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Abstract—Multiobjective optimization problems with 

multiple equivalent global Pareto solutions or with at least one 
local Pareto solution are called multimodal multiobjective 
optimization problems (MMOP). Most of the existing multimodal 
multiobjective algorithms can only find global Pareto solutions. 
However, the local Pareto solutions are of great significance 
when the global ones are impracticable. This paper proposes a 
Multimodal Multiobjective Genetic Algorithm (MMOGA) to find 
both global and local Pareto solutions. In MMOGA, only 
individuals in the same niche can mate and compete with each 
other, thus enabling the population to evolve in local areas. 
Experimental results show that the proposed algorithm can find 
both global and local Pareto sets of MMOPs.   

Keywords—Multimodal multiobjective optimization; local 
Pareto solution; genetic algorithm  

I. INTRODUCTION  

Multiobjective optimization problems are almost anywhere 
in our daily life, like path planning optimization [1], scheduling 
optimization [2], feature selection optimization [3] and so on. 
Generally, the objectives to be optimized are conflicting. In 
other words, improving one objective value will dedicate 
others. Therefore, it is impossible to find one solution 
achieving the best performance for every objective. 
Multiobjective optimization algorithms usually provide a trade-
off solution set for decision-makers. The best trade-off solution 
set is called Pareto optimal Set (PS) and the mapping set of PS 
in objective space is called Pareto Front (PF). 

Multimodal optimization problem usually refers to single 
objective problem which has multiple optima. These optima 
include global and local ones. Similarly, some multiobjective 
optimization problems have multiple PSs including global PS 
and local PS. These problems are called multimodal 
multiobjective optimization (MMO) problems.  

There are some prior works on MMO. Deb constructed 
several types of test problems in Ref. [4] including MMO 
problems. However, he only analyzed the difficulties facing 
multiobjective genetic algorithms. No MMO algorithms were 
proposed in Ref. [4]. Subsequently, he proposed Omni-

optimizer [5] which can deal with multiple kinds of problems 
including uni/multimodal single/multiobjective problems. 
Liang et al. [6] proposed DN-NSGAII specifically for solving 
MMOPs. It is a preliminary study on MMO, so the 
performance of DN-NSGAII is not very satisfactory. Then, 
Yue et al. [7] proposed MO_Ring_PSO_SCD for solving 
MMO problems. MO_Ring_PSO_SCD uses ring topology to 
avoid falling into a local area and special crowding distance to 
keep multiple equivalent Pareto optimization solutions. In 
addition, Yue et al. proposed eight MMO test problems and 
designed performance indicator for MMO. Subsequently, many 
MMO algorithms are proposed. A multimodal multiobjective 
evolutionary algorithm using two-archive and recombination 
strategies named TriMOEA-TA&R [8] was proposed by Liu et 
al. In Ref. [8], several new MMOPs were also proposed. In 
addition, a double-niched evolutionary algorithm is proposed 
by Liu et al. [9]. Then, a decomposition-based evolutionary 
algorithm is proposed by Tanabe et al. [10]. Another MMODE 
algorithm is proposed by Liang et al. [11]. 

Although there is much research on MMO, they all focus 
on how to find multiple equivalent global PSs. Seldom pays 
attention to the MMO problems with local PS. In Ref. [12], 
Yue designed several scalable MMO test problems with local 
PSs. Liu proposed DNEA-L searching from local Pareto 
optimal solutions on polygon-based problems. However, the 
DNEA-L was not tested on other types of  MMO test problems. 
In fact, the local PS is not easy to be found if nondominated 
sorting method is used in the whole population. It is because 
local Pareto optimal solutions are dominated by the global 
Pareto optimal ones and they are deleted in the environmental 
selection process. However, in many cases, local Pareto 
solutions are preferred by decision-makers when the global 
ones are infeasible or too expensive to be obtained. Therefore, 
it is meaningful to study MMO algorithm finding local PSs. 

In this paper, an MMO genetic algorithm is proposed to 
find both global and local PSs. A niching method is used in the 
decision space so that the population can evolve in a local 
scope. Instead of sorting the individuals in the whole 
population, the individuals are only compared with their 
neighborhood. Therefore, the local Pareto optimal solution will 
not be deleted in environmental selection.   

The rest of this paper is organized as follows. Section II 
introduces the related definitions of MMO. Section III analyses 
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the difficulties of solving MMOPs with local PSs. The details 
of the proposed algorithm MMOGA are introduced in Section 
IV. Section V presents the experimental results and 
effectiveness analysis. Finally, the conclusion and future works 
are given in Section VI. 

II. RELATED DEFINITIONS  

This section introduces the definitions related to MMO 
including the definitions of multiobjective optimization, 
multimodal multiobjective optimization, nondominated 
relationship, global and local PS and PF. 

Multiobjective optimization problems refer to those with 
more than one objective to be optimized. Without loss of 
generality, a minimization multiobjective optimization problem 
with m objectives and n decision variables can be formulated 
as: 

 1 2min ( ) ( ( ), ( ), , ( ))

s.t.
mf f f

S

=
∈

F x x x x

x


  (1) 

where nS∈ ⊂x R  is n-dimensional decision variable vectors 
and S represents search space. 1 2( ), ( ), , ( )mf f fx x x  are the m 
objectives to be optimized. Since there is more than one 
objective, it is inappropriate to compare different solutions 
according to one certain objective value. The most popular 
method to compare solutions in multiobjective optimization is 
nondominated sorting. Without a special explanation, the 
optimization problems studied in this paper are all 
minimization problems. 

Definition 1 Dominate relationship: Given two feasible 
solutions 1x  and 2x ,  1x  dominate 2x  if : (1) 1x  is not worse 

than 2x  for all objectives i.e. 1 2( ) ( )i if f≤x x  for 1, ,i m=  ; 

(2) 1x  is better than 2x  for at least one objective i.e. 

[1, ]i m∃ ∈ , 1 2( ) ( )i if f≤x x . 

If a certain solution is not dominated by any other solutions, 
it is called nondominated solution. The set of all nondominated 
solutions is the best trade-off solution set i.e. PS and the set of 
images of PS in objective space is PF.  

Definition 2 Local Pareto optimal set (Local PS): For a 
solution set Lps, if its arbitrary member Lx  is not dominated by 

any neighborhood solution y  (
∞

− ≤ σy x , σ is a very small 

positive value), the solution set Lps is called local PS. 

Definition 3 Global Pareto optimal set (Global PS): For a 
solution set Gps, if its arbitrary member Gx  is not dominated 
by any solution in the whole feasible space, the solution set Gps 
is called global PS. 

The image of local PS in objective space is called Local PF 
and the image of Global PS is called Global PF. 

Fig. 1 shows the Local PS, Global PS, Local PF and Global 
PF of MMF11. As shown in Fig. 1 (a), x1 and x2 denote two 
dimensions of decision space and z-axis represents 
nondomination rank values. The smaller the rank value is, the 

better the solution is. There are two valleys in Fig. 1 (a). The 
deeper one represents the Global PS and the shallower is the 
local PS. In  Fig. 1 (b), f1 and f2 are two dimensions of 
objective space. The solid curve is Global PF and the dashed 
line means local PF. 

Definition 4 Multimodal Multiobjective Optimization 
Problem (MMOP): A multiobjective optimization problem is 
called MMOP if it has at least one local PS, or it has at least 
two Global PSs mapping to the same PF. 

MMF11 shown in Fig. 1 is an MMOP with one Global PS 
and one local PS. 

 

(a) Local PS, Global PS 
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(b) Local PF, Global PF 

Fig. 1. The Local PS, Global PS, Local PF and Global PF of MMF11. 

III. THE DIFFICULTIES OF SOLVING MMOPS WITH LOCAL PSS 

It is not easy to solve MMOPs with local PSs. On one hand, 
solutions in local PS may be deleted. The reason is that 
solutions in local PS are likely to be dominated by those in 
Global PS. In Fig. 1, Global PS (the deeper valley in Fig. 1 (a)) 
maps to the solid line in Fig. 1 (b), while local PS (the 
shallower valley in Fig. 1 (a)) maps to the dashed line in Fig. 1 
(b). The points in the dashed line are very likely dominated by 
the ones in the solid line. If the population is sorted according 
to nondominated relationship, the local Pareto optimal 
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solutions are very likely deleted in the environmental selection 
process.  

 On the other hand, some algorithms may fall into local PS, 
thus missing Global PSs. In problems with a large and wide 
local valley, local PSs are very deceptive. If the search ability 
of an algorithm is not strong enough, it will fall into the local 
valley and cannot jump out. 

Since there is little research on MMOPs with local PSs, this 
paper proposed an MMOGA for solving this kind of problem. 
The details of the proposed algorithm are described in the 
following section. 

IV. MULTIMODAL MULTIOBJECTIVE GENETIC ALGORITHM 

In this section, the details of MMOGA are introduced and 
the effectiveness of this mechanism is analyzed. 

A. Algorithm framework  

Algorithm 1: Framework of MMOGA 
Input: pop (population size), N_ops (number of PSs to be 

obtained), NS (neighborhood size) 

1     //Initialization 

2       Initialize Population P with pop individuals 

3       Evaluate(P) 

4       while Generation < MaxGen and FEs < MaxFEs do 

5     //Determine neighborhood   

6      for i = 1: pop 

7         P_neighbor(i) = the individuals whose distance to P(i) is 

           smaller than niching radium; 

8        Rank(i) = the nondominated rank of P(i) in P_neighbor(i)   

9        CD(i) = the mean distance from P(i) to individuals in  

           P_neighbor(i) 

10   //Select mate for P(i) 

11     Mate(i) = the farthest nondominated individual in  

         P_neighbor(i) 

12     Offspring(i) = genetic_operator(P(i), Mate(i)) 

13     Get rank_off(i) and CD_off(i) in the same way as line 8 -9

14   // Update P(i) 

15     Replace P(i) with Offspring(i) if rank_off(i) < rank(i) or  

        [rank_off(i) = rank(i) & CD_off(i) > CD(i)] 

16    end for 

17    end while 

18  //Output N_ops fronts 

19    Final_P = select N_ops ranks in P (Delete the individuals  

        dominated by its neighbors and select the first N fronts in  

        the left individuals) 

20    Output: Final_P 

The main framework of MMOGA is illustrated in 
Algorithm 1. In MMOGA, the population evolves in local 
region and the nondominated solutions in each local region are 
selected. Then all the nondominated solutions are combined 
and ranked into different fronts. Finally, the first N_ops fronts 
are output. 

In line 7 of Algorithm 1, niching radium is determined by 
NS (neighborhood size). The Euclidean distances between P(i) 
and its nearest NS*pop individuals are calculated in decision 
space. The niching radium is equal to the mean value of all the 
above distances. The individuals whose distance to P(i) are all 
its neighbors. The setting of NS is discussed in Section V. 

Two indicators are used to judge the performance in each 
neighborhood. The first one is Rank(i) and the other is CD(i). 
Rank(i) is the nondominated rank value and CD(i) is the mean 
distance from P(i) to all its neighbors. Obviously, Rank(i) 
reflects the convergence of P(i). Individuals with low Rank 
have good convergence. CD(i) reflects the crowding degree in 
the neighborhood of P(i). Individuals with large CD have good 
diversity. These two indicators are used to determine whether 
Offspring can survive or not. Offspring can survive on the 
following two conditions (line 15): (1) the Rank of Offspring is 
lower than that of P; (2) the rank of Offspring is equal to that of 
P and its CD is larger than that of P. 

In order to generate offspring with good convergence and 
diversity, individual with the lowest Rank and largest distance 
to P(i) is selected as its mate (line 11). P(i) and its mate 
generate offspring through genetic operator which is the same 
as the genetic algorithm. 

After evolution, the population needs further selection 
because some surviving individuals are neither local Pareto 
optima nor global optima. In the further selection process, 
individuals are deleted once they are dominated by any of their 
neighbors. The left individuals are local or global Pareto 
solutions since they are not dominated by any of their 
neighbors. They are sorted into different ranks and the first 
N_ops ranks are output.  

B. Algorithm analysis  

This subsection explains why MMOGA can solve MMOPs 
with local PSs. In addition, the significances of keeping both 
global and local PSs are analyzed. 

The decision niching scheme and environmental selection 
method enable MMOGA to find both local and global PSs. In 
decision niching scheme only individuals in the same 
neighborhood can mate and compete with each other. This 
scheme will prevent local Pareto optimal solutions from being 
dominated by global optimal ones. For example, in Fig. 2 the 
circles represent different neighborhoods in decision space. 
The neighborhoods with global and local solutions are denoted 
by solid circles. There is no overlap between them, so the 
solutions in these two circles can neither mate nor compete. 
They evolve generation by generation to find global and local 
PSs respectively. The disadvantage of this scheme is that the 
nondominated solutions in the circles without global or local 
PS will still be kept. These solutions are not desired. To deal 
with this problem, a further selection method is used to delete 
these undesired solutions. In the further selection process, the 



dominated solutions in every neighborhood are marked. All the 
marked solutions will be removed from the final population. 
Since there are overlaps among adjacent circles in Fig. 2, the 
dominated relationship can spread from one to the other. For 
example,  the top part of circle A is dominated by the part at its 
bottom, so the top part is marked. A similar situation happens 
in circle B. Therefore, all the solutions in the circle without 
local and global PS are all marked. Only local or global 
solutions will be kept. 

 

Fig. 2. The illustration of effective schemes in MMOGA. 

It is of great significance to keep both global and local PSs. 
First, it provides multiple choices for decision-makers. In some 
real-world applications, global Pareto optimal solutions are too 
expensive to obtained or they are not feasible anymore. Then, 
local Pareto optimal solutions are the best choices. Second, it 
helps reveal the potential characteristics of MMOPs. Many 
local Pareto optimal solutions are unknown until they are found. 
They can reflect the special characteristics. 

The effectiveness of MMO algorithms is verified through 
experimental results in the next section. 

V. SIMULATION RESULTS 

The MMO test suite in CEC2020 is used to test the 
effectiveness of the proposed algorithm. The test problems 1-
15 have only global PSs while 16-24 have both global and 
local PSs. In the experiments, population size is set to 
200*N_ops and the maximal number of fitness evaluation is set 
to 10000*N_ops according to the MMO technical report in 
CEC2020 [13] where N_ops represent the number of PSs to be 
obtained. The GA related parameters are the same as NSGAII 
[14]. All the experiments in the following texts are carried out 
21 times. This section is organized as follows. First the setting 
of neighborhood size NS is discussed. Then the effectiveness of 
the niching method in decision space and the final selection 
method is verified. Third, the proposed algorithm is compared 
with state-of-the-art MMO algorithms. Finally, the 
computational complexity of the proposed algorithm is 
analyzed. 

The neighborhood size NS is a key parameter in MMOGA. 
To set it properly, several experiments are carried out. The 
proposed algorithm using different NS values is tested on 

problems with 2-dimension and 3-dimension decision space 
separately. The indicator curves are shown in Fig. 3. MMF2 
and MMF15_a_l are chosen as typical 2-dimension and 3-
dimension problems. Fig. 3 (a) shows the indicators on MMF2. 
For 1/PSP, the smaller value means the better performance. As 
shown in Fig. 3 (a), the performance of MMOGA is improved 
as NS increasing from 0~0.4. However, when NS is larger than 
0.4, the performance deteriorates. Its performance is relatively 
better when NS in [0.2, 0.6]. Therefore, the suggested setting of 
NS on 2-dimension problems is 0.2~0.6. In this paper, NS is set 
to 0.4 for 2-dimension problems. Fig. 3 (b) shows the 
indicators on MMF15_a_l. MMOGA’s performance changes 
more than that on MMF2. It performs best when NS is equal to 
0.1. Therefore, NS is set to 0.1 for 3-dimension  problems. 

  
                  (a) 1/PSP on MMF2                          (b) 1/PSP on MMF15_a_l 
 

Fig. 3. The influence of NS on algorithm performance. 

To verify the effectiveness of the niching method in 
decision space, a multiobjective genetic algorithm with and 
without niching method are compared on test function 
MMF11_l. The results are shown in Fig. 4, where MMOGA is 
the proposed algorithm and MOGA is a multiobjective genetic 
algorithm without the niching method. MMF11_l has one local 
PS (x2 = 0.75, x1 ∈[0.1,1.1]) and one global PS (x2 = 0.25, 
x1 ∈ [0.1,1.1]). As shown in Fig. 4, MMOGA can find both 
global and local PSs while MOGA can find only the global one. 
It is because the local Pareto optimal solutions are compared 
with global Pareto optimal solutions in MOGA. Then the local 
Pareto optimal solutions are likely deleted since they are 
inferior to global Pareto optimal solutions. However, in 
MMOGA, the local Pareto optimal solutions are not compared 
with global Pareto optimal solutions directly. Instead, they are 
only compared with their neighbors. Therefore, MMOGA can 
find both local and global PSs.  

 
                   (a) MMOGA                                            (b) MOGA 

Fig. 4. PSs obtained by MMOGA and MOGA 

To verify the effectiveness of the final selection method, 
MMOGA with and without the final selection method are 
compared. The PSs obtained by MMOGA with and without the 
final selection method are shown in Fig. 5. In MMOGA, since 
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individuals evolve in the local area, some of them may be 
misidentified as local optima. As shown in Fig. 5 (b), some 
circles (obtained Pareto optimal solutions) don’t lie near 
crosses (true Pareto optimal solutions), which means they are 
not true local or global PS but be misidentified. Therefore, the 
survived individuals in each niche need combined and selected 
again. The final selection method marked all the individuals 
dominated by their neighbors and deleted all the marked ones. 
Then the individuals in the first N_ops rank are selected out. In 
Fig. 5 (a), the misidentified individuals are deleted, which can 
verify the effectiveness of the final selection method. 

 
        (a) MMOGA with final selection       (b) MMOGA without final selection 

Fig. 5. PSs obtained by MMOGA with and without final selection method 

Four algorithms, MMO-Clustering-PSO, DN-NSGAII, 
NSGAII and MO_Ring_PSO_SCD, are compared with 
MMOGA in this paper. Among them, MMO-Clustering-PSO 
is the champion in the multimodal multiobjective competition 
of CEC 2019. NSGAII is the most popular multiobjective 
genetic algorithm. DN-NSGAII is a modification of NSGAII 
for solving MMOPs. MO_Ring_PSO_SCD  is a representative 
MMO algorithm. 

The obtained PSs and PFs with medium 1/PSP in 21 times 
are shown in Fig. 6 and Fig. 7. Fig. 6 shows the PSs and PFs of 
MMF11_l, which has one global and one local PS. The true PS 
is represented with the cross while the obtained PS is denoted 
with the circle. Among the two true PSs, the top one is local PS 
and the below one is global PS. As shown, DN-NSGAII and 
NSGAII can only find global Pareto optimal solutions because 
all the circles lie on the below true PS. MMO-Clustering-PSO 
and MO_Ring_PSO_SCD can find several local Pareto optimal 
solutions besides the global ones. MMOGA can find both 
global and local Pareto optimal solutions of MMF11_l. Fig. 7 
shows the PSs and PFs of MMF13_l. MMF13_l has one global 
and one local PS, but they consist of several segments. The 
results are similar to those of  MMF11_l. MMOGA can find 
most of the local and global Pareto optimal solutions. However, 
the distribution of the third segment is not very good, which 
needs to be further improved. 
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(a) PSs and PFs obtained by MMOGA 
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(b) PSs and PFs obtained by MMO-Clustering-PSO 
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(c) PSs and PFs obtained by DN-NSGAII 
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(d) PSs and PFs obtained by NSGAII 
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(e) PSs and PFs obtained by MO_Ring_PSO_SCD 

Fig. 6. The PSs and PFs of MMF11_l 
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(a) PSs and PFs obtained by MMOGA 
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(b) PSs and PFs obtained by MMO-Clustering-PSO 
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(c) PSs and PFs obtained by DN-NSGAII 
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(d) PSs and PFs obtained by NSGAII 
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(e) PSs and PFs obtained by MO_Ring_PSO_SCD 

Fig. 7. The PSs of MMF13_l 

To compare these algorithms comprehensively, two 
performance indicators are used, 1/PSP and 1/HV. For 1/PSP, 
the smaller values mean the obtained PSs are closer to the true 
ones. For 1/HV, the smaller values mean the better 
performance in objective space. The indicators of MMOGA 
and comparison algorithms are shown in Table 1 and Table 2. 
The shadow rows represent test problems with both local and 
global PSs. The best results are in bold. As shown in Table 1, 
MMOGA performs best in all shadow problems, which 
demonstrates that MMOGA outperforms others on problems 
with both local and global PSs. Though it doesn't perform best 
in MMOPs with only global PSs (the non-shaded problems) 

according to 1/PSP, it performs best in these problems 
according to 1/HV (as shown in Table 2). According to No 
Free Lunch theorems, it cannot always perform best in every 
aspect. In conclution, the proposed algorihtm can solve 
MMOPs with local PSs and performs better in objective in 
problems with only global PSs. 

The computational complexity of MMOGA mainly 
depends on the main loop of GA, nondominated rank and 
crowding distance calculation of parents and offspring. The 
computational complexity of the main loop is O(pop), where 
pop is the size of the population. Since there are pop*NS (NS is 
neighborhood size ranging from 0 to 1)individuals in each 
neighborhood, the rank and crowding distance calculation 
needs pop * NS * (pop * NS  ±  1)/2 iterations. The nested 
computational complexity is pop * [pop * NS * (pop * NS  ±  
1)/2].  

VI. CONCLUSION  

This paper proposes a multimodal multiobjective genetic 
algorithm (MMOGA) to finding local and global PSs of 
MMOPs. In MMOGA, each individual is assigned a 
neighborhood according to the Euclidean distance in decision 
space. They can only mate and complete with individuals in 
their own neighborhoods. In this way, the population can 
evolve in different niches. However, some individuals may be 
misidentified as local Pareto optimal solutions. To eliminate 
these misidentified individuals, the nondominated solutions in 
each niche are combined. Any individual which is dominated 
by its neighbors is deleted. Experimental results verify that 
the proposed algorithm is effective in solving MMOPs with 
local PSs. 

This work a preliminary study on finding both local and 
global PSs of MMOPs. Though the proposed algorithm 
performs better on MMOPs with local PSs, it is not as good as 
some MMO algorithms on MMOPs with only global PSs. In 
addition, the computational complexity is a little high. These 
shortcomings will be overcome in our future work. In addition, 
the performance of MMOGA on complex MMOPs, such as 
problems with narrow global PS but wide local PS, will be 
improved in the future. 
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Table 1 The 1/PSP of different algorithms (mean ± std) 

Test function MMOGA MMO_Clustering_PSO DN-NSGAII NSGAII MO_Ring_PSO_SCD
MMF1 0.0484 ± 0.0136 0.0218 ± 0.0018 0.0588 ± 0.0126 0.0640 ± 0.0047 0.0366 ± 0.0022 
MMF2 0.0305 ± 0.0126 0.0218 ± 0.0062 0.0491 ± 0.0284 0.0573 ± 0.0067 0.0198 ± 0.0037 
MMF4 0.0343 ± 0.0097 0.0088 ± 0.0004 0.0475 ± 0.0125 0.0609 ± 0.0125 0.0218 ± 0.0016 
MMF5 0.0997 ± 0.0280 0.0391 ± 0.0020 0.1153 ± 0.0112 0.1291 ± 0.0106 0.0643 ± 0.0032 
MMF7 0.0338 ± 0.0096 0.0088 ± 0.0005 0.0274 ± 0.0068 0.0460 ± 0.0065 0.0209 ± 0.0012 
MMF8 0.2686 ± 0.1180 0.0321 ± 0.0021 0.1606 ± 0.0688 1.0021 ± 0.2526 0.0543 ± 0.0037 

MMF10 0.1002 ± 0.0688 0.0320 ± 0.0186 0.1523 ± 0.1216 0.1533 ± 0.1131 0.0254 ± 0.0081 
MMF11 0.0151 ± 0.0044 0.0033 ± 0.0001 0.0046 ± 0.0003 0.0040 ± 0.0006 0.0082 ± 0.0009 
MMF12 0.0120 ± 0.0116 0.0032 ± 0.0004 0.0027 ± 0.0009 0.0030 ± 0.0003 0.0045 ± 0.0005 
MMF13 0.0730 ± 0.0207 0.0316 ± 0.0041 0.0772 ± 0.0173 0.1293 ± 0.0500 0.0478 ± 0.0036 
MMF14 0.0569 ± 0.0162 0.0240 ± 0.0004 0.0860 ± 0.0083 0.1121 ± 0.0164 0.0511 ± 0.0014 
MMF15 0.0749 ± 0.0211 0.0273 ± 0.0007 0.0781 ± 0.0053 0.0838 ± 0.0075 0.0555 ± 0.0020 
MMF1_e 0.5883 ± 0.2555 0.4872 ± 0.1847 0.9457 ± 0.4894 2.3378 ± 0.7170 0.4178 ± 0.1541 
MMF14_a 0.0617 ± 0.0175 0.0281 ± 0.0005 0.1033 ± 0.0077 0.1175 ± 0.0060 0.0583 ± 0.0017 
MMF15_a 0.0745 ± 0.0209 0.0313 ± 0.0011 0.1061 ± 0.0130 0.0985 ± 0.0069 0.0617 ± 0.0026 
MMF10_l 0.0300 ± 0.0139 0.1743 ± 0.0099 4.0043 ± 3.4689 5.8494 ± 4.3221 0.1646 ± 0.0080 
MMF11_l 0.0130 ± 0.0082 0.6452 ± 0.5943 2.0136 ± 0.1698 3.3077 ± 0.5348 0.3320 ± 0.2947 
MMF12_l 0.0049 ± 0.0016 0.6194 ± 0.5762 2.6715 ± 0.1746 4.5955 ± 0.7606 0.4439 ± 0.4451 
MMF13_l 0.2566 ± 0.0982 0.3782 ± 0.1036 0.5963 ± 0.0208 0.6827 ± 0.0363 0.3814 ± 0.0988 
MMF15_l 0.0579 ± 0.0027 0.1542 ± 0.0157 0.2785 ± 0.1100 0.4023 ± 0.1842 0.1567 ± 0.0256 

MMF15_a_l 0.0750 ± 0.0042 0.1607 ± 0.0139 0.2279 ± 0.0335 0.2860 ± 0.0063 0.1744 ± 0.0255 
MMF16_l1 0.0623 ± 0.0047 0.0979 ± 0.0083 0.2074 ± 0.0300 0.2082 ± 0.0300 0.1110 ± 0.0073 
MMF16_l2 0.0980 ± 0.0076 0.2078 ± 0.0230 0.5141 ± 0.1959 0.6006 ± 0.1861 0.2035 ± 0.0206 
MMF16_l3 0.1189 ± 0.0088 0.1429 ± 0.0087 0.2838 ± 0.0343 0.3148 ± 0.0043 0.1458 ± 0.0106 

 
Table 2 The 1/HV of different algorithms (mean ± std) 

Test function MMOGA MMO_Clustering_PSO DN-NSGAII NSGAII MO_Ring_PSO_SCD 
MMF1 1.0607 ± 0.31147 1.1435 ± 0.0003 1.1447 ± 0.0006 1.1435 ± 0.0002 1.1466 ± 0.0004 
MMF2 1.0786 ± 0.31483 1.1635 ± 0.0036 1.1577 ± 0.0105 1.1570 ± 0.0053 1.1648 ± 0.0037 
MMF4 1.7235 ± 0.50579 1.8462 ± 0.0007 1.8489 ± 0.0004 1.8466 ± 7.3034e-05 1.8550 ± 0.0011 
MMF5 1.0619 ± 0.31172 1.1435 ± 0.0002 1.1443 ± 0.0007 1.1437 ± 0.0006 1.1461 ± 0.0003 
MMF7 1.0633 ± 0.31198 1.1424 ± 8.9383e-05 1.1450 ± 0.0004 1.1432 ± 0.0002 1.1458 ± 0.0003 
MMF8 2.2636 ± 0.65931 2.3754 ± 0.009 2.3690 ± 0.0016 2.3632 ± 0.0002 2.3927 ± 0.0106 
MMF10 0.0770 ± 0.0222 0.0799 ± 0.0007 0.0821 ± 0.0030 0.0815 ± 0.0029 0.0803 ± 0.0006 
MMF11 0.0645 ± 0.0189 0.0689 ± 1.9573e-05 0.0689 ± 1.4135e-05 0.0689 ± 6.2838e-06 0.0692 ± 6.0029e-05 



MMF12 0.6012 ± 0.1736 0.6389 ± 0.0026 0.6362 ± 0.0011 0.6356 ± 0.0001 0.6398 ± 0.0018 
MMF13 0.0512 ± 0.0149 0.0544 ± 3.3044e-05 0.0543 ± 8.6362e-05 0.0542 ± 3.2812e-06 0.0547 ± 7.8610e-05 
MMF14 0.2925 ± 0.0836 0.3167 ± 0.0261 0.3274 ± 0.0129 0.3518 ± 0.0021 0.3444 ± 0.0172 
MMF15 0.2080 ± 0.0588 0.2322 ± 0.0116 0.2318 ± 0.0109 0.2343 ± 0.0046 0.2443 ± 0.0130 
MMF1_e 1.1945 ± 0.3487 1.1582 ± 0.0061 1.1664 ± 0.0203 1.1567 ± 0.0031 1.1703 ± 0.0141 

MMF14_a 0.2947 ± 0.0837 0.3334 ± 0.0295 0.3142 ± 0.0087 0.3526 ± 0.0074 0.3314 ± 0.0214 
MMF15_a 0.2099 ± 0.0594 0.2262 ± 0.0085 0.2391 ± 0.0138 0.2435 ± 0.0049 0.2424 ± 0.0123 
MMF10_l 0.0781 ± 0.0226 0.0789 ± 0.0003 0.0798 ± 0.0025 0.0803 ± 0.0030 0.0796 ± 0.0005 
MMF11_l 0.0654 ± 0.0191 0.0688 ± 9.5625e-06 0.0688 ± 4.9943e-06 0.0688 ± 2.1817e-06 0.0690 ± 2.4963e-05 
MMF12_l 0.7407 ± 0.2123 0.6373 ± 0.0011 0.6355 ± 0.0004 0.6352 ± 2.2507e-05 0.6373 ± 0.0004 
MMF13_l 0.0507 ± 0.0148 0.0543 ± 1.4776e-05 0.0542 ± 7.6699e-06 0.0542 ± 1.0033e-06 0.0545 ± 4.7165e-05 
MMF15_l 0.2387 ± 0.0094 0.2243 ± 0.0081 0.2303 ± 0.0094 0.2391 ± 0.0038 0.2385 ± 0.0167 

MMF15_a_l 0.2472 ± 0.0134 0.2243 ± 0.0064 0.2259 ± 0.0106 0.2332 ± 0.0037 0.2386 ± 0.0103 
MMF16_l1 0.2342 ± 0.0109 0.2262 ± 0.0080 0.2250 ± 0.0061 0.2337 ± 0.0019 0.2288 ± 0.0117 
MMF16_l2 0.2346 ± 0.0106 0.2212 ± 0.0053 0.2281 ± 0.0059 0.2343 ± 0.0021 0.2325 ± 0.0115 
MMF16_l3 0.2257 ± 0.0122 0.2246 ± 0.0078 0.2236 ± 0.0059 0.2353 ± 0.0013 0.2340 ± 0.0118 

 
 




