
A New Distance Diffusion Algorithm for a
Path-Planning Model based on Cellular Automata

1st Samuel C. S. Nametala
Faculty of Computing

Federal University of Uberlândia
Uberlândia, Brazil

samuel.nametala@gmail.com

2nd Luiz G. A. Martins
Faculty of Computing

Federal University of Uberlândia
Uberlândia, Brazil
lgamartins@ufu.br

3rd Gina M. B. Oliveira
Faculty of Computing

Federal University of Uberlândia
Uberlândia, Brazil

gina@ufu.br

Abstract—Cellular automata (CA) are bio-inspired approach
that have been recently investigated to several applications
including robotics. An improved model based on CA rules is
proposed and evaluated for path-planning in autonomous robots.
The objective is to build a short collision-free path from the
robot’s starting position to the target, trying to avoid unnecessary
turns as much as possible. CA rules are used to enlarge obstacles,
avoid their concavities and spread the distance from each cell to
the target. The robot route is planned using the information of the
distance of each free cell to the goal. Experiments were carried
out to confirm the efficiency of the new techniques employed.
Simulations with the navigation of a e-puck robot using the
Webots platform have shown promising results confirming that
the model is able to plan smooth and short routes.

Index Terms—Cellular Automata, bio-inspired computing, dis-
tance diffusion, path-planning, autonomous robotics

I. INTRODUCTION

In autonomous robotics, one of the most investigated prob-
lems is the path-planning task [1]. It aims to find the best
trajectory between the robot position and the target, while
avoiding collisions. Route-maps [2], cell decomposition [3]
and potential field [4] are traditional approaches to deal with
this problem. Nonetheless, bio-inspired techniques such as
neural networks [5] and cellular automata [6]–[14] have also
been successfully applied to the path-planning due to its
decentralized structure and low computational cost. Such kind
of approach could be applied, for example, for path planning
of warehousing and logistics [15].

This work proposes to improve the path-planning model
based on local CA rules for robotics introduced in [7] and
refined in posterior models [12] and [13]. In the later refer-
ences, the focus was on improving the navigation while the
robot transverses the environment. On the other hand, here
our emphasis is on the initial step of the model, when the
route is built. Considering the path planning problem, two
types of errors can hinder the successful execution of the task:
systemic, more linked to the characteristics inherent to the
robot (such as disproportionate wear of the wheels); and non-
systemic, more related to the environment (such as slippery
floors). Systemic errors are satisfactorily reduced with the use
of odometry, while non-systemic errors are more difficult to
deal with. The changes proposed in the previous models were
more concerned with correcting the inaccuracies related to the

employment of odometry during navigation. Our proposal is
to minimize the occurrence of both error types by reducing
the distance and the number of rotations on the planned route.
Therefore, the improvements proposed here are orthogonal and
complementary to those discussed in previous works.

The main objective is to reduce the traveled distance and
the number of rotations of the planned route in a model based
on cellular automata rules and distance diffusion. The major
modifications proposed here refers to the route calculus and
they can be summarized by: (i) to differentiate diagonal and
cardinal moves by penalizing the first type when calculating
the route; and (ii) to apply a new step of rules designed
to avoid concave regions resultant of obstacles. Several ex-
periments were performed showing that the routes planned
using the new model tends to be shorter and with a smaller
number of rotations than those calculated by previous models.
Simulations performed in Webots platform show that an e-
puck robot was able to successfully navigate from the starting
point to the goal based on the route planned using the new
model.

The remainder of this paper is organized as follows. Section
II introduces CA basic concepts and highlights its use in robot
path-planning and previous models [7], [12], [13]. Section III
describes the proposed model and highlights the implemented
changes to the previous models. Experiments and simulations
using Webots platform are discussed in Section IV. The
conclusion and future work are presented in Section V.

II. CELLULAR AUTOMATA IN PATH-PLANNING TASK

Path-planning aims to calculate and optimize the route
for the robot navigation through the environment from the
it current position (origin) to the destination (target). Many
research based on CA have been successfully applied to the
robot path-planning problem, since they are discrete models
and its unique decentralized architecture allows the generation
of highly distributed solutions even in complex scenarios [6]–
[14], [16]. Cellular automata have been studied as a possible
model for several biological systems. They also have been in-
vestigated as a distributed strategy for multi-agent systems. CA
are composed by simple components (the lattice of cells) and
local interactions (the transition rule) [17]. Cellular space is a
D-dimensional regular lattice with N cells, each one follows

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

the same connection pattern with its close neighbors. CA are
mostly characterized by their transition rule, which determines
the state of the cell i at time t+1 depending on its own state
and the states of its neighborhood at time t [18]. Therefore,
the cells interact with others in a local and synchronous way.
CA-based models have been proposed for different robotics
tasks [19]–[22]. In [11] a classification scheme was presented
which divides the previous CA-based robotic models into six
distinct approaches, where the employment of local transition
rules to perform distance diffusion in path-planning is one of
these approaches.

Distance Diffusion [7], [12], [13] consists to use a CA rule
to calculate the distance between each free cell and the goal. In
[7] the first model that uses distance diffusion was proposed.
In this model, the planning algorithm is divided into phases.
Initially, all obstacles are virtually enlarged to avoid collisions.
Posteriorly, the distance of each free cell from the target is
calculated using the CA transition rule. Based on the computed
distance, the algorithm chooses the shortest route from the
robot position to the goal. The models proposed in [12] and
[13] are both based on [7]. However, these posterior models
focus mainly on aspects of the robot navigation and they kept
the routing calculus similar to [7]. The model in [12] focus on
recalculating the route on-fly to compensate navigation errors
while in [13] the focus are on odometry refinements and a
procedure that tries to keep the robot in the center of the cell.

The environments for robots navigation are better modeled
by two-dimensional CA, which commonly employ two types
of neighborhood: von Neumann and Moore [23]. von Neu-
mann neighborhood is formed by the central cell and its four
neighbors in the cardinal directions, whereas the diagonal cells
are also included in the Moore neighborhood, totalizing 9 cells.
Based on previous works [7], [12], [13], we adopt the Moore
neighborhood in our CA-based path-planning model.

III. PROPOSED MODEL

We propose a new path-planning model based on cellular
automata rules, which is an improvement of the models
discussed in [7], [12] and [13].

The environment is discretized in a 2D space, which rep-
resents the cellular automata lattice. Path-planning algorithm
computes a route between an initial point (robot position)
and the target cell (goal) using a distance diffusion approach.
This diffusion is based on the application of local cellular
automata rules over the lattice by some time steps. The robot
is considered as a single non-oriented point not subjected to
kinematics and dynamic laws. The algorithm receives a map
of the environment based on a preprocessed image as input,
which contains walls, obstacles, robot and goal positions. The
lattice is divided into square cells in such way that the robot
occupies an unique cell. Each cell state has seven possible
values: free, initial, goal, wall, obstacle, virtual wall and
virtual obstacle. Initially, only the first five states are possible
describing the information captured by the image. The other
two can be created by the algorithm when calculating the route
as explained following.

Fig. 1 shows an overview of the proposed approach. An
external device is responsible to capture the image of the
environment, processing it and sending the corresponding map
to the robot, which starts the path planning process. In the
first step, based on the received map, internal obstacles and
walls are enlarged using OE and WE rules, respectively. In the
second step, the ECR rule is successively applied to shade the
concave regions of obstacles, while there are neighborhoods
of free cells corresponding to some triggering patterns. The
distance to the goal is spread in step 3 using the GDLS
and GDDS rules. In the fourth step, a free-collision route is
obtained based on the GD values. Once the route is built, the
path planning is finished and the robot controller is started,
which will move the robot towards the goal. This process is
repeated for each N robot moves (we use N = 5), by
updating the route as the robot is moving toward the goal.

Fig. 1. Path planning flowchart.

As highlighted in Fig. 1, the path-planning algorithm is
divided into four main phases: (i) obstacles and walls en-
largement; (ii) obstacles’ concave regions shading; (iii) goal
distance (GD) spreading; and (iv) route calculus based on the
GD values for the free cells. They are detailed as follows.

The first phase provokes the enlargement of the walls and
internal obstacles identified in the preprocessed image to
compensate the effects of the dynamics not considered in
the model and to avoid obstacle collisions during the robot
navigation. In the present model, two similar CA rules are
used to enlarge walls and internal obstacles, but keeping the
differentiation between them. This phase was also presented
in the previous models, however they are simpler than the
one proposed here since they use the same state for walls and
internal obstacles. The enlargement rules are defined by:

Obstacle Enlargement rule (OE): IF the central cell is free
AND one of its neighbors is obstacle or virtual obstacle,
THEN the next value of the central cell is virtual obstacle.

Wall Enlargement rule (WE): IF the central cell is
free AND one of its neighbors is wall or virtual wall, THEN
the next value of the central cell is virtual wall.

Both rules are applied for a fixed number of time steps
(x), which depend on the cellular space resolution and robot
size. In our experiments, we used x = 1 as used in [12],
which results in an enlargement of one cell in obstacles and
walls thickness. In a case of conflict, OE has more priority

than WE (to be trigged). Fig. 2(a) presents the initial CA
lattice resulting from the discretization of the environment,
showing free (white), wall (green) and obstacle (black) cells.
Fig. 2(b) shows them after the application of the rules, adding
virtual wall (green) and virtual obstacle (dark grey) states.

(a) Initial lattice (t = 0) (b) Enlarged lattice (t = 1)

Fig. 2. Enlargement of walls and internal obstacles through the application
of OE and WE rules by 1 time step: (a) original CA lattice (t = 0) and (b)
CA lattice after the enlargement process (t = 1).

The second phase provokes an additional enlargement when
one internal obstacle or a cluster of them defines a concave
region which is not possible to be traversed by the robot to
achieve the goal or there is risk of collision. These concave
regions are shaded by CA rules (that is, their internal free
cells are also transformed in virtual obstacle states), since they
represent an useless effort for the robots. Therefore, they can
be avoided in the path planning. Besides, since the distance to
the goal spreading is calculated just for free cells, it diminishes
the computing in the next phase. An important consequence
of this concave region shading is that the resultant number
of rotations of the robots in the planned route tends to decay
as shown in the experiments of Section IV. This phase is the
major contribution of the present work and it was not presented
in previous models discussed in [7], [12] and [13].

The CA transition rules that enlarge the obstacles in
concave regions are trigged by eight possible neighborhood
patterns for a free cell (Fig. 3) . Therefore, there are 8 CA
rules that can be applied to each free cell in this phase.
However, they are condensed in a totalistic description below:

Enlargement of Concave Region rule (ECR): IF the
central cell and some one neighbor corner are free (F) AND
the opposite neighbor corner with at least its three adjacent
neighbors are obstacle or virtual obstacle (O/V), as shown in
one of the eight patterns presented in Fig. 3, THEN the next
value of the central cell is virtual obstacle.

ECR rule is consecutively applied for a non-fixed number
of time steps, until no free cell in the lattice can be trigged by
one of the 8 patterns. Fig. 4(a) shows the environment after
one step application of the ECR shading rule over the free cells
of the lattice presented in Fig. 2(b) (the final result of the first
phase). The cells in light gray represents those changed to
virtual obstacle due to the application of ECR rule. Fig. 4(b)
and Fig. 4(c) show the successive increment of new virtual
obstacles in the environment after the application of the ECR
rule by 2 and 3 times steps, respectively. Fig. 4(d) show the

Fig. 3. Triggering patterns of the ECR rule: the central cell (green) must be
free, one neighbor corner cell (blue) must be free and its opposite corner with
at least three adjacent cells (yellow) must be obstacle or virtual obstacle. The
states of the remaining neighborhood cells (white) are not relevant to trigger
the cells, that is, they can be free or any kind of obstacle or wall.

environment after the application of ECR by 7 time steps. This
is the final configuration of the lattice, since no free cell will
trigger ECR rule and this phase is finished.

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 7

Fig. 4. Lattice after the application of ECR rule in different time steps (t).
The colors represent free (white), wall (green), obstacle (black), virtual wall
(light green) and virtual obstacle (gray) cells, where the enlargement resultant
from ECR application (shading of concave regions) are in light gray.

Comparing the final enlarged lattice (Fig. 4(d)) with the
initial one (Fig. 2(a)), it can be seen that the original three
independent obstacles results in a compact region, which will
be avoided in the route computation.

CA rules on the third phase spreads the distance to the
target (called Goal Distance - GD) for each free cell. Free
cells states change to numbers that quantify their distance
to the goal cell (target). This is the major phase of the
path-planning models proposed in [12] and [13]. However,
in these previous models the distance in each move was
considered equivalent to one robot step without distinction
between lateral and diagonal moves, although the later takes
longer distance. Here, our model considers the difference
between they. It is considered that the distance is KL when
a robot makes a lateral move (from the central cell to a
neighbor vertically or horizontally) and KD when it makes
a diagonal move (from the central cell to a neighbor on

one of its diagonals), being KL and KD parameters of the
algorithm. The process starts by setting the GD value of the
goal cell to 0. The rules updates only free cells when at least
one of its neighbors has its GD value changed in the last
time step. Thus, they are applied for several time steps until
no updating is possible. GD spreading rules are defined by:

Goal Distance Lateral Spreading rule (GDLS): IF
the central cell is free AND its neighbor with the lowest GD
value v is in a vertical or horizontal position in relation to it,
THEN the next value of the central cell is v + KL.

Goal Distance Diagonal Spreading rule (GDDS): IF
the central cell is free AND its neighbor with the lowest GD
value v is in a diagonal position in relation to it, THEN the
next value of the central cell is v +KD.

In the experiments here we considered KL = 1 and
KD = 1.5 (to approximate

√
2). GD is calculated for all

free cells by spreading the distance starting from the goal
cell. GDLS and GDDS rules are applied for several time steps,
while there is at least one free cell that triggers the rule or until
the neighborhood of the robot’s initial position is reached. In a
case of conflict, GDLS has more priority than GDDS rule to be
trigged. The neighbors of the robot position will be accessed
if there is a collision-free route from the initial cell to the goal.
However, the spreading could be prematurely stopped (before
the initial cell is reached) when there is no possible route. The
differentiation between moves proposed in the present work
tends the robot to use lateral than diagonal moves, because
the later are more expensive. It results in a final route with
the shortest distance and smaller number of rotations as one
could see in the experiments of Section IV.

Fig. 5 shows an example of goal distance spreading using
GDLS and GDDS rules. The black arrows relate the cells being
updated to their lowest-value neighbors. Starting from GD of
the goal cell (in blue) equal to 0, Fig. 5(a) presents the values
propagated to its neighbors after triggering GDLS and GDDS
rules. The cells updated using GDDS are represented in red
while the ones defined by GDLS are in light gray. For example,
the neighbor with the lowest GD value for the red cell is 0
in an diagonal position. Therefore, GDDS was applied to this
cell obtaining 1.5 (v = 0 + KD = 1.5). For the gray cells,
the neighbor with the lowest GD value is also 0, but they
are in the vertical and horizontal positions. Thus, GDLS was
applied obtaining 1 for both (v = 0 + KL = 1). On the
next time step (Fig. 5(b)) GD was propagated using the cells
calculated in the previous step. One could see that free cells
have their values calculated by applying GD rules: two gray
cells (GDLS) with GD equal to 2 (v = 1 + KL = 1)) and two
red cells (GDDS) with GD equal to 2.5 (v = 1 + KD = 1.5)).
Fig. 5(c) highlights the GD updating for additional four cells:
gray (GDLS) with value 3 (v = 2 + KL = 1) and red
(GDDS) with value 3.5 (v = 2 + KD = 1.5). The GD
spreading continues applying GDLS and GDDS rules until a
neighbor of the robot position (in yellow) is reached: the cell

with GD equal to 11. The final lattice with GD values after
10 time steps is shown in Fig. 5(d).

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 10

Fig. 5. Lattice after the application of GD rules in different time steps (t).

The forth and last phase uses GD values of the free cells to
construct a free-collision route from the current robot position
to the target cell. The cells are just chosen in a sequential
way from the initial cell (in yellow) to the goal (in blue).
Although it is very similar to this process in the previous
models ([7], [12] and [13]), there is a slight modification
in our algorithm. Previous models begins from the neighbor
cell of the robot position and the algorithm just define the
next cell to build the route by choosing one neighbor of the
last chosen cell that decrements 1 in the value of GD at each
step. Our algorithm needs to find and choose the neighbor
with the lowest GD value and it can be decremented by 1
or 1.5. In a case of conflict (that is, two or more cells with
the lowest GD value), the algorithm chooses the cell with the
lowest euclidean distance to the goal. Fig. 6 shows the initial
and final steps of the route building process, where the cells
chosen to compose the robot’s trajectory are in green.

(a) Initial step (t = 1) (b) Final step (t = 10)

Fig. 6. Steps of a robot’s route building process.

The new combined techniques help the path-planning al-
gorithm to find the shortest path with a smaller number of

rotations, which consequently reduces the systemic and non-
systemic errors during the robot navigation.

IV. EXPERIMENTS AND RESULTS

We carried out some experiments in a computational en-
vironment implemented aiming to show the behavior of the
proposed distance diffusion model and to confront this with
the previous algorithm used in [7], [12] and [13]. For these
simulations, we used two environments with 100× 100 cells.
Fig. 7 shows both environments after the enlargement of
obstacles and walls. Each one has several rooms with walls,
narrow doors and some internal obstacles.

(a) E1

(b) E2

Fig. 7. Virtual environments used in the experiments. The routes in blue
were calculated using the original path-planing discussed in [7], [12] and
[13] (PATHP): (a) E1: distance = 738 and no. of rotations = 158; (b) E2:
distance = 747 and no. of rotations = 211.

Aiming to clarify the contribution of each major modifica-
tion of the investigated model, two versions of the proposed
path-planning algorithm was elaborated. The first model dif-
fers between diagonal and lateral moves (GDLS and GDDS
rules) but does not apply the shading of concave regions
in the obstacles (ECR rule). It was called PATHP+D (path-
planning with diagonal differentiation). The second one is a
full version of the proposed model described in Section III.
That is, in addition to using the GDLS and GDDS rules, it
also shades the concave regions using the ECR rule. It was

called PATHP+D+S (path-planning with diagonal differentia-
tion and the shading of the obstacles’ concave regions). The
two versions were confronted with the results of the original
algorithm for route calculus used in [7], [12] and [13] (called
here PATHP) to verify the performance of the new model.

We run each version of the path-planning algorithm in
both environments E1 and E2 by choosing appropriate initial
position and goal cells that makes the robot to transverse
all the rooms to find the target. Fig. 7(a) shows the route
obtained for E1 using the original algorithm (PATHP): total
distance = 738 and total number of rotations = 158. Fig. 8(a)
and Fig. 8(b) present the routes calculated using PATHP+D
and PATHP+D+S in the same environment, respectively.
PATHP+D decreases the total distance from 738 to 702 and
also reduces the number of rotations from 158 to 144 in E1.
On the other hand, PATHP+D+S was able to achieve an extra
reduction of rotations, totalizing 122 spins, with the same total
distance of PATHP+D (702). Similar results were obtained in
E2 with the calculated routes presented in Fig. 7(b), Fig. 9(a)
and Fig. 9(b). PATHP+D decreases the total distance from 747
to 697 and also reduces the number of rotations from 211 to
150, while PATHP+D+S was able to achieve an extra reduction
of rotations to 132.

(a) PATHP+D

(b) PATHP+D+S

Fig. 8. Routes calculated for E1 using two versions of the proposed path-
planing algorithm: (a) PATHP+D: distance = 702 and no. of rotations = 144;
(b) PATHP+D+S: distance = 702 and no. of rotations = 122.

(a) PATHP+D

(b) PATHP+D+S

Fig. 9. Routes calculated for E2 using two versions of the proposed path-
planing algorithm: (a) PATHP+D: distance = 697 and no. of rotations = 150;
(b) PATHP+D+S: distance = 697 and no. of rotations = 132.

It highlights the skill of each modification in the proposed
algorithm. The differentiation between diagonal and lateral
moves enables find routes with shorter total distance and also
reduces the number of rotations since it avoids diagonal moves.
However, the shading of concave regions makes possible to
reduce the number of rotations, returning smoothly robots’
trajectories in the case that there are other routes with the
same distance.

Subsequently, a series of 50 runs was performed for each
environment, in which a pair of positions (initial, goal) is
randomly generated. The objective is to quantify the proposed
model improvements in terms of traveled distance and number
of rotations. The results are presented individually in Fig. 10
while Fig. 11 shows the total results by summing the values of
all the 50 runs for each environment. The full version of the
model (PATHP+D+S) applied to E1 was able to reduce 4.3%
of the total distance and 23.2% of the total number of rotations
when compared with the original PATHP. For the environment
E2, it was able to reduce 5.1% of the total distance and 25.7%
of the total number of rotations. Comparing the versions of the
proposed algorithm, the addition of concave regions shading
returned the same distance in all the 100 runs and it achieves
an extra reduction of 10,4% in E1 and 8,4% in E2. Also, the

number of rotations in 73 runs decreased due to the concavity
shading and in just 2 runs this number was slightly increased.

(a) Distance

(b) Number of Rotations

Fig. 10. Performance per run of the investigated approaches using PATHP
(blue), PATHP+D (red) and PATHP+D+S (black)

(a) Total Distance (b) Total Rotations

Fig. 11. Total results for the investigated approaches using PATHP (blue),
PATHP+D (red) and PATHP+D+S (black)

Fig. 12 shows in detail changes in the route planning
when the PATHP+D or the PATHP+D+S algorithms are used
instead of PATHP. The original route (PATHP) is shown in
blue while the red route was built using PATHP+D and the
black route was planned using PATHP+D+S. One can see that
PATHP+D+S is able to build smoother routes by avoiding
the obstacles concave regions. It is important to note that
the shading step will turning free cells in virtual objects by
applying the ECR rule step by step while there is a possible
alternative path to cross the robot. For example, in Fig. 12(a)
the concave region below the obstacles was covered towards
the vertical enlarged wall until at least one free cell remain

between the shadow area and the wall. This behavior is a
consequence of the triggering patterns of the ECR rule showed
in Fig. 3: the central cell will change to virtual obstacle only
if the opposite corner is a free cell, ensuring the existence of
at least one free path. On the other hand, Fig. 12(b) shows a
situation in which the concave region was completely covered,
since there is no other obstacle nearby. In this, the planned path
is even more linear avoiding zigzag moves and reducing spins.

After the confirmation about the positive effects to build the
planned route, we performed new simulations using Webots
platform [24] to evaluate the navigation of the robot in
executing this route. For this, we implemented the strategies
proposed in [13] to navigate a single e-puck robot after the
route planning. E-puch is a cylindrical compact mobile robot
with 7cm of diameter [25]. In the navigation simulations, only
the robot’s position sensors (left and right wheel sensors) are
used for the odometry computation. The resultant model was
applied in a third environment, named E3, that is shown in
Fig. 13. It has 70 × 45 cells and each cell is 7cm × 7cm.
Therefore, each robot step takes 7cm if it is a lateral move
and approximately 10cm if it is diagonal move.

Since the experiments here are simulated, a second e-puck
robot was added to emulate the behavior of a device that
captures and processes the image of the environment, sending
the map to the navigating robot, to plan its route. Thus,
in the emitting robot, the data after processing were added
manually in a static manner, according to each environment.
The locations of each obstacle, wall, robot and goal correspond
to (x, y) positions of their respective cells in the environment
map. A matrix stores the map, which is sent from the emitting
robot. The connection between both robots is made with
bluetooth inside the Webots platform [20].

Fig. 13 presents the planned routes calculated for E3 using
the original PATHP and the proposed PATHP+D+S. It is
possible to observe that the shading step together with diagonal
differentiation generate a route that avoid to pass in the
concavity regions formed by nearby obstacles returning a
more linear trajectory, with less direction changes. Besides,
the planned route using PATHP+D+S is shorter. Numerically,
PATHP (Fig. 13(a)) calculated a route with total distance equal
to 235 and number of rotations equal to 54, while PATHP+D+S
(Fig. 13(b)) generated a route with total distance equal to 225
and number of rotations equal to 38.

Fig. 14 shows the actual trajectory of the robot in Webots
when it navigates according to the planned route calculated
using the proposed algorithm PATHP+D+S. It is possible to
observe that the robot was able to achieve the goal cell starting
from its initial position, making a collision-free trajectory very
close to that planned. The video of this experiment can be
found at [26]. We believe that the improvements in the route
planning step mixed with the strategies proposed for robot
control in [13] return an efficient model for path-planning and
navigation of robots. The resultant path-planner is able to build
short and smooth routes, whereas the control model makes the
robot to execute its trajectory very close to the planned route.

The video of the simulation based on the route planned

using PATHP can be found in [26] as well. The e-puck
robot was also able to access the goal using a collision-free
trajectory. However, the navigation using PATHP+D+S was
almost 1 minute faster than using PATHP (14’15” against
15’05”), a consequence of its smoother route.

(a) (b)

Fig. 12. Details of two parts of the route calculated for environment E1 using
PATHP (in blue), PATHP+D (in red) and PATHP+D+S (in black).

(a) PATHP

(b) PATHP+D+S

Fig. 13. Planned routes calculated for environment E3 using (a) PATHP:
distance = 235 and no. of rotations = 54; (b) PATHP+D+S: distance = 225
and no. of rotations = 38.

V. CONCLUSION AND FUTURE WORK

A new path-planning model based on cellular automata rules
and distance diffusion is proposed for autonomous robotics.
This model is an improvement of the models discussed in
[7], [12] and [13]. The major modifications refers to the route
calculus and they can be summarized by: (i) to differentiate
diagonal and cardinal moves by penalizing the first type when
calculating the route; (ii) to apply a new step of rules designed
to avoid concave regions resultant of obstacles; and (iii) to
differentiate walls and internal obstacles. The first modifi-
cation causes generating routes that avoid diagonal moves
when they are more expensive to the total displacement. The
second makes the robots performing smoothly routes when

Fig. 14. Webots simulation showing the robot navigation on environment
E3, using PATHP+D+S for route calculus. The corresponding video to this
simulation is available at [26].

shading concave regions avoiding them. The third modification
is needed to apply the shading rules for internal obstacles
because in the previous models there is no difference between
them and walls.

Our experiments have shown that the application of di-
agonal differentiation together with the shading rules return
routes with short distance and smooth trajectories, that is,
the robots make less rotations to traverse obstacle regions
than the original routes planned in the previous models [7],
[12] and [13]. Besides, Webots simulations have shown that
the proposed model is able to calculate routes that can be
successfully traversed using an e-puck robot and the navigation
strategies presented in [13], indicating that this may be an
efficient approach for robots planning and navigating.

Ongoing research aims to conduct experiments using real
robots as performed in [13]. For this, we need to integrate our
approach to a system for processing images captured from a
bird eyes’ view camera during navigation. The processed im-
age generates a lattice map of the environment [13]. Compara-
tive analysis with other path planning approaches, such as A*
and D*-lite algorithms [27], will be carried out in future work.
We also intend to investigate a hybrid path planning model
integrating CA model and evolutionary robotics approach [28]
aiming to refine several model parameters to give the robot
more flexibility and robustness to face dynamic environments.

ACKNOWLEDGMENT

The authors thank FAPEMIG, CAPES and CNPq for the
financial support.

REFERENCES

[1] R. C. Arkin, “Behavior-based robotics,” MIT press, 1998.
[2] Y. Zhang, N. Fattahi, and W. Li, “Probabilistic roadmap with self-

learning for path planning of a mobile robot in a dynamic environment,”
in Conf. Mechatronics and Automation, 2013, pp. 1074–1079.

[3] C. Ramer, S. Reitelshofer, and J. Franke, “A robot motion planner for 6-
dof industrial robots based on the cell decomposition of the workspace,”
in Symposium on Robotics, 2013, pp. 1–4.

[4] Y. Jianjun, D. Hongwei, W. Guanwei, and Z. Lu, “Research about local
path planning of moving robot based on improved artificial potential
field,” in Chinese Control and Decision Conf., 2013, pp. 2861–2865.

[5] C. Luo, J. Gao, Y. L. Murphey, and G. E. Jan, “A computationally effi-
cient neural dynamics approach to trajectory planning of an intelligent
vehicle,” in Int. Joint Conf. on Neural Networks, 2014, pp. 934–939.

[6] P. G. Tzionas, A. Thanailakis, and P. G. Tsalides, “Collision-free path
planning for a diamond-shaped robot using two-dimensional cellular
automata,” Trans. Robotics and Automation, vol. 13, no. 2, pp. 237–
250, 1997.

[7] C. Behring, M. Bracho, M. Castro, and J. Moreno, “An algorithm for
robot path planning with cellular automata,” Int. Conf. on Cellular
Automata for Research and Industry, pp. 11–19, 2000.

[8] F. M. Marchese, “A directional diffusion algorithm on cellular automata
for robot path-planning.” Future Generation Computer Systems, vol. 18,
no. 7, pp. 983–994, 2002.

[9] K. Ioannidis, G. C. Sirakoulis, and I. Andreadis, “A cellular automaton
collision-free path planner suitable for cooperative robots,” Panhellenic
Conf. on Informatics, pp. 256–260, 2008.

[10] A. Akbarimajd and A. Hassanzadeh, “A novel cellular automata based
real time path planning method for mobile robots,” J. of Engineering
Research and Applications, vol. 1, no. 4, pp. 1262–1267, 2011.

[11] G. B. S. Ferreira, P. A. Vargas, and G. M. B. Oliveira, “An improved cel-
lular automata-based model for robot path-planning,” Conf. on Towards
Autonomous Robotic Systems, pp. 25–36, 2014.

[12] G. M. B. Oliveira, P. A. Vargas, and G. B. S. Ferreira, “Investigating
a cellular automata model that performs three distance diffusion on a
robot path planning,” European Conference on Artificial Life, pp. 271–
278, 2015.

[13] L. G. Martins, R. d. P. Cândido, M. C. Escarpinati, P. A. Vargas, and
G. M. Oliveira, “An improved robot path planning model using cellular
automata,” in Conf. on Towards Autonomous Robotic Systems, 2018, pp.
183–194.

[14] G. M. B. Oliveira, R. G. Silva, G. B. Ferreira, M. S. Couceiro, L. R.
Do Amaral, P. A. Vargas, and L. G. A. Martins, “A cellular automata-
based path-planning for a cooperative and decentralized team of robots,”
in IEEE Congress on Evolutionary Computation, 2019, pp. 739–746.

[15] K. C. T. Vivaldini, J. P. M. Galdames, T. B. Pasqual, R. M. Sobral,
R. C. Araújo, M. Becker, and G. Caurin, “Automatic routing system for
intelligent warehouses,” in IEEE Int. Conf. on Robotics and Automation,
vol. 1, 2010, pp. 1–6.

[16] L. E. Parker, B. Birch, and C. Reardon, “Indoor target intercept using
an acoustic sensor network and dual wavefrontpath planning,” IEEE Int.
Symposium on Intelligent Robots and Systems, pp. 278–283, 2003.

[17] G. Oliveira, P. De Oliveira, and N. Omar, “Improving genetic search
for one-dimensional cellular automata using heuristics related to their
dynamic behavior forecast,” in Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 1. IEEE,
2001, pp. 348–355.

[18] M. Mitchell, “Computation in cellular automata: A selected review,”
Non-standard Computation, pp. 385–390, 1996.

[19] D. A. Lima, C. R. Tinoco, and G. M. Oliveira, “A cellular automata
model with repulsive pheromone for swarm robotics in surveillance,” in
Int. Conference on Cellular Automata. Springer, 2016, pp. 312–322.

[20] C. R. Tinoco, D. A. Lima, and G. M. Oliveira, “An improved model for
swarm robotics in surveillance based on cellular automata and repulsive
pheromone with discrete diffusion,” International Journal of Parallel,
Emergent and Distributed Systems, vol. 34, no. 1, pp. 53–77, 2019.

[21] D. A. Lima and G. M. B. Oliveira, “A probabilistic cellular automata
ant memory model for a swarm of foraging robots,” 14th Int. Conf. on
Control, Automation, Robotics and Vision, pp. 1–6, 2016.

[22] C. R. Tinoco and G. M. B. Oliveira, “Heterogeneous teams of robots
using a coordinating model for surveillance task based on cellular
automata and repulsive pheromone,” in IEEE Congress on Evolutionary
Computation, 2019, pp. 747–754.

[23] P. Sarkar, “A brief history of cellular automata,” ACM Computing
Surveys, vol. 32, no. 1, pp. 80–107, 2000.

[24] Cyberbotics, “Webots simulator,” 2017, https://www.cyberbotics.com.
[25] “E-puck robot,” 2017, http://www.e-puck.org.
[26] “Video: Bio-inspired computing lab,” 2020, https://www.youtube.com/

channel/UC4uDX-7nXDGYl4Hu5IVCJdw?disablepolymer=true.
[27] Y. D. Setiawan, P. S. Pratama, S. K. Jeong, V. H. Duy, and S. B. Kim,

“Experimental comparison of a* and d* lite path planning algorithms
for differential drive automated guided vehicle,” in Recent Advances in
Electrical Engineering and Related Sciences, 2014, pp. 555–564.

[28] G. Oliveira, R. Silva, L. Amaral, and L. Martins, “An evolutionary-
cooperative model based on cellular automata and genetic algorithms
for the navigation of robots under formation control,” in 7th Brazilian
Conf. on Intelligent Systems, 2018, pp. 426–431.

