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Abstract—Image segmentation is a relevant problem in com-
puter vision present in multiple application domains. One of
the most used methods for image segmentation is U-net, a
type of convolutional network with additional constraints in its
architecture. Studies regarding the U-net usually rely on well-
known architectures, which leads to a narrow exploration of the
possibilities, and possibly impacting the performance. Genetic
Programming approaches have become increasingly popular for
designing neural networks due to studies where the generated
models were able to achieve results comparable to humans.
These approaches can evolve the structure at different levels
of abstraction, reducing the need for a specialist. In this paper,
we propose the use of Grammatical Evolution for evolving U-net
architectures. We propose a mirror grammar, which is capable
of generating a variety of flexible U-nets that better explores
the search space. We show that the proposed grammar can
capture the complex constraints that define the U-nets and
achieve comparable results in terms of accuracy, on a benchmark
of segmentation problems of varying difficulty.

Index Terms—grammatical evolution, automatic design, deep
neural networks, u-net

I. INTRODUCTION

Neuroevolutionary design of deep neural networks is an
increasingly used method in Machine Learning (ML) appli-
cations. Recently, many studies have been developed for the
automatic design of Deep Neural Networks (DNNs) [2], [18],
[37]. A common approach is to express the architecture of a
network considering its layers as building blocks. Combining
different types of building blocks allows the generation of an
infinite amount of novel designs, where the objective is to im-
prove the overall performance of the network. Measuring this
performance is a difficult task. Most studies focus on applying
small changes to a well-known architecture so it can achieve
high accuracy on the target problem. This path leads to a poor
exploration of the space of architectures, ignoring possibly
better designs that might differ from the established state-of-
the-art networks, for instance, Convolutional Neural Networks
(CNNs) [15] for images, Long-short Term Memory Networks
(LSTM) [5] for texts, and Recurrent Neural Networks (RNN)
[8] for audio problems.

Segmenting an image consists of dividing it in multiple
segments of pixels to describe objects. The objective is to
simplify the information, modifying its representation into
something more useful, and easier to analyze. The U-net

[32] is the most popular deep learning model used for image
segmentation. It is composed basically of convolutional and
pooling layers. The non-sequential organization of its layers
is one of the most relevant characteristics, which gives the
network the ability to re-use information from previous layers
in order to learn high-resolution features. These characteristics
add new restrictions, which make the design of U-nets harder,
compared to classical CNNs.

Usually, each network is manually configured for each
specific problem by a specialist, who will select the building
blocks for the architecture. Most current studies on U-net
applications [16], [26], [34] rely on using and modifying well-
known architectures, leading them to explore only a small
portion of the search space. The use of techniques such as
Genetic Programming (GP) can offer an easy and flexible
approach to design a wider variety of architectures.

The most popular approaches to the automatic design rely
on Genetic Programming (GP) techniques and its variations
[14], [28], [33]. GP is an extension to the Genetic Algorithm
(GA) [30], where the candidate solutions are executable pro-
grams rather than fixed-length strings. The search space is
described from the set of components defined by the user, to
compose the programs. Moreover, the search engine operates
by creating a population of randomly generated solutions that
are selected, recombined, and evaluated in order to select the
best solution found throughout a given number of generations.

In this work, we propose the use of Dynamic Structured
Grammatical Evolution (DSGE) [2] to design neural networks
for image segmentation tasks. DSGE is a version of GP that
uses grammars to define the space of programs, i.e., the set
of components. The grammar is a set of symbols and rules
that are used to guide the search, being very flexible and
easy to adapt to different domains. Thus, we propose to study
the use of GE to design U-nets, in order to verify if it is
possible to find solutions that balance novelty and performance
while proposing a more efficient exploration of the space.
GE has also been recently applied to the evolution of deep
neural networks that follow a sequential architecture [18],
different from the U-net that follows a non-sequential design.
The proposed experiments will evaluate the approach on a
segmentation task, based on generated datasets with increasing
levels of difficulty. In addition, as one of the main drawbacks
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of these proposals is the time required to evaluate each solution
(train a U-net), we have tested two approaches: 1) evolve the
networks while training them during the evolution; and 2)
evolve the networks generated with random weights, training
only the final best.

This work is organized as follows. Section II covers pre-
vious neuroevolutionary approaches and U-net background.
Section III presents some foundations for the DSGE technique
and how it is used to design neural networks. Our approach is
presented in Section IV, with more details about the grammar
we propose to design U-nets. Next, we describe the performed
experiments in Section V, including a description of the way
in which our approach is evaluated and its contributions to
the design of U-nets. Finally, in Section VI, we cover a
summary of the work discussing the results and proposing
future directions to this study.

II. RELATED WORK

A. NeuroEvolution

Automatically design and configure programs emerged as
an essential research direction [11], [12], [20]. Evolutionary
approaches have been widely used to automatically design
algorithms aiming to find the best combination of parameters
as well as proposing novel architectures [4], [17], [25], [29].

Neuroevolutionary approaches to evolve CNNs are exten-
sive; we only cover some of the most closely related work.
We consider the following criteria to review the algorithms and
highlight the differences and similarities with our proposal:

1) The evolutionary approach applied to evolve the net-
work;

2) Evolution of CNNs;
3) Structural or topological constraints of the evolved ar-

chitectures.
Initial studies regarding the evolution of ANNs covered the

evolution of only weights [23], [41], and further followed
by evolving the topology [7], [31]. Moreover, some neuro-
evolutionary approaches simultaneously evolve topologies and
weights [13], [36], [39]. The approach we propose in this paper
evolves the topologies only, while the weights are learned from
data or generated using a different technique.

Regarding the design of CNNs, the most common ap-
proaches are Evolutionary Algorithms (EAs), for instance, GP
approaches [14], [24], [33], GAs [41], and other evolutionary
strategies [6]. Only recently, works on GE have been proposed
for CNNs [2], [17], [19]. Our GE approach follows a similar
path, however, we extend the grammar by proposing a novel
way to generate the networks, in order to cover a more
extensive portion of the design space, while trying to minimize
invalid solutions.

In terms of the CNN topological characteristics, almost all
the previous methods have focused on sequential architectures
[10], [17] or variants of well known CNN architectures. Novel
approaches have been proposed, such as Residual Networks
[10] with the “skip-connections”, or more robust modules, as
in Google Inception network [38].

In this study, we show how to use DSGE encoding to
design a network effectively. We are also proposing a flexible
grammar structure that allows managing the constraints of the
network, which later could be expanded by the addition of
novelty blocks, for example, skip-connections and inception
modules. To the best knowledge of the authors, this type of
approach has not been previously reported in the literature.

B. U-nets

U-nets [32] were proposed as a way to overcome the limita-
tions of CNNs when dealing with the segmentation of images.
While mainly applied to image segmentation, U-nets are also
an essential component to generative deep learning approaches
[9], [27]. Classical CNNs have their success limited due to the
size of both the network and the available training sets. In this
sense, U-nets can take advantage of smaller datasets to achieve
higher accuracy values.

The U-net architecture (Figure 1) is mainly composed of
convolutional and max-pooling layers, and it is divided into
three parts: the contracting path (left side), the expansive
path (right side), and the middle part that connects the
two previous ones. The contracting path follows a typical
convolutional network scheme, with repeated applications of
two 3x3 convolutions, each followed by a ReLU activation
and a 2x2 max pooling with stride 2 for down-sampling. At
each down-sampling step, the number of filters is doubled.
On the expansive path, each step consists of an up-sampling
followed by a 2x2 convolution that halves the number of
filters, a concatenation with the corresponding cropped image
from the contracting path, and two 3x3 convolutions followed
by a ReLU activation. The middle part is composed mostly
of convolutional layers and a few dropout layers. A 1x1
convolutional layer performs classification, which maps each
of the pixels into one of the defined classes.

3x3 Conv
2x2 Maxpool

2x2 Up-Conv
1x1 Conv

Copy and Crop

Contracting Path Expanding path

Middle
part

Fig. 1. Vanilla U-Net architecture.

By analyzing the U-net architecture, it is possible to list
some characteristics:

• For every down-sample step, derived from a pooling layer
on the contracting path, there is an up-sample step on the
expanding path;



• The last layer before a down-sample step is connected to
the first layer after the up-sample step by a concatenation
layer, where the image size matches;

• At each down or up-sample, the parameters decrease or
increase within the same factor.

In general, most U-net applications are usually tied to the
original design [16], [26], [40]. Besides, works that proposed
modifications have presented exciting outcomes. For example,
in [35], the authors maintain the overall “U” shape using
encoder/decoder blocks to replace the classic 3x3 convolution.
Similarly, [34], [42] present an U-net that uses residual blocks
from ResNet [10].

III. DYNAMIC STRUCTURED GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) is an evolutionary algorithm
that can evolve programs in an arbitrary language [33]. It
evolves solutions encoded as variable-length binary strings that
are translated, by means of a mapping process, to executable
programs. First, a grammar provided by the user contains a
set of rules and components that define a space of possible
program designs for a given domain. Then, the grammar is
used to decide which components and structures will be used,
according to the values in the solution.

We use an improved version of GE, called Dynamic
Structured Grammatical Evolution (DSGE) [3], [21]. It was
proposed to address and overcome some limitations that the
classic GE has. DSGE introduces a new encoding, using a
one-to-one relation between genotype and phenotype. The
new encoding allows a more efficient way to generate and
recombine solutions and also avoids having low locality or
redundancy issues.

The GE approach can be defined by three main components:
a) a grammar; b) the genotype-phenotype mapping; and c) the
search engine. While the grammar and the mapping are used to
define and build the programs, the search engine is responsible
for searching for new, improved solutions. More details about
each component are given in the following sections.

A. Grammar

GE grammar is a set of rules and productions that follows
the Backus Naur Form (BNF), which can be used to build the
programs.

Formally speaking, a grammar is a tuple G = (N,T, S, P ),
where N is a non-empty set of non-terminal symbols, T
is a non-empty set of terminal symbols, S is an element
of N called axiom and used as start rule, and P is a
set of productions of the form A ::= α, with A ∈ N
and α ∈ (N ∪ T )∗, N and T are disjoint [22]. Figure
2 shows an example of a simple grammar, used to form
mathematical expressions. In this example, the set N of non-
terminals is {start, expr, op, term}, the set of terminals T is
{+,−, ∗, /, x1, 0.5}, and the axiom S is given by the non-
terminal start.

〈start〉 ::= 〈expr〉〈op〉〈expr〉 | 〈expr〉

〈expr〉 ::= 〈term〉〈op〉〈term〉 | (〈term〉〈op〉〈term〉)

〈op〉 ::= + | - | / | *

〈term〉 ::= x1 | 0.5

Fig. 2. Example of a grammar for mathematical expressions.

B. DSGE Encoding
For DSGE, rather than encoding the solutions as a list

of integers, they are encoded as a list of lists, where each
internal list is directly tied to one non-terminal symbol from
the grammar (see Figure 3). The length of a solution is defined
by the number of non-terminals in the grammar. Moreover, the
size of each internal list will depend on the number of values
needed to perform a complete map, and the values will depend
on the number of options for each rule. For example, the non-
terminal <op> has four options (+,−, ∗, /), so the possible
values range from 0 to 3.

<start> <op><expr> <term>

[0] [2, 0, 3][1, 0] [1, 1, 0, 0]

Non-terminals

Genotype

Fig. 3. DSGE encoding. Each list of integers in the genotype is related to a
non-terminal.

C. Mapping
The mapping is a procedure that translates one solution

into an executable program. It performs a grammar expansion,
replacing the leftmost non-terminal by one of its productions,
starting from the axiom. In DSGE, instead of picking values
sequentially from the genotype as the expansion occurs, the
values are selected from the internal list related to the non-
terminal being evaluated. Moreover, the values in the solution
are within each non-terminal boundaries, which removes the
need for using the mod operator as in classical GE.

Derivation step Integers left
<start> [[0], [1, 0], [2, 0, 3], [1, 1, 0, 0]]
<expr><op><expr> [[], [1, 0], [2, 0, 3], [1, 1, 0, 0]]
(<term><op><term>)<op><expr> [[], [0], [2, 0, 3], [1, 1, 0, 0]]
(0.5 <op><expr>)<op><expr> [[], [0], [2, 0, 3], [1, 0, 0]]
(0.5 / <term>)<op><expr> [[], [0], [0, 3], [1, 0, 0]]
(0.5 / 0.5)<op><expr> [[], [0], [0, 3], [0, 0]]
(0.5 / 0.5) + <expr> [[], [0], [3], [0, 0]]
(0.5 / 0.5) + <expr><op><term> [[], [], [3], [0, 0]]
(0.5 / 0.5) + x1 <op><term> [[], [], [3], [0]]
(0.5 / 0.5) + x1 * <term> [[], [], [], [0]]
(0.5 / 0.5) + x1 * x1 [[], [], [], []]

Fig. 4. Mapping process using the DSGE encoding.

For example, the mapping displayed in Figure 4 starts from
the axiom <start>. It consumes the first value from the first



list, which is related to the non-terminal <start>. The value is
0, which means that the non-terminal will be replaced by the
production (according to Grammar 2) <expr><op><exp>.
Following, the next non-terminal is <expr>, and the next
value related to this non-terminal is 1, which will replace
<expr> by the production (<term><op><term>). The map-
ping procedure repeats these steps until all values are used, and
there are no non-terminals left.

D. Search Engine

The search engine is a traditional GA, modified to work
with the new encoding. DSGE does not require the specific
operators, prune and duplication, used by classical GE to
control the length of solutions. The mutation operators remain
simple. One random value is selected from the solution to be
replaced by a new one, considering the possible values accord-
ing to the evaluated non-terminal. For the crossover operator,
the “cut” point is chosen among the non-terminals, and two
new solutions are generated by combining these parts. At this
point, it might can occur that the newly generated solutions
have more or fewer values than necessary for the mapping. In
these cases, we repair the solution by adding random values as
necessary or removing unused values. Additional details about
the DSGE operators can be found in [3].

IV. GRAMMATICAL EVOLUTION FOR SEGMENTATION
NETWORKS

Our approach is motivated on proposing an efficient way
to design segmentation networks following the U-net struc-
ture. We developed a grammar that combines an easy way
of defining which components can be used to design the
networks, with the addition of structural rules that guide the
designs towards valid architectures, minimizing the generation
of invalid models.

A. U-net mirror grammar

Our goal is to specify the process of constructing an U-net
using a grammar. The grammar should be able to generate
architectures that fulfill the specific structural characteristics
of U-nets explained in Section II-B.

However, while satisfying the main architectural constraints
of U-nets, we also want to allow the generation of a variety of
U-net designs. Finding the right balance between faithfulness
to the original design and ability to explore new designs is
a difficult objective. For example, the original architecture
applies a concatenate layer on every “level”. Therefore we
propose sets of rules that both ensure the U-net constraints
on designed networks and, at the same time, allow novelty
in terms of generating different structures. For example, the
grammar can include a rule that specifies whether or not to
add a concatenate layer, or in more complex cases, to add
skip-connections or robust modules.

B. Encoding U-net constraints

We assume that the U-net architecture has a perfectly
symmetric structure, and we introduce a “mirror” grammar that

exploits the symmetries for representing the characteristics of
only the contracting path of the U-net. The assumption here
is that the encoding of the contracting path is sufficient to
reconstruct the expanding path of the network. Moreover, by
designing only half of the network, we deal with only half of
the complexity, which makes the search easier.

〈unet〉 ::= 〈conv〉 〈next〉

〈next〉 ::= 〈conv〉 〈next〉
| 〈dropout〉 〈next〉
| 〈pool〉 〈nextp〉
| bridge 〈pool〉 〈nextp〉

〈nextp〉 ::= 〈conv〉 〈next〉 | 〈middle〉

〈middle〉 ::= 〈middle〉 〈middle〉 | 〈conv〉 | 〈dropout〉

〈conv〉 ::= conv 〈filters〉 〈k size〉 〈strides〉 〈padding〉 〈activ〉

〈pool〉 ::= 〈p type〉 〈strides〉 〈padding〉 〈padding〉

〈dropout〉 ::= dropout 〈rate〉

〈p type〉 ::= maxpool | avgpool

〈filters〉 ::= 2 | 4 | 8 | ... | 64

〈k size〉 ::= 1 | 2 | ... | 6

〈strides〉 ::= 1 | 2

〈padding〉 ::= valid | same

〈activ〉 ::= relu | sigmoid | linear

〈rate〉 ::= [0.0, 0.5]

Fig. 5. U-net mirror grammar

Figure 5 presents our proposed Grammar. It includes the
main components of a U-net: the convolutional, pooling, and
dropout layers, as well as their parameters: for instance, the
number of filters, kernel size, and padding. In addition to that,
to reproduce the “U” shape on the network, we have structural
rules (<next>, <nexp>, <middle>), that are used to build the
contracting (left) and transition (middle) parts of the network.

Figure 6 shows the steps taken to build the network. The
mapping is responsible for reading the pre-built structure
generated from the grammar expansion. Then, for each node
on the contracting path, starting from the end, new blocks
are added to the expanding path, taking into account the
type of node. If it is a convolutional layer, a copy of it
is added to the expanding path. For pooling layers, an up-
sample and a 2x2 convolutional layer are added. Also, if the
pooling rule contains the “bridge” keyword, then a concatenate
layer is added after the 2x2 convolutional layer. In the end,
the input, classification (2x2 convolutional) and output (1x1
convolutional with sigmoid activation) layers are added, since
these are common to every architecture. The classification and
output layers are responsible to classify each pixel to a value
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Fig. 6. Representation of the building process using the mirror grammar.

between 0 and 1, and produce the output segmented image.
After the build, a repair function is used to ensure that the
connections between the nodes are correct. For instance, if a
network has a pooling layer that tries to reduce a 1x1 image,
nothing will happen; the same way, the correspondent up-
sampling should not increase the image size. Otherwise, the
image size throughout the network would not match.

This building process proposes an easy way to design the
networks while also minimizing the number of invalid models.
On the other hand, assuming that all architectures will follow
this mirrored philosophy, the grammar will not be able to
reproduce the same architecture as the original U-net, since
it is not symmetric. Part of the flexibility is sacrificed in order
to maintain the balance between generating valid solutions and
being able to generate a wider variety of models.

C. Evaluation

The evaluation of the architectures in our approach con-
siders two different scenarios. In both scenarios, the U-net
architecture receives two sets of images (train and test) and
produces an output for the test dataset. In the first (no-training)
scenario, the train dataset is ignored, and the parameters of the
network are randomly set. In the second (training) scenario,
the train dataset is used to learn the parameters of the network.

The evaluation step is the most resource and time-
consuming part of the approach when we have to consider
the time needed to train and test a network. Many factors
contribute to increasing the evaluation time, for instance, the
number of epochs, size of the dataset, and overall complexity
of a solution. Some of the techniques that can be used to
optimize the execution time include using an early stop or a
time limit. The first halts the execution if the network does not
improve its accuracy within a given number of epochs. The
latter imposes a maximum time for the network to be trained.
We combine these techniques with our proposed grammar,
which minimizes the complexity to design the networks,

and the two scenarios mentioned previously, providing better
control over the available resources.

1) Image segmentation metrics: To measure the accuracy
of the networks, we use a metric that is composed of different
coefficients, such as Jaccard, Dice, Sensitivity, and Specificity.
As a comparison, in the U-Net original work [32], they only
use the Intersection over Union (IoU), which is the same as
the Jaccard.

Considering A and B as two images, the Jaccard coefficient
(Jacc, Eq. 1), also known as Intersection over Union, is a
statistic used for gauging the similarity and diversity of sample
sets. The Dice coefficient (DCS, Eq. 2) is similar to the Jaccard
but more popular in image segmentation tasks. We also use
the well known Sensitivity and Specificity metrics.

Jacc =
A ∩B
A ∪B

(1) DCS =
2(A ∩B)

A+B
(2)

The accuracy for a model is calculated using a weighted
mean, giving the same weight for each of the four measures.
The inverse measure is used as the loss function.

V. EXPERIMENTS

The main goal of our experiments is to evaluate the pro-
posed GE approach in exploring a wider variety of U-net
architectures, identifying models that are efficient for image
segmentation. This section is organized in the following way.
First, we explain the image segmentation benchmark used to
evaluate the algorithms. Then, we present the parameters used
by the GE approach. Finally, we present the numerical results
of the experiments and discuss them.

A. Datasets with varying levels of difficulty

We created an artificial benchmark where, for each image,
we have its groundtruth segmentation. The benchmark com-
prises 5 datasets having increasing levels of difficulty. The
original images from which new segmentated images were
generated were taken from the texture dataset cited in [1].
The datasets were named as “simple”, “regular”, “moderate”,
“hard”, and “full”. Each dataset contains images (Figure 7)
of 256x256 pixels, being 80 images for training, 20 for
validation and 20 for test. Each image was generated having an
original texture image as the background. To this background,
a random number of ellipses, which vary in size and quantity,
were added. Each ellipse is filled with the pixels of another
texture image. The difficulty of each dataset is determined by
characteristics such as, the number and size of the ellipses, the
contrast between background and foreground textures, and so
on. The configuration of each datasets is presented in Table
I. For the Regular dataset, if the background selects a dark
image, the foreground will be a light image and vice versa.

B. Parameters of the algorithm

The parameters used for the experiments are presented in
Table II. We investigated our approach in two scenarios: with
and without training of the networks. When the neural network



TABLE I
CONFIGURATION OF EACH DATASET

Dataset Background Foreground Ellipses Size
Simple fixed fixed [1, 10] [10, 50]
Regular light or dark* dark or light* [1, 10] [10, 50]
Moderate light dark [1, 10] [10, 50]
Hard fixed all [1, 10] [10, 50]
Full all all [1, 10] [10, 50]

Fig. 7. Example of the dataset generator. From left to right: background im-
age, foreground image, random ellipses, generated image, and segmentation.

is not trained, the parameters it uses are randomly generated.
The population size is 20, initialized randomly, evolved for a
maximum of 10 generations for the training scenario, limited
due to time, and 50 generations for the no-training. Each
network, on the training scenario, is trained for 10 epochs,
and a one hour of time limit as a heuristic criterion, after
which the algorithm is stopped even if the maximum number
of epochs has not been reached. The fitness of the solutions
is calculated over a validation set. Here, only the best results
are reported.

TABLE II
PARAMETERS OF THE EVOLUTIONARY ALGORITHM

Parameter Value Parameter Value
Population size 20 Generations 10/50
Crossover 0.9 Epochs 10
Mutation 0.01 Model time limit 60 min

Regarding the grammar, we also constrained some rules in
order to increase the amount of valid architectures and also
decrease the overall complexity, that directly affects the time
needed to evaluate the solutions. The modifications include
fixing the strides to 1 and padding to “same” for the <conv>
rule. Use only “maxpool” with strides 2, pool size of 2 and
padding “same”. And lastly, constraining the number of filters
to a max of 32. These modifications allowed our approach to
generate 100% of valid U-nets, meaning the evolution will deal
with a broader variety of possible solutions instead of ignoring
invalid ones. Other combinations of rules and parameters will
be further explained in future works.

C. Results

The first question we address is whether the evolutionary
process has any impact on the quality of the solutions. Figures
8 and 9 display the mean accuracy per generation for all
five datasets with and without training, respectively. In both
scenarios, there were clear improvements in the quality of the
solutions over the generations. In the training scenario, the
U-nets were able to achieve higher accuracy values in early
generations, maintaining a slower pace around generation 3.

Similarly, in the no-training scenario, solutions are constantly
improving, however with small increments on the quality of
solutions.

Fig. 8. Mean accuracy per generation during the evolution with training.

Fig. 9. Mean accuracy per generation during evolution with no training.

Further, we analyzed the relationship between the fitness of
the u-nets and their complexity in terms of the parameters.
Figures 10 and 11 shows the relation of the average fitness
and complexity per generation for scenarios with training and
no training respectively. In the figures, there is a chart for each
database, and the intensity of the color means the agglomera-
tion of different networks with similar number of parameters.
It can be seen in Figures 10 and 11 that for the training
scenario, most solutions reported an average of forty thousand
(40000) parameters, while on the no-training scenario, the
biggest networks have an average of fifty thousand (50000) on
the dataset “Full”, and other datasets have even smaller values
ranging from ten to thirty five thousand. As a comparison
value, the original U-net architecture we used has over thirty-
one million parameters (31,031,685). The results indicate that
the complexity of the networks do not depend on the difficulty
of the dataset since complex networks are also evolved for the
simplest dataset. However, U-Nets of similar complexity can
produce predictions of different quality.

In Table III, we present the accuracies obtained by the best
models generated by DSGE, for each dataset. The Pre-trained
models are the ones obtained from the training scenario,
meaning the reported accuracy is the one achieved during
the evolution. On the other hand, the Pos-trained models
were obtained from the no-training scenario, and the reported



Fig. 10. Average fitness x parameters per generation with training.

Fig. 11. Average fitness x parameters per generation with no training.

accuracy was obtained after training for 10 epochs. Moreover,
the U-net was also trained for 10 epochs for each dataset.

In general, the pre-trained models were able to achieve
higher accuracy values than both the pos-trained and the orig-
inal U-net, with an exception for the dataset “Simple”, where
the U-net achieved the highest accuracy. Considering that the
designed models have a considerably smaller complexity, the
fact that the pre-trained models were able to achieve better
results than the original U-net, indicates that the obtained
architecture was better adapted for the dataset.

TABLE III
ACCURACY OF GENERATED MODELS AND ORIGINAL U-NET

Model Simple Moderate Regular Hard Full
Pre-trained 0.9611 0.6763 0.6737 0.7828 0.4388
Pos-trained 0.6484 0.3936 0.5899 0.5094 0.3936
Orig. U-net 0.9779 0.3596 0.3665 0.3588 0.3624

The performed experiments showed that it is possible to de-
sign and improve the performance of a population of networks
over time, either by training or not, the networks during the
process. Even though the untrained models did not achieve
competitive results compared to the trained models, they can
be useful as a starting point for evolution conducted using
training. Furthermore, in comparison to the original U-net

architecture, our approach was able to generate considerably
smaller and less complex architectures, that were still able
to reach competitive, and even better results for some of the
datasets we used.

VI. CONCLUSION

While several neuroevolutionary approaches have been pro-
posed for CNNs, this is the first work that addresses the
question of evolving U-nets, a class of CNNs with constraints
in the architecture that makes it harder to solve with sequential
representations.

We have introduced a mirror grammar which efficiently
represents the U-net constraints and it is flexible enough to
represent a wider variety of architectures. We have shown how
to use DSGE with this grammar to evolve the U-nets.

We tested the capability of our approach in generating
networks within two scenarios, with and without training.
The results showed that it is possible to generate designs that
improve over time. Our proposed grammar generated a variety
of very small and less complex architectures, compared to
the original U-net. Moreover, we compared the best network
for each dataset in each scenario with the original U-net,
and the models trained during the evolution achieved better
results in most datasets, when compared to the U-net. One
limitation of our analysis is that, due to the computational
cost of the evaluation, only few runs of each configuration
were run. This could be addressed in the future by considering
ways to decrease the evaluation cost and/or increasing the
computational resources available.

A. Future work

This work can be further expanded in a number of ways,
here are some worth mentioning. Improving the grammar
representation in order to remove the restrictions and increase
the possibilities on generating the networks. Further explore
the possibility of generating designs without training to be
used as a base for further manual improvements. Explore the
viability of mixing characteristics of networks, for instance,
adding sets of building blocks to the grammar. Find a more
efficient way to evaluate the generated designs and decrease
the bottleneck related to computational cost. Another direc-
tion worth of research, is conducting detailed comparison to
classical techniques for image segmentation.
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