
Improving Deep Learning based Optical Character
Recognition via Neural Architecture Search

Zhenyao Zhao, Min Jiang∗, Senior Member, IEEE, Shihui Guo∗, Member, IEEE
Zhenzhong Wang, Fei Chao and Kay Chen Tan, Fellow, IEEE

Abstract—Optical character rcecognition (OCR) is a process
of converting images of typed, handwritten or printed text into
machine-encoded one. In recent years, the methods represented
by deep learning have greatly improved the performance of OCR
systems, but the main challenges of such systems are 1) to accu-
rately perform text detection in complex scenes and 2) to identify
and set the optimal parameters to optimize the performance of
the system. In this paper, we propose an OCR method based
on Neural Architecture Search technique, called AutOCR. The
characteristic of the proposed method is the automatic design
of text detection framework using an evolutionary computation
neural architecture search method. This design can not only
accurately recognize the text in a complex environment, but
also avoid the process of experts participating in parameter
adjustment. We compared it with different methods, and the
experimental results proved the effectiveness of our method.

I. INTRODUCTION

Optical character recognition (OCR) is a process of convert-
ing images of typed, handwritten or printed text into machine-
encoded one. Because OCR has a wide range of applica-
tions, it has been attracting the research interest of different
scholars [1]–[4]. OCR system includes two sub frameworks:
text detection and text recognition. For a specific task, these
two sub frameworks need to be designed according to the
task requirements. For example, the mobile OCR system is
more sensitive to the speed of operation, and the document
OCR system requires higher recognition accuracy. Therefore,
once the target task requirements change, the experts need
to redesign the OCR system, which is time-consuming, labor-
intensive and inefficient. The automatic design of OCR system
by machines can effectively alleviate this problem. However,
there are very few existing works on automating the design of
the OCR system.

The main purpose of this work is to propose an automated
design of an OCR system framework. Since there are already
many reliable frameworks for text recognition, and most of
them can be used for additional training on the text of the
target task, for many OCR tasks [5]–[7], text recognition
frameworks often do not require human involvement in design.
Hence the challenge of OCR system automation lies in the

Z. Zhao, M. Jiang, Z. Wang and F. Chao are with the Department of Arti-
ficial Intelligence, Xiamen University, China, Fujian, 361005. S. Guo is with
the Department of Software Engineering of Xiamen University. Min Jiang and
Shihui Guo are the corresponding authors and email: minjiang@xmu.edu.cn,
guoshihui@xmu.edu.cn.

KC TAN is with the Department of Computer Science, City University of
Hong Kong.

automation of the text detection framework. With the applica-
tion and rapid development of deep neural networks in object
detection [8]–[10], the performance of text detection has also
been greatly improved. Network architecture search (NAS)
automates the architecture design of the deep neural network,
and has made great achievements in image classification,
language models [11]–[14] and object detection [15]–[18] in
recent years. Architectures designed by many state-of-the-art
NAS methods have even achieved better performance than
hand-crafted ones. The automated architecture search process
not only lowers the demanding requirements of expertise of
designing networks, but also reduces a lot of design time, labor
costs and can easily search for a suitable architecture based
on design requirements.

This work proposed AutOCR, an automatic solution to de-
sign the architecture of deep neural network for a specific OCR
task. More specifically, we introduced a NAS-based method
called DetNAS [16] in the text detection framework. This is
a novel method that searches for the backbone architecture
in the object detection framework. It first pre-trains a one-
shot supernet [19] on the image classification dataset and then
fine-tunes this one-shot supernet on target detection datasets.
Finally, we search for a high-performance backbone network
on this trained supernet using evolutionary algorithm (EA).
Many object detection framework backbone networks use
existing high-performance image classification networks, such
as ResNet [20]. But the performance of the backbone network
on image classification and object detection performance is
not positively correlated. Literature [16] shows that using the
ClsNASNet, the best architecture searched on ImageNet [21],
is not the optimal backbone network. Therefore, in order to
achieve better performance, it is necessary to search for a
suitable text detection framework for OCR target tasks. In
addition, some OCR tasks have different requirements on
system latency or accuracy, the NAS-based method can simply
adjust the size of the NAS search space and search strategy
to find an architecture that meets the requirements, which is a
capability not available in OCR systems using fixed network
architectures.

In our AutOCR framework, text recognition framework
uses the currently excellent tesseract engine [5], which can
be trained for the special font of the target task. Combining
the training steps in [16], the design process of the AutOCR
framework can be summarized in 4 steps:

1) Adjust the one-shot supernet search space according

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

to the target task’s requirements. Pre-train the supernet
on image classification datasets such as ImageNet (text
image classification dataset is better).

2) Fine-tune the supernet on the text detection dataset of the
target task.

3) Perform architecture search using EA on the trained
supernet.

4) Train special fonts of target task on the tesseract engine.

In our experiments, we perform AutOCR on the street
view dataset SVHN, a credit card dataset published by China
Merchants Bank, and a vehicle dataset we collected from
the Internet. We follow the above 4 steps to create our
automatic OCR system AutOCR. We use a small search
space size with 20 ShuffleNetv2 blocks set in the literature
[16]. For comparison, we combine several mainstream object
detection frameworks and tesseract engine to form different
OCR systems. In comparison with OCR system using Yolov3-
tiny [22], our automatic search framework has a stronger
detection ability and higher recognition accuracy. Compared
with different OCR systems using Faster R-CNN [23], Mask
R-CNN [8] or Yolo v3 [22], AutOCR achieves a comparable
performance.

Our main contributions are summarized as below:

• By combining the current high-performance architecture
search method, we propose a complete automated OCR
system AutOCR. This system effectively avoids the diffi-
culty that needs to manually design networks and reduces
the barrier for designing OCR systems for specific tasks.
This automated approach has great application potential.
As far as we know, the research on automated OCR
systems is still under-explored.

• This proposed framework AutOCR not only works well
but also can achieve comparable performance as existing
OCR systems using advanced object detection frame-
works.

II. BACKGROUND AND RELATED WORK

A. Optical Character Recognition System

OCR has been an interesting and hot topic for many years.
It can be used for the identification of specific objects, such
as license plate recognition and certificate recognition. It also
can be used for wide recognition. For example, autopilot uses
machine vision [24] to identify signs to help path planning
[25]. OCR process can be divided into two phases: 1) Detect
position coordinates containing text in input image. 2) Rec-
ognize text based on position coordinates. Compared to text
recognition, text detection is often more challenging. Recently,
CNN-based object detection and segmentation frameworks
have been widely used in text detection problems. One type of
solution [1]–[4], [6], [26] for text detection is to treat text in
an image as a specific object and then detect it with an object
detection framework. Some of the latest state-of-the-art object
detection frameworks [3], [6], [26] are used to detect text.

B. Object detection

Object detection aims to locate and classify each object
instance in an image. With the rapid development of deep
convolutional network, the performance of object detectors
has been greatly improved. At present, CNN-based object
detection can be divided into two major methods: two-step
method based on R-CNN [23], [27] and one-step method based
on YOLO [10], [22].

R-CNN based object detection: R-CNN uses the ability of
convolutional neural networks (CNN) to extract image fea-
tures. It views a detection problem as a classification problem
leveraging the development of classification. It uses CNN to
extract deep features of proposals generated by selective search
[28] and then uses Support Vector Machine (SVM) to classify
these features.

YOLO based object detection: YOLO’s approach is to
extract feature maps on the entire image and then directly
regresses the bounding boxes on the feature maps. SSD [10]
is based on YOLO, which uses different aspect ratio boxes
at different stages to predict the bounding box and further
improve YOLO’s performance.

Generally, the two-step method is slower than the one-step
method, but has higher accuracy. The DetNAS used in our
framework is a two-step method.

C. Neural Architecture Search

The goal of NAS is to automatically find a network with
the best performance on a specific task, it can be expressed
by the formula 1.

a∗ = argmax
a∈S

Per(a) (1)

S represents a predefined search space, a represents an ar-
chitecture. Per function is used to evaluate the performance
of an architecture on the given task. NAS offers a variety
of advantages over manual design: 1) it not only effectively
alleviates the difficulty of manual design and the demand of
expert knowledge, and 2) the performance of architectures
searched by the latest NAS methods even surpasses the human-
designed ones. Mainstream methods are three types: reinforce-
ment learning (RL) based approach, evolutionary algorithms
(EA) and gradient-based approach. Literatures NAS [29] and
NASNet [30] designed neural architecture using RL-based
controller. AmoebaNet [31] used EA to search and prove that
EA can also achieve comparable results with RL. Typical
gradient-based approach are [32] and [33], which relax the
discrete architectural space into a continuous space through
a mixture model. In order to reduce the search speed, some
acceleration methods have been proposed such as one-shot
NAS [19]. At present, NAS methods for object detection
are also attracting more and more researchers’ interest. For
example, NAS-FPN [15], Auto-fpn [17] and MnasFPN [18]
explored the object detection NAS method for searching FPN.
Auto-DeepLab [34] and DetNAS [16] explored the way to
search for backbone network. In this work, we apply the NAS
method to develop our automated OCR system framework.

III. METHODS

A. The execution process of our OCR system

Fig. 1. The execution process of our OCR system. The detection framework
is searched by NAS method. The tesseract engine is a high performance text
recognition framework maintained by Google.

As shown in Figure 1, the execution process of our OCR
system is divided into two steps. Searched detection frame-
work detects position coordinates of texts in an input image,
then outputs images containing only text areas. This frame-
work is searched by the object detection NAS method. Specif-
ically, we used DetNAS [16] to search a suitable backbone
network for detection framework. Specific details are shown in
Section III-B. Tesseract engine [5] is a high performance text
recognition framework maintained by Google. In our system,
it is responsible for recognizing text images transmitted by the
detection framework and outputting recognized texts. It has a
rich font library and the advantage of being able to customize
font library.

B. The pipeline of AutOCR

As in Figure 2, AutOCR contains 4 steps. Steps 1 to 3
create a text detection framework automatically using the NAS
method, and Step 4 creates a text recognition framework.
The main process of creating a text detection framework is
to search for a suitable backbone network. The process of
creating a text recognition framework is mainly training on
the target task font to improve the recognition accuracy.

Step 1. We first create and pre-train a one-shot supernet. The
supernet including all paths [35] represents the search space of
the entire backbone. An architecture can be obtained on this
supernet by sampling one single path. As defined in [16], the

supernet is mainly composed of multiple ShuffleNetv2 block.
The complexity and performance of the detection framework
model can be customized by changing the number of blocks.
That is, we can determine the size of the search space based
on the requirements of the target task and the complexity
of the target data. For example, OCR systems that work
on mobile devices like mobile phones are more sensitive to
computational complexity, document OCR systems running on
high-performance devices like servers may require the highest
possible recognition accuracy. In order to meet the different
requirements of the task, the network inference time can be
reduced or the network performance can be enhanced by
reducing or increasing the number of blocks. After determining
the search space size, the supernet performs pre-training on
ImageNet or other image classification datasets. Pre-training
is the basis for the next fine-tuning step.

Step 2. Pre-trained supernet already has general image
classification capabilities. In this step, the supernet needs to be
fine-tuned on the training set of the target task. Specifically,
the supernet with the feature pyramid network (FPN) [36] is
continuously trained on the task detection training set.

Step 3. The third step is to use EA to generate the final
architecture. The search space contains 4 operations that
change the original ShuffleNetv2 block: changing the kernel
size with 3 × 3, 5 × 5, 7 × 7 or replacing the right branch
with an Xception block which contains 3 repeated separable
depthwise 3 × 3 convolutions. Determine the type of each
block from sampling the above 4 operations (i.e. one single
path), a complete architecture is sampled from the supernet.
The parameters of each architecture are directly inherited from
supernet, so there is no need to train from scratch. To run
the evolutionary process, multiple architectures sampled from
the trained supernet as the initial population, then repeat the
following steps until the iteration stop condition is met.

• First, each architecture in the population together with
FPN forms a complete detection framework. We then
verify the performance of each framework on the valida-
tion set of the target task. Some of the better performing
architectures are selected and left behind.

• Second, those leftover architectures perform crossover
and mutation to generate new architectures. These new
architectures constitute a new population.

Fig. 2. The pipeline of AutOCR that uses the NAS method to automatically create a task-oriented OCR systems. The first step is to pre-train the supernet
on ImageNet or other image datasets to obtain general image classification capabilities. The second step is to build a complete detection architecture with
pre-trained supernet and FPN, then fine-tune the supernet on the training set of the target task. The third step is to use EA on the trained supernet to search for
the best backbone network on the validation set of the target task. The fourth step is to train tesseract engine on the font library of the target task to improve
the recognition accuracy. The first 3 steps created the text detection framework automatically, and the last step created the text recognition framework.

After completing the iteration, we choose the one with the
best performance and train it from scratch as the final back-
bone architecture. The specific evolution process is shown in
Algorithm 1.

Algorithm 1 Evolutionary search algorithm
Input:

Population size: Pop;
Offspring size: Pos;
Number of iterations: NI;
Trained supernet: S;
Validation set of target task: DV ;

Output:
The backbone architecture with the best performance;

1: Pop architectures are randomly sampled from the S by
sampling type of each block, these architectures as the
initial population P (1);

2: for i = 1→ NI do
3: Evaluate the performance of each architecture in P (i)

on DV ;
4: Select Pos best performing architectures from P as

parent Par;
5: Cross and mutate architectures in Par according to the

method in [16] to generate P (i+1).
6: end for
7: Choose the best architecture α from P (NI);
8: return The best performance backbone architecture α.

Step 4. The last step is to train the text recognition
framework, i.e. tesseract engine, on the special font library
of the target task. The trained text recognition framework can
effectively recognize the special font of the target task. For
example, the text on the credit card may use special fonts. It
is difficult to accurately recognize the information on the credit
card without training the text recognition framework with the
specific task set-up.

The creation framework of AutOCR is depicted in Algo-
rithm 2. During the creation process, no expert is needed to
design the structure of the network, and only requires little
involvement in setup.

IV. EXPERIMENTS

We test the effectiveness of our method on three datasets.
One is the street view house numbers (SVHN) Dataset dataset
[37], one is a credit card dataset published by China Merchants
Bank 1, and one is a vehicle dataset we collected from the
Internet. For comparison, we use Yolov3-tiny, Yolov3, Mask
R-CNN and Faster R-CNN as the text detection framework
respectively and combine the tesseract recognition framework
to build different manual OCR systems. Faster R-CNN, Mask
R-CNN and Yolo v3 are several advanced target detection
algorithms in the past few years. Yolov3-tiny is a simplified
version of Yolo v3, with a lower but faster performance than
Yolo v3.

1Available download at: https://www.kesci.com/home/dataset/5954cf1372ea
054a5e25870

Algorithm 2 Creation framework of AutOCR
Input:

Training set of target task, DT ;
Validation set of target task, DV ;
Font library of the target task, F ;
ImageNet dataset DI ;
Number of fine-tune iterations, IF ;
Number of evolutionary iterations, IE ;

Output:
OCR system AutOCR;

1: Construct one-shot supernet S;
2: Pre-train S on DI ;
3: for i = 1→ IF do
4: Fine-tune S on DT ;
5: end for
6: for i = 1→ IE do
7: Search for architecture α in the S using evolutionary

algorithm 1 on DV ;
8: end for
9: Fine-tune α from scratch on DT ;

10: Train Tesseract engine on F ;
11: return OCR system AutOCR.

A. Experiment Settings

1) Datasets: SVHN is an image dataset used to identify
street view house numbers. It contains 3.3k training images
and 1.3k test images. We use the full numbers format, that
is, the uncropped images. The text detection framework only
recognizes the position of the numbers and does not classify
it. The credit card dataset contains a total of 235 images with
different card face patterns. We use 235 images as training set
and 60 images as validation set. 4 categories are labeled on 4
areas of the card surface: card number, period of validity, type
and name of card owner. The vehicle dataset contains 3665
images, 3000 images as the training set, and 665 images as
the validation set. The position of the license plate is labeled.
In the experiments, OCR systems detect and recognize the user
name on the face of the credit card, the license plate numbers
of the vehicle, and the numbers on the street view house.

2) Implementation Details: We use a search space contain-
ing 20 ShuffleNetv2 blocks in both three datasets. The other
settings are consistent on these three datasets except for 30,000
iterations of the credit card dataset and 70,000 iterations of the
vehicle and SVHN dataset during the fine-tuning phase with 4
GPUs. The setting of pre-training follows [16], the commonly
used 1.28M training images are used for supernet pre-training.
In the fine-tuning phase, the initial learning rate is set to 0.02,
the weight decay is 1 × 10−4 and the momentum is 0.9. In
the evolutionary search phase, the population size is set to
50, the number selected is 10, and the total iteration is 20
times. The final searched architectures are retrained in the pre-
training and fine-tuning phase. For comparison, the Yolo v3
and Yolov3-tiny detection frameworks are trained according to
the officially recommended settings. Faster R-CNN and Mask

R-CNN use ResNet-50 as backbone, FPN as feature extractor.
Faster R-CNN and Mask R-CNN iterate over 36,000 times on
the credit card dataset and vehicle dataset, and 24,000 times
on the SVHN dataset with 2 GPUs. The initial learning rate is
0.005 with the weight decay of 1× 10−4 and the momentum
of 0.9. The recognition framework of each OCR system uses
the same trained tesseract engine.

B. Experiment Results

Fig. 3. Detection results on 4 SVHN images. The left column is the original
images, the middle column is the Yolov3-tiny detection result, and the right
column is the AutOCR detection result. Images from top to bottom correspond
to ID 1 to 4.

1) Results on SVHN Dataset: On SVHN dataset, we test the
accurate detection accuracy of AutOCR and 2 manual OCR
systems using Faster R-CNN or Mask R-CNN on 100 images
containing 199 numbers. The backbone FLOPs and accuracy
results are shown in Table I. AutOCR’s accuracy reaches
92.5%, which is the best performing one. It is 0.5% higher than
the OCR system using Mask R-CNN and 2% higher than the
system using Faster R-CNN. We selected 4 test images with
different colors and backgrounds to show the detection and
recognition results of the text. In addition to Faster R-CNN
and Mask R-CNN, we also test on Yolo v3 and Yolov3-tiny.
Figure 3 shows the text detection results of Yolov3-tiny and
AutOCR on these 4 images. The left column shows the original
images, the middle and right columns are the text detection
results of Yolov3-tiny and AutOCR respectively. It can be
seen that AutOCR correctly detects the numbers. Yolov3-tiny
detects correctly on the 2nd to 4th images, but lost the left part
of the information when it detects the ”4” in the 1st image.
The recognition results are shown in Table II. Image ID 1 to
4 correspond to the 4 images from top to bottom in Figure
3. Manual OCR system with Yolov3-tiny misidentified the
1st image as 3A. AutOCR and other manual OCR systems
correctly recognize all images. This shows that AutOCR has
a stronger performance than OCR system using Yolov3-tiny
and has a comparable performance compared to manual OCR
systems using object detection frameworks Faster R-CNN,
Mask R-CNN or Yolo v3.

2) Results on Credit Card Dataset: On credit card Dataset,
systems are tested on 60 images. AutOCR still performs best
with 96.7% accuracy. It is 3.4% higher than the OCR system
using Mask R-CNN and 6.7% higher than the system using

Fig. 4. Detection results on 4 credit card images. The left two columns are
the Yolov3-tiny detection results, and the right two columns are the AutOCR
detection results (we only draw the boxes that detect the names, and hide the
boxes of the other 3 categories).

Faster R-CNN. Same as the previous experiment, we select
4 card images with different surfaces and colors to show the
results of text detection and recognition. As shown in Figure
4, the first column on the left is the name detection results
of Yolov3-tiny, the third column is the detection result of
AutOCR. The second and fourth columns show the corre-
sponding enlarged images. It can be seen that the detection
result of AutOCR is more accurate. The Yolov3-tiny detection
framework basically fails to detect the 1st image, and missed
some text parts of the 3th and 4th images. ID from 5 to 8 in
Table II shows the corresponding recognition results. The OCR
system with Yolov3-tiny is partially unrecognizable on the 1st,
3th, and 4th images. AutOCR and manual OCR systems using
Faster R-CNN, Mask R-CNN or Yolo v3 all accurately rec-
ognize these 4 images. This shows that AutOCR’s automated
search is effective and has a powerful performance.

Fig. 5. Detection results on 4 vehicle images. The left two columns are the
Yolov3-tiny detection results, and the right two columns are the AutOCR
detection results.

3) Results on Vehicle Dataset : On vehicle dataset, systems
are tested on 100 images. AutOCR is still the highest perform-
ing one. Compared to OCR systems using Mask R-CNN and
Faster R-CNN, AutOCR is 4% and 1% higher, respectively.
We show the results of 4 test images including different models

TABLE I
THE ACCURACY RESULT OVER THREE DATASETS.

Backbone FLOPs SVHN Acc Credit Card Acc Vehicle Acc
Faster R-CNN + Tesseract 380M 90.5% 90.0% 93.0%
Mask R-CNN + Tesseract 380M 92.0% 93.3 96.0%
AutOCR 300M 92.5% 96.7% 97.0%

TABLE II
RECOGNITION RESULTS ON 12 IMAGES IN 3 DATASETS.

Image ID Faster R-CNN
+ Tesseract

Mask R-CNN
+ Tesseract

Yolo v3
+ Tesseract

Yolov3-tiny
+ Tesseract AutOCR

1 34 34 34 3A 34
2 6 6 6 6 6
3 7 7 7 7 7
4 20 20 20 20 20

5 MICHAEL MICHAEL MICHAEL CHAE! MICHAEL
6 MICHAEL MICHAEL MICHAEL MICHAEL MICHAEL
7 XIANG RI KUI XIANG RI KUI XIANG RI KUI tANG RI KUI XIANG RI KUl
8 XIANG RI KUI XIANG RI KUI XIANG RI KUI XIANG RI KU! XIANG RI KUl

9 J85 /¢ J8578 J8578 JOO, J8578
10 AR628 AR628 AR628 AR628 AR628
11 L7V23 L7V23 L7V23 L7V23 L7V23
12 86V66 86V66 86V66 86V66 86V66

and colors. As shown in Figure 5, the left two columns are
the detection results of Yolov3-tiny, and the right two columns
are the results of AutOCR. ID 9 to 12 in Table II show the
corresponding recognition results. It can be seen that AutOCR
still performs excellent. The OCR system with Yolov3-tiny
fails to recognize the 1st image, and some areas in the license
plate are not detected. The OCR system with Faster R-CNN
fails to recognize ”7” and ”8” in the 1st image. AutOCR and
system with Mask R-CNN or Yolo v3 all correctly recognize
4 images. This further illustrates the advanced performance of
AutOCR, which can achieve higher performance with manual
OCR systems using advanced object detection frameworks.

C. Discussions

It can be seen from the Table I that the automated AutOCR
has better performance and fewer backbone FLOPs than the
manually designed OCR system used for comparison. Because
AutOCR can search for a dedicated backbone network for the
target task. This shows that the automated design OCR system
not only has higher convenience but also can achieve better
performance.

V. CONCLUSION

Although OCR has achieved excellent performance, most
OCR systems are manually designed, which is very time-
consuming and labor-intensive. In this paper, by introducing
the NAS method, we propose a framework, AutOCR, for
automatically designing OCR systems. AutOCR’s high degree
of automation can not only effectively reduce the workload

of experts in designing OCR systems, but also can design
different OCR systems according to the requirements of the
target task. Our experiments show that AutOCR performs well
and verify the effectiveness of our method. In addition, we also
hope to combine this technique with dynamic multi-objective
optimization [38]–[43] in future research.

REFERENCES

[1] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang,
“East: an efficient and accurate scene text detector,” in Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 5551–5560.

[2] W. He, X.-Y. Zhang, F. Yin, and C.-L. Liu, “Deep direct regression
for multi-oriented scene text detection,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 745–753.

[3] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu, “Textboxes: A fast
text detector with a single deep neural network,” in Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[4] Y. Liu and L. Jin, “Deep matching prior network: Toward tighter multi-
oriented text detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 1962–1969.

[5] R. Smith, “An overview of the tesseract ocr engine,” in Ninth Inter-
national Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2. IEEE, 2007, pp. 629–633.

[6] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading text
in the wild with convolutional neural networks,” International Journal
of Computer Vision, vol. 116, no. 1, pp. 1–20, 2016.

[7] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene
text recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 11, pp. 2298–2304, 2016.

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[9] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[11] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer search
with reinforcement learning,” 2017.

[12] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” 2017.

[13] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” 2017.

[14] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” 2018.

[15] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Nas-fpn: Learning scalable feature
pyramid architecture for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
7036–7045.

[16] Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan, and J. Sun, “Det-
nas: Neural architecture search on object detection,” arXiv preprint
arXiv:1903.10979, 2019.

[17] H. Xu, L. Yao, W. Zhang, X. Liang, and Z. Li, “Auto-fpn: Automatic
network architecture adaptation for object detection beyond classifica-
tion,” in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 6649–6658.

[18] B. Chen, G. Ghiasi, H. Liu, T.-Y. Lin, D. Kalenichenko, H. Adams, and
Q. V. Le, “Mnasfpn: Learning latency-aware pyramid architecture for
object detection on mobile devices,” arXiv preprint arXiv:1912.01106,
2019.

[19] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” 2018.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779–
788.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[24] M. Jiang, Y. Ding, B. Goertzel, Z. Huang, C. Zhou, and F. Chao, “Im-
proving machine vision via incorporating expectation-maximization into
deep spatio-temporal learning,” in 2014 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2014, pp. 1804–1811.

[25] M. Jiang, Y. Yu, X. Liu, F. Zhang, and Q. Hong, “Fuzzy neural network
based dynamic path planning,” in 2012 International Conference on
Machine Learning and Cybernetics, vol. 1. IEEE, 2012, pp. 326–330.

[26] Z. Huang, Z. Zhong, L. Sun, and Q. Huo, “Mask r-cnn with pyramid
attention network for scene text detection,” in 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2019,
pp. 764–772.

[27] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440–1448.

[28] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders,
“Selective search for object recognition,” International journal of com-
puter vision, vol. 104, no. 2, pp. 154–171, 2013.

[29] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural network
architectures using reinforcement learning,” 2016.

[30] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

[31] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, 2019, pp. 4780–4789.

[32] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 2018.

[33] R. Luo, F. Tian, T. Qin, and T. Y. Liu, “Neural architecture optimization,”
2018.

[34] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei, “Auto-deeplab: Hierarchical neural architecture search for

semantic image segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 82–92.

[35] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, “Single
path one-shot neural architecture search with uniform sampling,” arXiv
preprint arXiv:1904.00420, 2019.

[36] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[37] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[38] W. Zhenzhong, M. JIANG, G. Xing, F. Liang, H. Weizhen, and K. C.
TAN, “Evolutionary dynamic multi-objective optimization via regression
transfer learning,” in 2019 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2019, pp. 2375–2381.

[39] C. Wang, G. G. Yen, and M. Jiang, “A grey prediction-based evolu-
tionary algorithm for dynamic multiobjective optimization,” Swarm and
Evolutionary Computation, p. 100695, 2020.

[40] M. Jiang, W. Huang, Z. Huang, and G. G. Yen, “Integration of global
and local metrics for domain adaptation learning via dimensionality
reduction,” IEEE transactions on cybernetics, vol. 47, no. 1, pp. 38–
51, 2015.

[41] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer
learning-based dynamic multiobjective optimization algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 4, pp. 501–514,
2017.

[42] C. Guokun, M. JIANG, G. Xing, H. Weizhen, G. Shihui, and K. C.
TAN, “Online bagging for anytime transfer learning,” in 2019 IEEE
Symposium Series on Computational Intelligence (SSCI). IEEE, 2019,
pp. 941–947.

[43] H. Weizhen, M. Jiang, X. Gao, K. C. Tan, and Y.-m. Cheung, “Solv-
ing dynamic multi-objective optimization problems using incremental
support vector machine,” in 2019 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2019, pp. 2794–2799.

