloped solution in the archive
and λq be its corresponding weight vector. Let λp be one of
the neighboring weight vectors of λq and p be its associated
solution in the population. The solution q outperforms p if

g (q, λq) < g (p, λq) , (10)

or

g (q, λq) = g (p, λq) and

m∑
i=1

fi (q) <

m∑
i=1

fi (p), (11)

where g () denotes the modified Tchebycheff function, fi ()
denotes the i-th objective function, and m is the number of
objectives. If the undeveloped solution q outperforms all of
its neighboring solutions in the population on the basis of λq ,
q will be considered the promising solution and added to the
population.

After placing the undeveloped and promising solutions with
their corresponding weight vectors into the population, the
number of solutions and weight vectors in the new population
may be beyond the predefined size N , hence the weight vector
deletion operation needs to be applied. The one by one re-
moving solution procedure is designed to delete the redundant
population solutions and corresponding weight vectors. That
means at each time, the solution (along with its weight vector)
in the population which has minimum distance to another
solution is chosen to be deleted. If there are several solutions
with the same minimum distance the second smallest distance
will be considered and so forth [13]. The deletion process will
repeat until the number of weight vectors is equal to N .

The frequency of updating the weight vectors plays an
important part of the performance of decomposition-based



algorithms. The frequent change of weight vectors may dete-
riorate the convergence of these algorithms. In AMAWV the
weight vectors do not change during the first 10% and last
10% generations for retaining the same search direction to
improve convergence. The weight vector adaptation operation
is conducted every 5% of the total generations in the middle
evolution process.

The weight vector deletion process and the frequency of
updating the weight vectors in the proposed algorithm is differ-
ent from the literature [9]. The weight vector deletion process
is more efficient and the frequency of updating the weight
vectors can improve the whole convergence. In addition, the
novel archive maintenance strategy for avoiding the dominance
resistant solutions is used to maintain the archive, which can
guide the weight vectors addition and deletion process to
balance the convergence and diversity.

D. Computational Complexity

In the proposed AMAWV, the major computational costs
are the iteration process in Algorithm 1. For one generation
of AMAWV, Step 15 needs O(N) operations to produce
the offspring. Step 16 needs O(mN) comparisons to update
the reference point. Step 17 performs O

(
mN2

)
operations

to update the population at the worst case. Step 18 needs
O (mNNA) comparisons to update the archive. Step 21 re-
quires O

(
mN2

A

)
operations to maintain the archive.

On average, the weight vector adaptation needs
O
(
N2

A logNA

)
operations and it needs O

(
N2
)

comparisons to update the neighborhood set. Taking
into account all of the above computations, the overall
computational complexity at one generation of AMAWV is
max

{
O
(
N2

A logNA

)
, O
(
mN2

A

)}
.

IV. THE EXPERIMENTAL STUDIES

In this section empirical experiments are conducted on
MOPs and MaOPs with different PF shapes to compare
AMAWV with other five state-of-the-art algorithms.

A. Experimental Design

Five state-of-the-art algorithms, MOEA/D [2], MOEA/D-
AWA [4], NSGA-III [7], RVEA [8] and VaEA [12] are chosen
to evaluate the performance of AMAWV. In MOEA/D, the
modification Tchebycheff approach is also applied.

The test problems are chosen from widely used bench-
mark test suites. They are categorized into eight groups
according to different PF shape properties [9]: simplex-like
(DTLZ1, DTLZ2, CDTLZ2 and MaF3), inverted (IDTLZ1 and
IDTLZ2), highly nonlinear (SCH1 and FON), disconnected
(ZDT3 and DTLZ7), degenerated (DTLZ5 and DTLZ6),
scaled (SDTLZ1 and SDTLZ2), mixed (SCH2 and MaF4)
and high-dimensional (DTLZ2-10 and IDTLZ1-10). The test
problems in the first seven groups are 2- or 3-objective and
the last group are 10-objective.

The inverted generational distance (IGD) [14] and hypervol-
ume (HV) [14] are adopted to evaluate the performance of the

compared algorithms. The smaller IGD and larger HV means
better.

The neighborhood size T is set to 0.1N , the probability δ of
selecting from the mating pool is set to 0.9, the capacity NA of
the archive is 2N . The crossover probability and distribution
index of SBX are set to pc = 1 and ηc = 20, respectively. For
polynomial mutation, the mutation probability and distribution
index are set to pm = 1/n and ηm = 20, where n is the
number of decision variables.

The population size in decomposition-based algorithms can-
not be arbitrary. For a fair comparison, we set the population
size N to 100, 105 and 275 for the 2-, 3- and 10-objective
problems, respectively. The maximal number of generations is
set to 1000 for all the problems. Each algorithm is executed
30 times independently on each test instance, and the average
and standard deviation of the metric values are recorded. The
Wilcoxon rank sum test at a 5% significance level is used
to compare the experimental results, where the symbol ’+’,
’−’ and ’≈’ denotes that the result of another algorithm is
significantly better, significantly worse and similar to that
obtained by AMAWV, respectively.

B. Experimental Results

Table I presents the IGD metric values obtained by
MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and
AMAWV on the test problems with different PF shapes. The
proposed algorithm has achieved the best performance on
13 of 18 test instances, while the number of best results
obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA,
VaEA are 1, 1, 1, 2 and 0, respectively. It can be seen that the
proposed AMAWV has a clear advantage over other compared
algorithms with regard to the IGD metric. Fig. 2 and Fig. 3
show the final non-dominated solution set with the median
IGD value obtained by MOEA/D, MOEA/D-AWA, NSGA-
III, RVEA, VaEA and AMAWV on 3-objective MaF3 and
3-objective DTLZ7. For 3-objective MaF3, the PF shape is
convex, MOEA/D, NSGA-III, RVEA and VaEA focus on the
center part of PF, MOEA/D-AWA could tune the diversity of
the solutions a little, AMAWV can achieve the best balance
between convergence and diversity. For 3-objective DTLZ7
the PF shape is disconnected, while VaEA and AMAWV can
obtain the solution set with good distribution compared with
the other four algorithms.

Table II presents the HV metric values obtained by
MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and
AMAWV on the test problems with different PF shapes. The
proposed algorithm has achieved the best performance on 12
of 18 test instances, while the number of best results obtained
by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA are
1, 1, 2, 2 and 0, respectively. It can be observed that propose
AMAWV outperforms the other five compared algorithms a
lot with respect to HV metric. Fig. 4 and Fig. 5 shows the
final non-dominated solution set with the median HV value
obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA,
VaEA and AMAWV on 3-objective MaF4 and 10-objective
IDTLZ1. For 3-objective MaF4, it has an inverted badly scaled



TABLE I
THE IGD VALUES OBTAINED BY MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VAEA AND AMAWV ON TEST PROBLEMS.

Problem MOEA/D MOEA/D-AWA NSGA-III RVEA VaEA AMAWV

DTLZ1 1.8983e-2 (9.28e-6) + 1.9741e-2 (4.76e-4) ≈ 1.8989e-2 (2.69e-5) + 1.8981e-2 (9.20e-6) + 2.7894e-2 (8.25e-3) − 1.9675e-2 (1.69e-4)
DTLZ2 5.0315e-2 (6.41e-6) + 5.0674e-2 (1.91e-4) + 5.0301e-2 (1.23e-6) + 5.0301e-2 (1.35e-6) + 5.3517e-2 (6.94e-4) − 5.1491e-2 (4.15e-4)

CDTLZ2 4.3371e-2 (4.40e-6) − 3.3688e-2 (1.20e-3) − 4.3347e-2 (1.68e-4) − 3.8134e-2 (4.14e-4) − 5.8261e-2 (4.21e-3) − 3.1819e-2 (4.98e-4)
MaF3 4.3944e-2 (5.50e-4) − 3.6480e-2 (1.24e-3) − 4.4005e-2 (6.12e-4) − 3.9123e-2 (9.02e-4) − 1.0286e-1 (6.82e-2) − 3.2005e-2 (6.31e-4)

IDTLZ1 3.2323e-2 (7.86e-6) − 2.0001e-2 (1.47e-4) − 2.7614e-2 (5.36e-4) − 4.5021e-2 (1.16e-2) − 2.9573e-2 (1.21e-2) − 1.9765e-2 (1.41e-4)
IDTLZ2 9.7749e-2 (1.85e-5) − 5.2547e-2 (5.48e-4) − 6.8724e-2 (2.75e-3) − 7.6365e-2 (8.07e-4) − 6.9191e-2 (2.00e-3) − 5.2189e-2 (4.33e-4)
SCH1 4.7648e-2 (9.46e-5) − 1.7135e-2 (7.35e-5) ≈ 4.7622e-2 (1.34e-4) − 4.4682e-2 (2.16e-4) − 5.5476e-2 (6.59e-3) − 1.7146e-2 (8.56e-5)
FON 3.5827e-3 (1.04e-5) + 3.6737e-3 (2.93e-5) + 3.5951e-3 (7.79e-6) + 4.6246e-3 (3.89e-4) − 4.6102e-3 (9.91e-5) − 3.9019e-3 (7.87e-5)
ZDT3 1.0967e-2 (4.34e-5) − 4.8912e-3 (6.16e-5) − 1.0013e-2 (9.94e-3) − 8.4826e-3 (9.45e-4) − 1.3966e-2 (1.29e-2) − 4.7013e-3 (1.12e-4)

DTLZ7 2.4607e-1 (1.85e-1) − 1.3131e-1 (9.16e-2) − 7.1013e-2 (3.20e-3) − 1.0369e-1 (2.33e-3) − 5.9058e-2 (1.32e-3) − 5.3663e-2 (7.62e-4)
DTLZ5 1.8610e-2 (2.32e-6) − 4.9479e-3 (8.68e-5) − 1.2185e-2 (1.64e-3) − 5.9830e-2 (2.74e-3) − 4.6950e-3 (1.33e-4) − 4.0480e-3 (6.67e-5)
DTLZ6 1.8612e-2 (1.83e-6) − 4.8461e-3 (1.26e-4) − 1.6910e-2 (2.32e-3) − 6.3984e-2 (1.12e-2) − 4.3482e-3 (1.50e-4) − 4.0338e-3 (4.62e-5)

SDTLZ1 2.7841e+0 (5.43e-3) − 2.1104e+0 (1.14e+0) − 9.6234e-1 (2.85e-2) − 8.9768e-1 (4.91e-2) − 8.1286e-1 (3.72e-1) − 6.0928e-1 (1.68e-2)
SDTLZ2 5.2277e+0 (5.55e-4) − 1.8208e+0 (3.04e-1) − 1.4903e+0 (3.61e-4) ≈ 1.4973e+0 (8.44e-3) ≈ 1.5179e+0 (8.60e-2) ≈ 1.5013e+0 (6.69e-2)

SCH2 1.0517e-1 (8.89e-5) − 2.1807e-2 (5.20e-4) − 3.2901e-2 (3.76e-3) − 4.4899e-2 (2.58e-4) − 3.2417e-2 (3.11e-3) − 2.0903e-2 (1.98e-4)
MaF4 5.8395e-1 (1.55e-3) − 2.5536e-1 (5.95e-3) − 3.2311e-1 (1.63e-2) − 3.8401e-1 (1.06e-1) − 4.5213e-1 (2.27e-1) − 2.3830e-1 (3.08e-3)

DTLZ2-10 4.5187e-1 (2.73e-2) − 4.2634e-1 (1.46e-2) − 4.4224e-1 (4.33e-2) − 4.2101e-1 (3.62e-4) − 4.1345e-1 (2.02e-3) − 4.0212e-1 (7.49e-3)
IDTLZ1-10 2.3840e-1 (6.38e-3) − 1.7218e-1 (2.55e-2) − 1.4086e-1 (3.51e-3) − 2.6238e-1 (4.61e-2) − 1.1330e-1 (1.42e-2) − 1.1279e-1 (1.86e-3)
+/− / ≈ 3/15/0 2/14/2 3/14/1 2/15/1 0/17/1

Fig. 2. The non-dominated solution set with the median IGD value obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on
3-objective MaF3.

PF shape, MOEA/D could only find a part of PF, the solution
set of VERA seems to be sparse, AMAWV can obtain a
good spread of the solutions compared with MOEA/D-AWA,
NSGA-III and VaEA. For 10-objective IDTLZ1, it has a high-
dimensional and inverted PF shape, RVEA cannot find the true
PF, MOEA/D and MOEA/D-AWA could only find a small part
of solutions, NSGA-III fails to cover the whole PF, VaEA has
some solutions which fail to converge to the true PF. Only
AMAWV can obtain a solution set to cover the whole PF
with good convergence and diversity.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel archive maintenance
for adapting weight vectors to make the decomposition-
based multi-objective evolutionary algorithms solve MOPs and
MaOPs with different PF shapes. The novel archive mainte-
nance strategy can delete some dominance resistant solutions
to improve the convergence and the one by one adding solution
procedure can retain good diversity. The weight vector adap-
tation method helps the decomposition-based algorithms to be
suitable for different problems with various PF properties. The
experimental results have demonstrated the superiority and
versatility of the proposed AMAWV.



Fig. 3. The non-dominated solution set with the median IGD value obtained by MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VaEA and AMAWV on
3-objective DTLZ7.

TABLE II
THE HV VALUES OBTAINED BY MOEA/D, MOEA/D-AWA, NSGA-III, RVEA, VAEA AND AMAWV ON TEST PROBLEMS.

Problem MOEA/D MOEA/D-AWA NSGA-III RVEA VaEA AMAWV

DTLZ1 8.4428e-1 (1.30e-4) + 8.3738e-1 (7.26e-3) − 8.4420e-1 (3.31e-4) + 8.4431e-1 (1.33e-4) + 8.2025e-1 (1.92e-2) − 8.4286e-1 (4.05e-4)
DTLZ2 5.6302e-1 (4.11e-6) + 5.6491e-1 (3.92e-4) + 5.6302e-1 (6.40e-6) + 5.6301e-1 (1.99e-5) + 5.5825e-1 (1.37e-3) − 5.6162e-1 (9.39e-4)

CDTLZ2 9.5967e-1 (3.52e-6) − 9.6306e-1 (3.28e-4) − 9.5969e-1 (7.09e-5) − 9.6054e-1 (5.25e-4) − 9.5481e-1 (1.55e-3) − 9.6363e-1 (1.98e-4)
MaF3 9.5889e-1 (6.72e-4) − 9.6187e-1 (7.05e-4) − 9.5863e-1 (6.55e-4) − 9.6045e-1 (1.01e-3) − 9.1572e-1 (5.99e-2) − 9.6287e-1 (5.19e-4)

IDTLZ1 2.0345e-1 (1.01e-4) − 2.2342e-1 (3.22e-4) ≈ 2.1113e-1 (8.86e-4) − 1.7968e-1 (1.62e-2) − 2.0726e-1 (1.74e-2) − 2.2353e-1 (3.10e-4)
IDTLZ2 5.0850e-1 (1.58e-5) − 5.3777e-1 (6.64e-4) − 5.2007e-1 (2.86e-3) − 5.1442e-1 (9.90e-4) − 5.3035e-1 (1.24e-3) − 5.3953e-1 (6.11e-4)
SCH1 8.5798e-1 (4.28e-6) − 8.5913e-1 (4.27e-5) ≈ 8.5798e-1 (5.79e-6) − 8.5810e-1 (9.65e-6) − 8.5688e-1 (5.55e-4) − 8.5914e-1 (4.07e-5)
FON 4.3160e-1 (2.93e-5) + 4.3151e-1 (3.87e-5) ≈ 4.3151e-1 (2.76e-5) ≈ 4.2916e-1 (7.22e-4) − 4.2963e-1 (2.01e-4) − 4.3151e-1 (4.84e-5)
ZDT3 5.8139e-1 (1.29e-5) − 5.8320e-1 (2.61e-5) − 5.8217e-1 (3.33e-2) − 5.7843e-1 (1.11e-3) − 5.8321e-1 (4.34e-2) ≈ 5.8330e-1 (5.12e-5)

DTLZ7 2.5390e-1 (1.82e-2) − 2.6177e-1 (1.12e-2) − 2.7184e-1 (1.63e-3) − 2.6020e-1 (2.47e-3) − 2.7779e-1 (7.25e-4) − 2.8080e-1 (2.75e-4)
DTLZ5 1.9268e-1 (2.21e-6) − 1.9963e-1 (9.10e-5) − 1.9466e-1 (1.05e-3) − 1.6334e-1 (2.50e-3) − 1.9967e-1 (1.24e-4) − 2.0016e-1 (1.87e-4)
DTLZ6 1.9268e-1 (1.49e-6) − 1.9966e-1 (8.29e-5) − 1.9231e-1 (1.66e-3) − 1.5706e-1 (7.70e-3) − 1.9993e-1 (8.08e-5) − 2.0025e-1 (3.85e-5)

SDTLZ1 6.8595e-1 (3.79e-4) − 7.5145e-1 (4.16e-2) − 8.4384e-1 (2.06e-3) + 8.4121e-1 (1.46e-2) − 8.2476e-1 (1.78e-2) − 8.4274e-1 (3.69e-4)
SDTLZ2 4.3510e-1 (1.29e-5) − 5.2712e-1 (1.06e-2) − 5.6302e-1 (6.68e-6) + 5.6256e-1 (2.49e-4) ≈ 5.5817e-1 (1.43e-3) − 5.6239e-1 (5.72e-4)

SCH2 6.4666e-1 (5.20e-5) − 6.5528e-1 (4.61e-5) ≈ 6.5458e-1 (2.12e-4) − 6.5214e-1 (9.42e-5) − 6.5499e-1 (3.46e-4) − 6.5529e-1 (1.15e-4)
MaF4 4.7320e-1 (1.08e-3) − 5.3039e-1 (1.87e-3) − 5.1973e-1 (4.55e-3) − 5.0494e-1 (2.65e-2) − 4.9773e-1 (5.77e-2) − 5.3759e-1 (8.18e-4)

DTLZ2-10 9.5643e-1 (1.30e-2) + 9.6452e-1 (6.90e-3) + 9.6119e-1 (1.73e-2) + 9.6979e-1 (2.08e-4) + 9.4757e-1 (3.02e-3) + 9.3416e-1 (1.67e-2)
IDTLZ1-10 6.4382-2 (2.88e-4) − 1.6567-1 (2.55e-2) − 9.5142e-2 (6.59e-3) − 3.6636e-2 (4.37e-3) − 3.3557e-1 (1.38e-2) ≈ 3.3716e-1 (7.14e-3)
+/− / ≈ 4/14/0 2/12/4 5/12/1 3/14/1 1/15/2

In the future, some other more efficient weight vector
adaptation methods will be studied. The use of AMAWV in
practice will also be investigated.
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