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Abstract—Salp Swarm Algorithm (SSA) is a novel swarm
technique using to optimize design problems. SSA is inspired by
the swarming behavior of salp observed in the deep area of sea.
In spite of its application versatility, SSA suffers from mediocre
convergence rate and limited exploratory capabilities. In this
paper, a Fitness Dependent Salp Swarm Algorithm (FDSSA)
is proposed. The novelties of the proposed approach are the
definition of a fitness coefficient able to enhance the exploration,
the introduction of a novel mathematical model to describe the
trajectory of salps and a mutation mechanism to increase the
convergence speed. The designed algorithm is tested on unimodal
and multimodal benchmark functions and then compared with
well-known heuristic algorithms. The results show the superiority
of FDSSA with respect to the comparison algorithms in terms of
optimization and convergence performances according to their
computational complexity.

Index Terms—Evolutionary Computation, Swarm Intelligence,
Salp Swarm Algorithm, Optimization Algorithms, Mutation.

I. INTRODUCTION

The optimization techniques are applied to solve design-
ing problems on different areas. However, there is no an
universal optimization algorithm able to solve all problems
[1]. Because the application of exhaustive search techniques
leads to huge computational costs, several nature-inspired
optimization algorithms have been proposed in literature. The
feature of these algorithms in solving the problems is the
powerful and robust search ability. Among nature-inspired
algorithms, the swarm search-based algorithms work with
a population-based technique. At each iteration, the current
solutions are produced according to historical information
obtained by previous generations. Some of well-known swarm
algorithms are: Particle Swarm Optimization (PSO) algorithm
[2], Bat Algorithm (BA) [3], Artificial Bee Colony (ABC)
algorithm [4], Moth-Flame Optimization (MFO) algorithm [5],
Gray Wolf Optimizer (GWO) algorithm [6]. PSO is inspired
by the behavior of social organisms in groups and it moves
the population around looking for a potential solution. The
echolocation behavior of the microbat is the main features
of BA. ABC is a population-based algorithm that simulates
the foraging behaviors of honey bees. MFO is based on the
transverse orientation of moths with respect the moon. The
hunting mechanism of gray wolves is reproduced in GWO.

Among population-based algorithms, some heuristic opti-
mization algorithms are inspired by Physics. The Multi-Verse
Optimizer (MVO) is a population-based algorithm inspired by

the multiverse theory (white hole, black hole, and wormhole)
[7]. In order to search a perfect state of a sound harmony,
the frequency, timbre and amplitude are optimized by the
Harmony Search (HS) algorithm [8].

A novel population-based optimization algorithm is the
Salp Swarm Algorithm [11] which mimics the predatory
behavior of salp swarm. SSA has a simple inspiration, few
controlling parameters and adaptive exploratory behavior. This
makes SSA a search technique widely used to solve a huge
variety of optimization problems. A mutated SSA was uti-
lized to assign the photovoltaic and shunt capacitors in the
distribution systems [12]. Tubishat et al. [13] proposed an
improved version of SSA to solve feature selection problems
and select the optimal subset of features in wrapper-mode. An
enhanced SSA was designed for improving the peak power
point tracking and fault-ride through ability enhancement of
a grid-tied permanent magnet synchronous generator [14]. In
order to tackle feature selection problems more efficiently,
a binary SSA with crossover scheme was proposed [15].
Ateya et al. [16] developed a chaotic SSA to get the optimal
number of controllers and the best allocations of switches
with the available controllers for large scale software-defined
networking enabled networks. A novel improved-salp swarm
optimization technique for optimizing gain parameters of type-
II fuzzy PID controller was proposed by Sahu et al. [17]. A
quantum-behaved and wavelet mutation SSA shown excellent
solutions on constrained engineering problems [18]. Ma et
al. [19] designed a comprehensive improved SSA for solving
redundant container deployment. To solve the problem of
worse segmentation effects for segmenting images according
to the pixel, a suitable SSA was proposed [20]. The Simplified
Salp Swarm Algorithm (SSSA) [21] used a random search
radius to optimize the leader search range.

The main defect of SSA is that it suffers from a problem
in exploitation which leads to a slow convergence rate [22].
Moreover, SSA has limited exploratory capacities with stagna-
tion to local optimum. In order to overcome these limitations,
some revised versions of SSA have been proposed. Rizk-Allah
et al. [25] proposed a new binary version of SSA based on
the improved Arctan transformation. A new control parameter
was added to SSA to tune the current optimal solution [23].
Sayed et al. [24] proposed a chaos-induced SSA where chaotic
variables are used to replace the random variables.

The challenge is to improve the exploration phase with
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a suitable time-independent parameter. Here, the idea is to
exploit the information which comes from the computed
fitness function values. In this way, the salps position depends
on fitness change and the problem of slow convergence rate
can be overcome.

In this paper, a Fitness Depended Salp Swarm Algorithm
(FDSSA) is designed. The contributions of the proposed
approach are: the introduction of a suitable fitness coefficient
which enhances the exploration phase; the definition of a
novel mathematical model to replicate the salps trajectory;
the application of mutation mechanism to escape from local
optimum and enhancing the population diversity.

The rest of the paper is organized as follows. Section II
contains the description of SSA mathematical model. The
proposed algorithm is described in Section III. Section IV
illustrates the FDSSA results. The conclusions are contained
in Section V.

II. MATHEMATICAL MODEL OF SSA

SSA is a population-based optimization method in which
the target of salp swarm is a food search in the search space.
Each salp updates its location in the search space whether it
is the first salp in the chain (called leader) or a follower. The
leader moves towards the target food source, whereas each
follower can move towards other salps.

The presence of food in the space is represented by F =
(F1, ..., Fd), where d is the spacial dimension. Moreover, the
position of i-th salp in the j-th dimension at iteration t is
referred as Xi

j(t). Let n be the number of salps, the population
is generated between lower bound lb and upper bound ub of
search space through the equation

Xi
j(t) = lbi + (ubi − lbi)R (1)

with i = 1, 2, ..., n and j = 1, 2, ..., d. The quantity R is a
random number between 0 and 1.

The position of the leader is updated by

X1
j =

{
Fj + c1((ubj − lbj)c2 + lbj), c3 ≥ 0.5
Fj − c1((ubj − lbj)c2 + lbj), c3 < 0.5

(2)

where X1
j shows the leader position in the j-th dimension,

Fj is the food source position in the j-th dimension; ubj
and lbj are upper bound and lower bound at j-th dimension
respectively. The coefficients c2 and c3 are random numbers
uniformly generated in [0, 1] . The balance between explo-
ration and exploitation is assured by c1 defined as

c1 = 2 exp(−4t/T )2 (3)

where t is the current iteration and T is the max number of
iterations. To update the followers position x, the Newton’s
law of motion is used:

x =
1

2
at2 + v0t (4)

where

a =
(vfinal − v0)

∆t

is the acceleration of the follower. Moreover, vfinal and v0 are
referred as final and initial speed of the follower, respectively.
Because the follower follows the movement of the previous
salp close to itself, it follows that

vfinal =
(Xi−1

j (t)−Xi
j(t))

∆t

Because the time in optimization is iteration, it follows that
∆t = (t + 1) − t = 1. Considering v0 = 0, the equation( 4)
can be rewritten as

x =
1

2
(Xi−1

j (t)−Xi
j(t)) (5)

Therefore, the position of i-th follower in the dimension j at
iteration t+ 1 is Xi

j(t+ 1) = Xi
j(t) + x, thus

Xi
j(t+ 1) =

1

2
(Xi

j(t) +Xi−1
j (t)) (6)

with i ≥ 2 and j ∈ [1, d].
The search process of SSA is shown in Algorithm 1.
Finally, the main features of SSA are the following. SSA

saves the best solution obtained so far and assigns it to the food
source variable. SSA updates the position of leading salp with
respect to the food source only. In this way, the leader always
explores and exploits the space around it. Moreover, gradual
movements of the followers prevent SSA from premature
convergence.

Algorithm 1: Salp Swarm Algorithm
Input: n,d,T
Output: F

1 begin
2 Initialize the population of salps with the equation (1);
3 while end condition is not satisfied do
4 Evaluate the fitness of each search agent;
5 F=the best search agent;
6 Compute the coefficient c1 through (3);
7 for each salp i from 1 to n do
8 if i == 1 then
9 The position of leading salp is updated

using equation (2);
10 end
11 else
12 The position of i-th follower is updated

using equation (5);
13 end
14 end
15 Amend the salps based on the upper and lower

bounds of variables;
16 end
17 end



III. PROPOSED ALGORITHM

One of the defects of SSA is the limited exploration
capability. In order to improve the SSA exploration phase,
a fitness dependent coefficient is defined. Let fbest be the best
value of fitness so far, the fitness weight of i-th leader wi is
defined as

wi =

{ ∣∣∣ fbestfiti

∣∣∣ fiti 6= 0

1 fiti = 0
(7)

where fiti is the current fitness value of i-th leader. Because
the coefficient c1 defined in (3) affects the exploration, it is
defined as

c1 = 4wi exp(−4t/T )2 (8)

In this way, the randomization of the algorithm is increased
through the fitness values of leader. On the other hand, if the
number of leaders increases then the algorithm randomization
degree is increased. However, this fact causes a decreasing of
the algorithm stability. Therefore, to balance randomness and
stability of the algorithm, the first n/2 salps are selected as
leaders whereas the latter n/2 salps are the followers.

In deep oceans, salps often form a swarm called salp chain
[26]. Observing the salp swarm trajectory [27], [28], note
that it is similar to a spiral shape. In view of the above, the
proposed approach matches each follower to a leader and the
followers spin around the matched leader by using a spiral
shaped path. Thus, the position of i-th follower is defined by

Xi
j(t+ 1) = |X l

j(t)−Xi
j(t)|et cos(2πt) +X l

j(t) (9)

where X l
j(t) is the position of the l-th leader, with i ∈ [n/2+

1, n] and l ∈ [1, n/2]. Note that, the magnitude of the spiral
line depends on the distance |X l

j(t)−Xi
j(t)| between follower

and leader.
In order to improve the convergence rate of SSA, a mutation

mechanism is proposed. In fact, a suitable mutation technique
assures of escaping from local optimum and enhancing the
diversity in population. The proposed mutation scheme is
defined just for followers which are mutated by using the dif-
ferential evolution mutation [29]. Among the various mutation
strategies [30], the DE/best/2 has been used in this work. The
idea is to consider the best position so far Xbest as target vector
and two perturbation difference vectors. Thus, the position of
the i-th follower (with i ∈ [n/2 + 1, n]) is mutated by means
of the equation

Xi
j(t+1) = Xbest+R(Xi1

j (t)−Xi2
j (t))+R(Xi3

j (t)−Xi4
j (t))

(10)
where R is a random number in [0, 1], i1, i2, i3 and i4
are integer random numbers in [n/2 + 1, n] not equal to
i. Therefore, if a follower is not selected as the best salp,
it is mutated by (10) and added to the population for next
generation.

Algorithm 2: Fitness Dependent Salp Swarm Algo-
rithm

Input: n,d,T
Output: fbest

1 begin
2 Initialize the population of salps with the equation (1);
3 Evaluate the fitness of salps using objective function;
4 while t < T do
5 for each salp i from 1 to n do
6 if i < n/2 + 1 then
7 Calculate the fitness weight with (7);
8 Compute the coefficient c1 through (8);
9 The position of i-th leader is updated using

equation (2);
10 Evaluate the fitness fiti of leader using

objective function;
11 if fiti < fbest then
12 fbest = fiti;
13 end
14 end
15 else
16 The position of i-th follower is updated

using equation (9);
17 Evaluate the fitness fiti of follower using

objective function;
18 if fiti < fbest then
19 fbest = fiti;
20 end
21 else
22 Apply mutation on the i-th follower for

the next generation using equation (10)
23 end
24 end
25 end
26 t = t+ 1;
27 end
28 end

The steps of the proposed FDSSA are resumed in the
Algorithm 2.

The time complexity of SSA depends on the number of
iteration T , the number of search agents n and the dimension
d of search space. SSA utilizes random algorithm to generate
random number. Because there are many different algorithms
to generate random numbers, the proposed computational com-
plexity analysis does not consider the cost of such algorithms.
To obtain a strict complexity analysis, the big-O notation is
used [9], [10]. Following the approaches of [11], [28], [19],
the time complexity of FDSSA is the same of SSA, i.e.
O(T (nd+nCf )), where Cf is the cost of objective function.

IV. EXPERIMENTAL RESULTS

The proposed algorithm is compared with the well-known
heuristic algorithms PSO, MVO, BA, HS, ABC, SSA and
SSSA. This choice depends on their common population-
based features. Moreover, the source code sharing of these
algorithms provides a better comparison among algorithms.
All the algorithms are tested on the benchmark functions of
Tables I and II. In particular, Table I shows the unimodal
benchmark functions, whereas the functions in Table II are



multimodal functions with variable dimension. Generally, the
test functions are divided in unimodal and multi-modal func-
tions. Because the unimodal benchmark functions have one
global optimum and no local optima, they are used to test the
exploitation level and the convergence of the algorithm. On the
other hand, multimodal benchmark functions have a massive
number of local optima, and they are used to test the local
optima avoidance and exploration levels.

In order to achieve meaningful statistical results, the heuris-
tic algorithms must run on a problem at least 10 times. The
metrics of their performances are evaluated on average and
standard deviation of the best obtained solution in the last
iteration. Here, average and standard deviation are calculated
on 30 runs. Moreover, the number of agents is equal to 30 and
the number of iteration is 1000 (i.e. n = 30 and T = 1000)
for all the considered algorithms. This fact assures the same
swarm size for PSO, MVO, BA, HS, ABC, SSA and SSSA.
The Table III shows the parameters settings for the involved
algorithms.

Statistical tests are essential to check significant improve-
ments by a proposed algorithm over existing methods. For a
suitable comparison among algorithms, the Friedman rank test
[31] is applied on the mean solutions obtained by FDSSA and
competitor algorithms.

The simulation results are shown in Table IV. Note that,
FDSSA achieves the best solutions with respect to the com-
petitor algorithms on the test functions F1, F3 and F5.
For the functions F4, F6, F11, F12 and F13, FDSSA
is the second-best algorithm. On remaining functions, the
proposed algorithm achieves competitive results. Except for
PSO, the Friedman rank test shows that FDSSA is the best
algorithm (see Table IV). On the other hand, PSO has a
greater computational complexity than FDSSA. In fact, the
computational complexity of PSO is O(T (n2d + n2Cf )),
versus O(T (nd+ nCf )) of FDSSA.

The improvements of FDSSA with respect to SSA are over
the exploration phase. In fact, with the definition of the fitness
weight wi, the exploration is enhanced and the premature
convergence is avoided. Remind that one of the main defects
of SSA is the mediocre convergence rate. Figures 1, 2, 3, 4, 5,
6, 7 show the convergence trend of the algorithms. Note that,
the proposed algorithm provides the best convergence speed.
FDSSA convergence curves shows an excellent exploitation.
This is thanks to the novel mathematical model for the
followers positions and suitable mutant mechanism. In other
terms, the proposed contributions improve exploration and
convergence rate at the same computational complexity of
SSA.

V. CONCLUSIONS

In this paper, a fitness dependent salp swarm algorithm is
designed. The proposed scheme has been tested on unimodal
and multimodal benchmark functions. To asses the algorithm
performances, it has been compared with well-known heuristic
algorithms. The results show that the fitness factor used
to update the leader positions enhances the exploration. In

TABLE I
UNIMODAL FUNCTIONS

Unimodal functions S

F1(X) =
∑d
i=1 x

2
i [−100; 100]d

F2(X) =
∑d
i=1 |xi|+

∏D
i=1 |xi| [−10; 10]d

F3(X) =
∑d
i=1

(∑i
j=1 xj

)2
[−100; 100]d

F4(X) = maxi{|xi|, 1 ≤ i ≤ d} [−100; 100]d

F5(X) =
∑d−1
i=1

[
100 (xi+1 − xi)2 + (xi − 1)2

]
[−30; 30]d

F6(X) =
∑d
i=1 ([xi + 0.5])2 [−100; 100]d

F7(X) =
∑d
i=1 i · x4i + random[0 , 1 ) [−1.28; 1.28]d

TABLE II
MULTIMODAL FUNCTIONS WITH VARIABLE DIMENSION

Multimodal functions S

F8(X) =
∑d
i=1−xi sin

√
|xi| [−500; 500]d

F9(X) =
∑d
i=1

[
x2i − 10 cos(2πxi + 10)

]
[−5.12; 5.12]d

F10(X) = −20 exp
(
−0.2

√
1
D

∑d
i=1 x

2
i

)
+ [−32; 32]d

− exp
(

1
d

∑d
i=1 cos(2πxi)

)
+ 20 + e

F11(X) = 1
4000

∑d
i=1 x

2
i −

∏d
i=1 cos

(
xi√
i

)
+ 1 [−600; 600]d

F12(X) = π
d
{10 sin(πy1) +

∑d−1
i=1 (yi − 1)2[1+ [−50; 50]d

+10 sin2(πyi+1)] + (yd − 1)2}+
+
∑d
i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, a, k,m) =

 k(xi − a)m, xi > a
0, a < xi < a
k(−xi − a)m, xi < −a

F13(X) = 0.1{sin2(3πx1) +
∑D
i=1(xi − 1)2[1+ [−50; 50]d

+sin2(3πx1 + 1)] + (xd − 1)2[1 + sin2(2πxd)]}+
+
∑d
i=1 u(xi, 5, 100, 4)

TABLE III
PARAMETERS SETTINGS FOR INVOLVED ALGORITHMS

Algorithm Parameters

PSO wmin = 0.4, wmax = 0.9, c1 = 2, c2 = 2
MVO WEPmin = 0.2, WEPmax = 1
BA fmin = 0, fmax = 2, α = 0.5, γ = 0.5, r0 = 0.001
HS bw = 0.2, HMCR = 0.95, PAR = 0.3
ABC L = b0.6nde, a = 1
SSA c2, c3 ∈ [0, 1]
SSSA c2, c3 ∈ [0, 1]
FDSSA c2, c3 ∈ [0, 1]

this way, the premature convergence is avoided. Moreover,
the convergence problems of SSA are overtaken thanks to
the proposed mathematical model for the followers positions
and its mutant mechanism. Thus, the exploitation phase is
improved. In other terms, the results show the superiority of
FDSSA with respect to the comparison algorithms in terms of
optimization and convergence performances according to their
computational complexity.

The future research task will focus on finding the best
trade-off between exploration and exploitation by tuning the
leader position. Moreover, FDSSA will be applied to other
benchmark functions and engineering design problems.
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