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Abstract—Many design optimization problems from practice
involve a large number of variables. In handling such problems,
optimization algorithms, in general, suffer from the well-known
”curse of dimensionality” issue. One of the ways to alleviate
the issue somewhat is to use problem information to update
the optimization algorithm so that more meaningful solutions
are evolved quickly. In this paper, we consider a solid rocket
motor design problem involving hundreds of integer variables
and two conflicting objectives – minimize the error in matching
developed thrust with a desired time-dependent thrust profile and
simultaneously minimize the unburnt residue of propellant at the
end of the burning process. The evaluation of both objectives
involve a detailed burn simulation from the core to the shell
of the rocket. After finding a set of trade-off solutions using
an evolutionary multi-objective optimization algorithm, we use
two learning-based optimization methods (akin to the concept
of innovization) to find similar set of solutions using a fraction
of the overall solution evaluations. The proposed methods are
applied to seven different thrust profiles. Besides solving the
large-scale problem quicker, a by-product of our approach is that
learnt innovized principles stay as new and innovative knowledge
for solving the solid rocket design problem, a matter which is
extremely useful to the practitioners.

Index Terms—Solid rocket motor design, Multi-objective opti-
mization, innovization, multi-objective optimization.

I. INTRODUCTION

Multi-Objective Optimization (MOO) algorithms are widely
used in many design problems. They produce a set of solutions
representing a trade-off between two or more objectives known
as Pareto-optimal (PO) solutions. The decision-maker can then
select a solution from the set. Among the PO solutions there
might exist hidden relations or common characteristics which
can give some insight into the design problem. The process of
determining these characteristics is referred to as innovization,
first proposed by Deb and Srinivasan [1].

A clustering-based technique is suggested in [2] for automa-
tion of the innovization process. The concepts of higher- and
lower-level innovizations are presented in [3]. An automated
innovization technique for handling discrete variable problems
was proposed in [4].

Recent works have focused on introducing the results of an
innovization study, or in other words, the innovized rules or
principles, back into the optimization process as a heuristic.
This has been demonstrated in [5] on a machining parameter
optimization problem where innovized principles were used

in a local search; faster convergence achieved as a result. An
interleaving of data mining and MOO methods was used in
[6] to achieve faster convergence. Gaur and Deb [7] proposed
an adaptive innovization method which repairs the solutions
directly based on the innovized rules learned using machine
learning techniques.

This study introduces a solid rocket design problem and
formulates it as a multi-objective optimization problem. The
complexity in this problem mainly arises from the large num-
ber of decision variables and with all of them being discrete.
Initially, the problem is solved using a specific evolutionary
multi-objective optimization (EMO) method – NSGA-II [8].
Subsequently, two innovization approaches are presented with
the aim of speeding up convergence. The performances of all
three methods are presented in this paper.

The paper is organized as follows. Section II describes the
rocket design problem. Section III describes the optimiza-
tion problem formulation. Section IV describes the NSGA-
II algorithm used for the rocket design problem and the
corresponding results. Two specific innovization approaches
are introduced in Section V and finally, the conclusions of
this extensive study are presented in Section VI.

II. ROCKET GRAIN DESIGN PROBLEM FORMULATION

The objective of this problem is to model a solid fuel
rocket motor and find an efficient method to determine the
best possible design for the grain (propellant distribution)
which will provide the specified burnout characteristics (thrust
versus time). A second objective is to minimize or eliminate
insulation by ensuring the propellant burns out simultaneously
throughout the rocket. Each kilogram of insulation thus elim-
inated yields an additional kilogram of payload.

The target thrust profiles are shown in Fig. 1. The proposed
methods are first tested on the baseline thrust profile, and then
extended to the other thrust profiles.

The following are the objectives and constraints:

• The rocket should burn for at least as long as the target
thrust profile is defined, which for the baseline thrust
profile, is 10 seconds.

• The target thrust profile should be matched within 5% at
every point in time.
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Fig. 1: Target thrust profiles.

• For the primary burn portion, the pressure should lie
within a certain range. For the baseline thrust profile, the
desired pressure range is 1.379 MPa to 3.447 MPa.

• The specified insulation is required at the nozzle in order
for the rocket burn properly.

The assumptions are as follows:
• Propellant density throughout the rocket is assumed to be

constant, despite changes in reference burn rate.
• Ignition transients are ignored and all exposed propellant

surfaces are assumed to start burning at the same time.
• Rate of mass flow into the combustion chamber is con-

sidered equal to the rate of mass flow out of the rocket.
11 propellant types are available at each location, numbered

from 0 to 10 in increasing order of burn rates, as presented in
Table I.

TABLE I: Available propellant types and their burn rates.

Type Reference Burn Rate (m/s)
0 0.00254
1 0.00305
2 0.00363
3 0.00434
4 0.00521
5 0.00622
6 0.00744
7 0.00892
8 0.01064
9 0.01275
10 0.01524

For this study, a rocket burn simulator developed at Michi-
gan State University by the second author has been used. Given
a design, it simulates the burn throughout the rocket. Simula-
tion terminates if one of the following conditions occurs:
• The burn hits the shell at any point.
• The pressure goes outside the allowable range.
The rocket model is illustrated in Fig. 2. The rocket has

been vertically divided into segments numbered from 0 to
12 with each segment divided horizontally into 20 layers.
Propellants are specified for each layer of every segment.
Segment 0 represents the dome. Segments 1 to 5 have the

propellants arranged in the form of concentric cylindrical
”rings”. In addition, segments 2 to 4 (here called ”star”
segments) have some additional propellant arranged in a non-
cylindrical fashion (the finocyl cross-sections shown in Fig. 3).
This provides the additional initial surface area necessary
to enable the rocket to achieve a variety of thrust profiles.
Segments 6 to 11 are called corner segments, which exist
between the dome and the cylindrical segments, and each of
which has a different length. Segment 12 represents the nozzle
section. Fig. 2 shows a rocket having 9 layers per segment
and the side-view of the burn at 0, 3.5 and 9 seconds after
ignition. Fig. 4 shows the top-down view of the cylindrical
and star segments during the burn.

Fig. 2: Side view of rocket during burn. Red region shows the
space which is already burnt or was originally empty.

Fig. 3: Examples of different star-like (finocyl) shapes that can
be generated by the rocket model. Propellants are represented
in gray.

Fig. 4: Top view of rocket during burn on five segments.



III. OPTIMIZATION PROBLEM FORMULATION

A multi-objective formulation of the solid rocket design
problem has been developed which attempts to optimize two
conflicting objectives – (i) minimum thrust profile error, and
(ii) minimum uniform burnout residue, simultaneously:

Minimize f1 =

Tburn∑
t=0

(FT (t)− Fo(t))2, (1)

f2 = µr + σr, (2)
subject to Pmin <= P (t) <= Pmax, (3)

where Tburn ≡ Target burn time,
FT (t) ≡ Target thrust at time t,
Fo(t) ≡ Thrust obtained at time t,
µr ≡ Mean of segment residues,
σr ≡ Standard deviation of segment residues,
P (t) ≡ Pressure at time t,
Pmin ≡ Minimum allowable pressure,
Pmax ≡ Maximum allowable pressure.

Equation (1) represents the sum of squared errors between the
target FT (t) and obtained thrusts Fo(t) at all points in time.
If Fo(t) is within 5% of FT (t) at time t, then the error at that
time is considered to be zero.

Equation (2) represents the simultaneous burnout objective.
A well-designed rocket should burn for as long as possible.
µr is included in the objective to encourage the optimizer to
reduce the amount of propellant left at the end of burn. For
the rocket to achieve almost simultaneous burnout, the residue
left in all the rocket segments at the end of the burn should
roughly be the same. Hence σr needs to be minimized as well
to ensure uniformity in residue across different segments.

Equation (3) represents the pressure constraint which en-
sures the pressure at any point during the burn stays within
allowable levels. A good match with the target thrust automat-
ically ensures the satisfaction of this constraint.

There are a total of 284 inputs to the rocket burn simulator,
as shown in Fig. 5. Among them, 227 are the decision variables
for the optimizer to determine. The various types of decision
variables are represented in Table II.

TABLE II: Decision variable properties.

Variable Type Range Number
Cylindrical layer propellants Discrete [0, 10] 203

Star ray depth codes Discrete [0, 3] 18
Star section propellants Discrete [0, 35] 3

Propellant for circularization Discrete [0, 10] 3

In this study, thickness of the individual layers is kept
constant to reduce the number of decision variables in the
optimization problem. Since the burn starts from the innermost
layers and only moves to the outer layers after some time, there
are both spatial and temporal aspects to this problem. Certain
decision variables are never expressed if a particular rocket
design does not burn beyond a particular time or if the burn
does not continue long enough to reach the shell.

Fig. 5: Rocket input parameter vector.

IV. OPTIMIZATION USING NSGA-II

NSGA-II [8] has been used to solve the optimization
problem presented in Section III. It is an elitist non-dominated-
sorting-based Genetic Algorithm (GA). In every generation, an
offspring population is generated from the parent population
using mutation and crossover. Non-dominated sorting is per-
formed on the combined parent and offspring population and
different non-dominated fronts are identified. The combined
population ensures elite solutions are preserved across gener-
ations. NSGA-II uses a crowded tournament selection operator
which initially selects the solutions according to the non-
dominated fronts they belong to. A tie between two solutions
lying on the same non-dominated front is resolved by choosing
the one having a greater crowding distance. This acts as a
diversity-preserving mechanism.

A. Results Using NSGA-II

This section presents the results obtained on the optimiza-
tion problem defined in Section III. Seven thrust profiles used
in this study are shown in Fig. 1. The original NSGA-II [8]
algorithm is used on these problems without any modification.
This optimization is referred to as ”Base NSGA-II optimiza-
tion” for the rest of the paper. The NSGA-II implementation in
the pymoo framework [9] was used. A population size of 500
was used and the maximum number of function evaluations set
to be 40 million. The final population and the Pareto-optimal
Front for the baseline thrust profile are shown in Fig. 6.

Fig. 6: Pareto-optimal front for the baseline thrust profile.



B. Discussions

In this problem, the Pareto-optimal Fronts obtained for
all the target thrust profiles show a knee region [10]–[14].
For the baseline thrust profile, the knee region is where the
black dashed line passes through the Pareto-optimal Front in
Fig. 6. The solutions lying to the left of the knee region show
a significant improvement in thrust-match objective while
incurring a small deterioration in the residue objective. The
opposite is true for the solutions lying to the right of the knee
region. Since the primary objective is to minimize the thrust-
match, we concentrate on the solutions lying to the left of
the knee region. The thrust profile and residues across all the
segments for a solution close to the knee are shown in Fig. 9a.
From the figure, it is evident that NSGA-II has mostly been
able to match the target thrust profile until 10 seconds. The
rocket is also able to burn for some time beyond 10 seconds.
And the residue for each segment is in the order of 1 mm or
less. The simulation terminated because the burn in Segment
1 hit the shell.

It is interesting that the solutions to the left of the knee
possess a pattern in their star shapes and propellent distribu-
tion. Fig. 7 shows the star shapes which commonly appear in
the left of knee region, meaning that these shapes makes a
contribution in making the solutions to have a small thrust-
match error.

Fig. 8 shows the propellent distribution of a typical solution
to the left of knee. An observation reveals that most of these
solutions have an almost fixed pattern in the near-core and
near-shell layers. This property also contributes in making the
solutions to have small thrust-match error.

Fig. 7: Star shapes commonly appearing to the left of knee.

Fig. 8: Propellant distribution for a sample solution to the left
of the knee region.

The optimization was run on other thrust profiles as well,
and the results for 3 other thrust profiles are shown Fig. 9. It is
seen that NSGA-II is able to give residues of the order of 1 mm
or less in all the cases along with a good thrust match. All the

Pareto Fronts for different thrust profiles show a single knee
region with solutions to the left of the knee showing similar
properties mentioned earlier. This can be incorporated as a
heuristic in the optimization.

(a) Baseline

(b) Boost-sustain

(c) Bucket

(d) Constant thrust

Fig. 9: Thrust profiles and segment-wise residues for different
target thrust profiles obtained using base NSGA-II.

V. INNOVIZATION-BASED OPTIMIZATION METHODS

The base NSGA-II optimization is able to give good solu-
tions but at the cost of a large number of function evaluations.
The focus of innovization in this problem is to discover rules
or principles that reduce the computation cost and achieve
faster convergence. The learning process can be based upon
human observations, like the approach presented in Section
V-A. Conversely, it can also involve machine-discovered rules,
like the approach presented in Section V-B. Both the ap-
proaches presented in this study focus on reducing the search
space by limiting the scope of certain variables.



A. Star Geometry-based Innovization Method

The first innovization approach presented here is based
on a manual analysis of the results obtained by the base
optimization. Certain shapes like the ones shown in Fig. 7
appear in many solutions on the Pareto-optimal Front for the
baseline thrust profile. These shapes can be approximated by
smooth curves defined by a smaller number of parameters
as compared to the base optimization. The curve used in
this study, defined in polar coordinates, is shown in (4). The
parameter a defines the star shape. Taking into account the
model constraints, −0.2 ≤ a ≤ 1.2 is found to provide a good
range of shapes. Fig. 10 shows the star shapes generated by
setting a as 0, 0.4 and 0.8.

r(a, θ) = R
sin(θ + a)

sin(π6 + a)
, (4)

where 0 ≤ θ ≤ π
6 .

a = 0.0 a = 0.4 a = 0.8

Fig. 10: Sample shapes generated by the simplified star
geometry.

Each of the 3 star segments will have a different value of
a defining its shape. So instead of 18 variables defining the
star, we now have 3 variables. Thus, the number of decision
variables now comes out to be 212, down from the 227
variables used in the base optimization. The decision variables
for this type of optimization is defined in Table III.

TABLE III: Decision variables for star geometry-based in-
novization.

Variable Type Range Number
Cylindrical layer propellants Discrete [0, 10] 203
Star geometry parameter (a) Real [−0.2, 1.2] 3

Star section propellants Discrete [0, 35] 3
Propellant for circularization Discrete [0, 10] 3

B. Adaptive Variable Disabling Innovization Method

In problems involving high numbers of decision variables,
such as the rocket design problem, optimization algorithms are
faced with a huge search space. For population-based multi-
objective methods, after some number of function evaluations,
certain variables may converge to fixed values in a major-
ity of the non-dominated solutions. Through the subsequent
iterations, the optimization algorithm will waste a lot of
computational effort in optimizing over those variables, when
it could have focused on optimizing the other variables. This
can potentially delay convergence. Thus, some way of telling
the optimizer not to consider these variables for subsequent

iterations would help in achieving faster convergence. This
type of innovization is referred to in the rest of the pa-
per as Adaptive Disabling Innovization (ADI). The modified
innovization-based NSGA-II optimization algorithm is termed
as NSGA-II/ADI.

In this study, the knee-detection procedure presented in [15]
was used. The tradeoff metric shown in (5) was used.

T (xi, xj) =
∑M
m=1 max(0, fm(xj)− fm(xi))∑M
m=1 max(0, fm(xi)− fm(xj))

, (5)

where M is the number of objectives. In (5), T (xi, xj)
represents the total improvement gained per unit deterioration
in all the objectives obtained by exchanging solution xj with
xi. The quality of a solution xi in terms of performance trade-
off is evaluated using (6).

µ(xi, S) = min
j,xj∈S,xi⊀xj ,xj⊀xi

T (xi, xj). (6)

A larger value of µ(xi, S) within the neighborhood of a
solution indicates that it is in a knee region. To identify a
knee solution, the following procedure was used.
• Calculate µ(xi, S) for all xi in the non-dominated set S

according to (6).
• Identify k nearest neighbors for each xi, where k is set

to be 20% of the number of solutions in S.
• Calculate mean and standard deviation for all µ(xi, S).
• If µ(xi, S) is greater than the sum of the mean and half

of the standard deviation, the corresponding solution is
considered to be a knee solution.

Algorithm 1 NSGA-II/ADI Procedure

Input: Population size (N)
Output: Final Pareto-optimal Front (F)
gen← 1
Randomly generate initial population Pgen
while termination condition not satisfied do

if (gen mod 200) = 0 then
Detect knee point
Identify all variables with same value for solutions to

the left of knee and make them constants for every solution
in Pgen

Create offspring population Qgen from Pgen using
crossover and mutation

Combine parent and offspring population to create
Rgen = Pgen ∪Qgen

Perform non-dominated sorting on Rt to identify differ-
ent fronts Fi for i = 1, 2, . . . , and so on
Pgen+1 ← φ
i← 1
while |Pgen+1|+ |Fi| < N do
Pgen+1 ← Pgen+1 ∪ Fi
i← i+ 1

Use crowding-sort procedure to select (N − |Pgen+1|)
solutions from, Fi, and add them to Pgen+1



The entire innovization process is presented as Algorithm
1. In this case, the full set of decision variables presented in
Table II are used. This means, the star can take up the full
range of possible shapes unlike the simplified shapes used
in star geometry-based innovization. Once the knee region is
detected, the solutions lying on the left of the knee region are
analyzed. If all the solutions considered on the left side of
the knee region show the same value of certain variables then
those variables are treated as constants and do not participate
in the optimization during the subsequent generations.

The solutions lying to the left of the knee have many
variables that share the same values among solutions. This
phenomenon is most notable in the variables defining the star
and the propellant material for the first few layers for all
segments. However, the values assumed by these variables
are not the same for every thrust profile. So even though
knowledge about the knee characteristic comes from human
observation, an automated method is necessary to decide
which variables need to be disabled during the optimization.

C. Results and Discussions for Innovization-based NSGA-II

For comparing the performances of the proposed methods,
20 runs were performed with different random seeds, while
ensuring that for each run, the initial population remained the
same for all three methods. The optimization was terminated
once 40 million function evaluations were completed.

The common star shapes to the left of the knee are shown in
Fig. 11. Note that specific star shapes are consistently assigned
to the same segments by the optimizer. This is because the
three segments have different lengths, so the contribution of
a particular star shape depends on the segment in which it is
located. It can also be seen that the first few layers of each
segment show the same propellant type. This property shows
up very early in the optimization and is used by NSGA-II/ADI.

(a) Boost-sustain (b) Boost-wait-boost

(c) Bucket (d) Constant Thrust

(e) Hold-regress (f) Two-step

Fig. 11: Common star geometries in segments 2-4 (left to
right).

Thrust and residue plots for the baseline and a few other
thrust profiles are shown in Fig. 12. A knee solution was
selected as a representative solution in each case.

The Hypervolume (HV) metric [16], [17] has been used
to measure the performance of base NSGA-II method and
NSGA-II/ADI. HV can measure both convergence and diver-
sity and does not require knowledge of the true Pareto-optimal

(a) Baseline

(b) Boost-sustain

(c) Bucket

(d) Constant thrust

Fig. 12: Obtained thrusts and residues for NSGA-II/ADI.

Front. A higher value of HV indicates better performance. The
HV comparison between the base optimization and the two
innovization methods is presented for the baseline thrust pro-
file in Fig. 13. For HV calculation, both objectives for Pareto
optimal solutions have been normalized between [0, 1]. The
reference point is then set to be [1.1, 1.1]. The average number
of variables disabled over the course of the optimization is
shown in Table IV.

The solid line represents the median HV curve and the
shaded region represents the range of HV values in the 20 runs
after a particular number of function evaluations. From Fig. 13,
it is evident that NSGA-II/ADI is the best performer for the
baseline thrust profile. The star geometry-based innovization
initially has better HV than the base NSGA-II, but after
approximately 10 million function evaluations the rate of
improvement slows dramatically, whereas the base NSGA-II
keeps on improving. For all thrust profiles, adaptive disabling
innovization performs better than the star geometry-based



Fig. 13: HV comparison for base NSGA-II and the two
innovization methods on the baseline thrust profile.

TABLE IV: Average number of variables disabled over the
course of the optimization for each thrust profile.

Thrust Profile Number of
variables disabled

Percentage of
variables disabled

Baseline 88 39%
Boost-sustain 83 37%

Boost-wait-boost 79 35%
Bucket 78 34%

Constant Thrust 87 38%
Hold-regress 87 38%

Two-step 76 33%

innovization. This indicates that obtaining good rocket designs
through optimization require a search space spanning the full
range of star shapes offered by the rocket burn simulator.
Hence, for simplicity, only base NSGA-II and NSGA-II/ADI
performances have been compared in Fig. 14 for the other
thrust profiles. The vertical dashed black line shows the
median HV value for both methods after 20 million function
evaluations. In all cases, the median HV is better for NSGA-
II/ADI compared to the base NSGA-II. Table V shows the
median HV values after 20 million function evaluations.

TABLE V: Comparison of median Hypervolume after 20
million function evaluations for all thrust profiles.

Thrust Profile
Median HV after 20 million function evaluations

Base NSGA-II NSGA-II/ADI Percentage HV
improvement

Baseline 1.0070 1.1380 N13.0%
Boost-sustain 0.5466 0.8038 N47.1%

Boost-wait-boost 0.5499 0.7509 N36.6%
Bucket 0.7307 0.9241 N26.5%

Constant Thrust 0.7017 0.7616 N 8.5%
Hold-regress 0.4417 0.7793 N76.4%

Two-step 0.5957 0.7349 N23.4%

The horizontal dashed line in Fig. 13 and Fig. 14 compares
the number of function evaluations taken by each method to
achieve a certain HV threshold, which is set as 80% of the best
median HV achieved between base optimization and NSGA-
II/ADI. The comparison between the two methods is shown
in Table VI. It is seen that NSGA-II/ADI achieves a better

HV faster than the base NSGA-II, ranging from 43 to 76%
savings in function evaluations.

TABLE VI: Approximate number of function evaluations to
achieve a median HV Threshold. Percentage savings in overall
function evaluations are marked in parenthesis.

Thrust Profile
HV

Threshold

Approximate function evaluations (in
millions) to reach an HV threshold

Base NSGA-II NSGA-II/ADI
Baseline 0.92 1.3 0.4 (H69.2%)

Boost-sustain 0.68 24.0 6.0 (H75.0%)
Boost-wait-boost 0.64 30.0 7.2 (H76.0%)

Bucket 0.81 9.5 5.4 (H43.2%)
Constant Thrust 0.69 17.4 8.5 (H51.1%)

Hold-regress 0.75 30.0 12.0 (H60.0%)
Two-step 0.70 21.4 12.0 (H43.9%)

In Fig. 14, the range of HV values represented by the
shaded region is very large and often overlaps significantly
for base NSGA-II and NSGA-II/ADI. In order to compare the
performance, the right-tailed Wilcoxon Signed Rank Test [18],
[19] was used. Let x and y represent the final HV values for
NSGA-II/ADI and for the base NSGA-II, respectively, over
all 20 runs. x and y can be considered as paired observations
for each run. The alternate hypothesis tested here states that
the difference x − y comes from a distribution with median
greater than 0. If true, this means the probability of x having
a higher HV than y is high. The hypothesis was tested with
5% significance level and the p-values are shown in Table VII.
For all the thrust profiles, the Wilcoxon Right-tailed Signed
Rank Test shows a statistically significant improvement in the
performance of NSGA-II/ADI over that of base NSGA-II.

TABLE VII: The Wilcoxon Right-tailed Signed Rank Test.

Thrust Profile p-value Reject null hypothesis (p < 0.05)?
Baseline 0.0125 X

Boost-sustain 0.0234 X
Boost-wait-boost 0.0134 X

Bucket 0.0203 X
Constant Thrust 0.0065 X

Hold-regress 0.0083 X
Two-step 0.0038 X

VI. CONCLUSIONS AND FUTURE WORK

This study aims to solve a solid fuel rocket motor design
problem by representing it as a multi-objective optimiza-
tion problem with the thrust profile match and simultaneous
burnout of fuel throughout the rocket as objectives. NSGA-II
was used to solve the problem. In order to reduce the conver-
gence time, two innovization methods were developed. The
star geometry-based innovization simplified the optimization
problem by reducing the number of decision variables. The
adaptive disabling innovization (NSGA-II/ADI) progressively
reduces the search space by disabling certain decision vari-
ables which converge to fixed values over the course of the
optimization. Comparison between the three methods show
NSGA-II/ADI to have the best performance, both in terms
of solution quality as well as function evaluations for all the
thrust profiles. However, it should be noted that the presence of



(a) Boost-sustain (b) Boost-wait-boost

(c) Bucket (d) Constant Thrust

(e) Hold-regress (f) Two-step

Fig. 14: HV comparison between the base NSGA-II and
NSGA-II/ADI for different thrust profiles.

heuristics in NSGA-II/ADI runs the risk of leading the search
in a sub-optimal direction. A way to improve this is to only
modify a percentage of the population selected stochastically,
thus maintaining population diversity.

Future work will focus on investigating innovization ap-
proaches to discover relationships between individual decision
variables. For example, finding if there is any correlation
between thrust value at a particular point in time with the
propellant material distribution at any location. Such relations
can be used back into the optimization for faster convergence.
The results obtained in this study provides a good case for
performing innovization studies for other real-word large scale
problems like truss design optimization.
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