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Abstract—Antibody-mediated rejection (AMR) is one of the
primary mechanisms of graft loss following organ transplan-
tation. A key difficulty with AMR diagnosis is that symptoms
typically manifest when the graft is already damaged beyond
repair. Diagnosis is also complicated by differing interpretations
of histological data by pathologists, highlighting the urgent need
for more quantitative approaches. In this paper we propose an
ensemble classifier approach to predicting AMR status from gene
expression data. We employ two random oversampling tech-
niques - Synthetic Minority Oversampling Technique (SMOTE)
and Adaptive Synthetic Oversampling (ADASYN) - to address
the class imbalance in the original data set, and use particle
swarm optimisation (PSO) for the selection of the ensemble
hyperparameters. Our results demonstrate that applying the
PSO-optimised ensemble to the balanced data set provides better
predictive performance than the ensemble alone, and represents
an important step towards more accurate sub-clinical prediction
of AMR status and improved patient risk stratification.

Index Terms—ensemble learning, particle swarm optimisation,
risk prediction, gene expression

I. INTRODUCTION

Antibody-mediated rejection (AMR) is a major mechanism
of graft loss following organ transplantation. It can be stratified
into three distinct subtypes – hyperacute AMR, acute AMR,
and chronic AMR (CAMR). Hyperacute AMR can occur
within minutes of transplantation and is associated with the
presence of pre-existing anti-HLA (human leukocyte antigen)
donor-specific antibodies (DSAs), which are generated by
the recipient’s immune system against donor cells [1], [2].
Improvements in pre-transplantation screening have resulted
in a significantly reduced prevalence of hyperacute AMR.
Long-term graft survival rates however, have not seen the
same improvements; this is attributed mainly to acute AMR,
which usually develops within the first six months following
transplantation (often as a result of de novo DSAs) [3], [4],
and chronic AMR (CAMR), which can develop anywhere from
several months to several decades after transplantation [4]. A
key difficulty with AMR is that clinical diagnosis typically oc-
curs after the patient has presented with certain physiological
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symptoms, by which stage damage to the graft may already
be too significant for it to be maintained. Diagnosis of AMR
is also complicated by the fact that differing interpretations
of histological data by different pathologists can result in
contradictory diagnosis [5], [6] highlighting the urgent need
for more objective quantitative approaches.

High-throughput gene expression profiling of graft biopsies
can provide evidence of AMR before a clinical phenotype be-
comes apparent [7], [8] and Halloran et al. [9] have previously
demonstrated promising results using a linear discriminant
analysis (LDA) to predict AMR status in kidney transplant
patients from such data. This has lead to increased interest in
the application of machine learning approaches to this prob-
lem, with recent work focusing on the performance of various
classification algorithms [9]–[11]. Any individual classifier
however, will have its own inherent biases, so heterogeneous
ensemble approaches are often employed to provide more
stable predictive performance by combining decisions from
multiple algorithms [12]. Finding an optimal combination
of hyperparameters for such an ensemble can however be
challenging, and metaheuristic approaches are often employed
for efficient traversal of complex search spaces [13]–[15].
Swarm intelligence (SI) [16] refers to a set of metaheuristic
optimisation techniques inspired by the collective behaviour of
social animals. These algorithms have become very popular
in recent years due to their efficiency in solving complex
optimisation problems [17], [18]. Introduced by Kennedy and
Eberhart, particle swarm optimisation (PSO) [19] is one such
metaheuristic approach which is characterised by its socio-
cognitive approach to combining exploration and exploitation
in the search space.

In this work, we describe a PSO-optimised ensemble clas-
sifier comprising five supervised learning algorithms for AMR
status prediction in kidney transplant patients. The remainder
of the paper is organised as follows: the materials and methods
section provides details on the data set used, the constituent
algorithms of the ensemble classifier and the PSO algorithm
implementation for hyperparameter selection; the experiments
and results section describes the performance of the PSO and
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compares it to both the individual algorithms used and the
ensemble classifier using a number of standard metrics, and
the discussion section provides a summary of results and their
significance, as well as an outline of study limitations and
potential directions for future work.

II. MATERIALS AND METHODS

A. The data set

We performed the experiments using log2 quantile nor-
malised microarray expression data from the Halloran et al.
study [9] which is publicly available from the Gene Expres-
sion Omnibus (GEO) repository [20] under accession number
GSE36059. This data set contains 409 samples with 54675
features for each sample. Sample numbers, grouped according
to their rejection status, are shown in Table I below. In addition
to the graft rejection samples – AMR, T-cell mediated rejection
(TMR), and MIXED (a mixture of early AMR and TMR)
– the data set is composed of a large number of samples
from patients not showing graft rejection (non-rejecting), as
well as a small number of samples that may or may not
harbour physiological abnormalities related to the rejection
process itself (Nephrectomy). When training our classifier,
we follow the strategy of Halloran et al. [11], who have
previously demonstrated that better results are obtained for
AMR classification when TMR samples are included with
the samples labelled as AMR-negative. This is likely due to
TMR’s stronger transcriptional signal as well as fundamental
differences in the biological pathways activated by the two
rejection mechanisms.

TABLE I
DATA SET GROUPED BY REJECTION STATUS

Group Sample size

AMR 65 (15.89%)

TMR 35 (8.56%)

MIXED 22 (5.38%)

Non− rejecting 279 (68.22%)

Nephrectomy 8 (1.96%)

Total 409

From Table I, it is clear that the data set is highly imbal-
anced with AMR representing less than 16% of the total num-
ber of samples. As an imbalanced data set can have significant
consequences for the learning process and ultimately generate
inaccurate classification results (particularly for the minority
class), we used two random over-sampling approaches to
synthetically balance the data set – Synthetic Minority Over-
sampling Technique (SMOTE) [21] and Adaptive Synthetic
(ADASYN) sampling approach [22]. SMOTE uses a k-nearest
neighbours (KNN) approach to generate synthetic data for
each feature of the minority class and has previously been ap-
plied to imbalanced biological data sets [23], [24]. Also using a
KNN approach, ADASYN adaptively generates synthetic data

based on the density distribution of the ratio between majority
and minority classes. Both oversampling techniques were
applied to the minority (AMR) class using the imbalanced-
learn package [25] in Python. After the oversampling step,
the balanced data sets were stratified as follows: SMOTE
– 344 AMR samples, 344 Non-AMR samples; ADASYN –
353 AMR samples, 344 Non-AMR samples. The original and
synthetically balanced data were divided into three subsets:
i) training set containing 50% of the data, ii) validation set
containing 25% of the data, and iii) test set containing the
remaining 25% of data (see Figure 1).

B. Ensemble Learning

Given a training set in the form {(x1, y1), (x2, y2), ... ,(xn,
yn)} where xi represents the feature vector for the ith sample,
yi represents the class label assigned to that sample, and n is
the number of samples, a supervised classification algorithm
learns a class mapping function, y = f(x), which allows it
to predict class labels for new, unseen data, as well as to
assign significance to individual features which are important
for the prediction. As every classification algorithm will have
a non-zero error value related to its predictive performance,
and as this error can be uncorrelated between algorithms [26],
heterogeneous ensemble learning is often used to combine de-
cisions from a diverse set of algorithms (i.e. with uncorrelated
predictive errors) in order to increase the overall performance
of the model by learning a more complex class-mapping
function. We produced such an ensemble comprised of five
popular supervised classification approaches from the Python
scikit-learn package [27]: i) support vector machine (SVM),
ii) logistic regression (LR), iii) random forest (RF), iv) linear
discriminant analysis (LDA), and v) k-nearest neighbours
(KNN). The classification decisions of these algorithms were
combined in the ensemble using soft voting on the predictive
probabilities of AMR status.

Each of these algorithms has an associated set of hyper-
parameters that must be chosen before the learning process
begins and these hyperparameters are known to have critical
influence on the algorithm performance; hyperparameter op-
timisation (HPO) is therefore a crucial part of the machine
learning process and in tailoring the algorithm to the specific
problem being addressed [28]. Stochastic algorithms can be
used to discover quality solutions for complex optimisation
problems where often the exact solution is impossible to deter-
mine [29]. In this work we used a particle swarm optimisation
algorithm to select hyperparameter values for the ensemble;
this approach is described in more detail in the next section.

Table II shows the hyperparameters optimised for each
individual algorithm. C is a regularisation parameter which
controls the balance between producing a low training error
and a low test error, max iter is the maximum number of itera-
tions of the LR algorithm, n estimators is the number of trees
generated in the random forest algorithm, tol is the tolerance
used for rank estimation of the singular value decomposition
used in LDA, and n neighbors is the number of neighbours
to be considered when using the KNN approach. For non-



Fig. 1. Workflow for the proposed method. Original microarray data and randomly oversampled data using ADASYN and SMOTE were divided into train,
validation, and test sets (ratio of 50:25:25). The training and validation data were used by the PSO. The initial swarm contained randomly generated sets of
hyperparameters for each of the five supervised learning algorithms in the ensemble – k-nearest neighbours (KNN), random forest (RF), logistic regression
(LR), support vector machine (SVM) and linear discriminant analysis (LDA). Performance metrics were calculated using 10-fold cross validation on the test
set and the best particle from the final swarm.

TABLE II
OPTIMISED ENSEMBLE HYPERPARAMETERS

Supervised Learning Algorithm Hyperparameters

SVM C

LR max iter, C

RF n estimators

LDA tol

KNN n neighbors

numerical hyperparameters, we conducted a separate analysis
of each of the individual algorithms and chose hyperparameter
values that provided the best predictive performance for use
in the ensemble.

C. Particle Swarm Optimisation

The PSO algorithm uses a population (swarm) of candidate
solutions (particles) that consist of elements representing the
hyperparameters to be optimised. These particles move in the
search space guided by a fitness function and their velocity
is dependent on components with stochastic factors. Their
movement is governed both by their own best position in

the search space – cognitive component – as well as the best
solution of the swarm – social component.

In our PSO implementation, we used a swarm of 60 parti-
cles, where each particle contained the following information:
i) a set of hyperparameter values for each of the supervised
learning algorithms (see Table II), ii) its current score, iii) its
current velocity, and vi) the set of hyperparameter values asso-
ciated with the particle’s individual best score (i.e. memory). A
global best topology was used for optimisation, which means
that all particles were able to see the entire swarm, which was
guided by a unique best particle.

For each iteration of the PSO, the jth set of hyperparameters
of particle i, the velocity vi,j (Eq. 1) and the position xi,j

were updated (Eq. 2) taking into consideration: y, the
particle’s best position and g, the global best position.
There is a probability of finding a better individual solution
(tested on Algorithm 1, line 11) or a better global solution
(tested on Algorithm 1, line 15), resulting in updates to the
cognitive term of the velocity (Algorithm 1, line 18) and to
the social term of the velocity (tested on Algorithm 1, line
19), respectively.

vi,j(t+ 1) = wvi,j(t) + c1r1,j(t)(yi,j(t)− xi,j(t)) +



c2r2,j(t)(gi,j(t)− xi,j(t)) (1)

xi,j(t+ 1) = xi,j(t) + vi,j(t+ 1) (2)

where w is the inertia weight, c1 and c2 are the social cognitive
and social acceleration rates respectively, and r1,j and r2,j
follow a U (0, 1) distribution.

Data: Normalised microarray expression data.
Result: The best particle

1 particle ← randomly generated set of
hyperparameters;

2 c1 = 1.494;
3 c2 = 1.494;
4 w = 0.729;
5 stop criterion = max iterarions;
6 gbest ← random particle in the swarm;
7 while ! stop criterion do
8 for p in Swarm do
9 for j in set of hyperparameters do

10 currentScore ← Score(p,j);
11 if currentScore < p.score then
12 p.fitness ← currentScore;
13 p.bestPosition ← p.currentPosition;
14 end
15 if currentScore < gBest.Score then
16 gBest ← i;
17 end
18 cognitive←

p, j.bestPosition− p, j.currentPosition;
19 social←

gBest, j.position−p, j.currentPosition;
20 Cterm ← (c1 ∗ rand ∗ cognitive);
21 Sterm ← (c2 ∗ rand ∗ social);
22 vt,i,j ← w ∗ vt−1,i,j + Cterm + Sterm;
23 xt,i,j = xt−1,i,j + vt,i,j ;
24 i.actualPosition[j] ← positioni,j ;
25 end
26 end
27 end
28 return gBest

Algorithm 1: PSO approach for ensemble HPO

1) The fitness function: The performance of the PSO is
intimately related to the selection of a suitable fitness function.
Considering that the original data is imbalanced, using a
function that evaluates performance based on binary class
assignment may be misleading. Additionally, developing an
algorithm for use with clinical data requires cognisance of
a particular responsibility with regard to high confidence
statements. Therefore, we used a log-loss function (equation
3) to evaluate the candidate solutions. The log-loss function
is chosen because it more heavily penalises misclassification
and also results in predictive probabilities rather than hard
class assignments, providing a more natural framework for
risk stratification. The log-loss is defined as follows:

logLoss = − 1

n

n∑
i=1

[yiloge(pi) + (1− yi)loge(1− pi)] (3)

where yi is the true class label of observation i, pi is the
predictive probability assigned to observation i, and n is the
number of samples.

From an information theory perspective, the log-loss func-
tion is the cross-entropy between the probability distribution of
the predicted class labels and the actual class labels. The PSO
particles traverse the search space guided by the minimisation
of the log-loss values.

III. EXPERIMENTS AND RESULTS

We compared the predictive performance of our PSO with
both the individual classification algorithms and with the
ensemble learning approach. We began by splitting the original
data set and the balanced data set created using the SMOTE
and ADASYN algorithms into the three data sets described in
Section II-A. We then used the training and validation sets to
minimise the log-loss function using the PSO with an initial
swarm composed of randomly initiated hyperparameter values
for each of the supervised learning algorithms described in
Table II. We measured predictive performance using stratified
10-fold cross validation on the test data set, which was
composed of data from the original and oversampled data
that were not used in the optimisation process. We compared
the hyperparameter values of the best particle in the swarm
with the default hyperparameter values from scikit-learn –
this latter approach will be referred to as ensemble hereafter.
We evaluated the following metrics: log-loss, accuracy, F1-
score, and area under the receiver operating characteristic
curve (AUC-ROC).

TABLE III
MEAN LOG-LOSS VALUES AND STANDARD DEVIATION FROM STRATIFIED

10-FOLD CROSS VALIDATION.

Imbalanced SMOTE ADASYN

KNN 2.10 (2.66) 5.90 (3.39) 6.1 (3.68)

LDA 0.47 (0.18) 8.97 (3.69) 2.39 (1.81)

LR 0.95 (0.76) 0.43 (0.45) 0.39 (0.52)

RF 0.44 (0.11) 0.44 (0.12) 0.41 (0.07)

SVM 0.44 (0.09) 0.63 (0.05) 0.72 (0.02)

Ensemble 0.43 (0.15) 0.44 (0.08) 0.43 (0.07)

PSO 0.43 (0.15) 0.35 (0.11) 0.33 (0.10)

Table III shows the mean and standard deviation for log-
loss values from the stratified 10-fold cross-validation for each
of the individual classifiers, for the ensemble, and for the
PSO-optimised ensemble. The results indicate that: i) there
was a large diversity in performance amongst the individual
classifiers, with KNN and LDA showing some of the worst
log-loss values, ii) in the majority of cases, the log-loss for



Fig. 2. Comparative performance results using 10-fold cross-validation. Box-plot representation of log-loss results shows lower values in the PSO approaches
in balanced data.

TABLE IV
MEAN AND STANDARD DEVIATION ACCURACY, AUC-ROC, AND F1-SCORE VALUES FROM STRATIFIED 10-FOLD CROSS-VALIDATION.

Imbalanced SMOTE ADASYN

Accuracy AUC-ROC F1-score Accuracy AUC-ROC F1-score Accuracy AUC-ROC F1-score

KNN 0.80 (0.13) 0.63 (0.29) 0.88 (0.08) 0.62 (0.13) 0.74 (0.16) 0.40 (0.29) 0.58 (0.05) 0.71 (0.12) 0.27 (0.14)

LDA 0.83 (0.03) 0.61 (0.32) 0.91 (0.02) 0.71 (0.10) 0.67 (0.19) 0.65 (0.13) 0.71 (0.11) 0.78 (0.13) 0.66 (0.18)

LR 0.81 (0.11) 0.64 (0.34) 0.89 (0.07) 0.88 (0.01) 0.94 (0.07) 0.87 (0.10) 0.9 (0.12) 0.95 (0.07) 0.89 (0.13)

RF 0.85 (0.04) 0.64 (0.37) 0.92 (0.02) 0.81 (0.14) 0.90 (0.11) 0.79 (0.17) 0.90 (0.10) 0.96 (0.06) 0.89 (0.11)

SVM 0.84 (0.01) 0.63 (0.38) 0.91 (0.01) 0.67 (0.11) 0.76 (0.15) 0.60 (0.16) 0.55 (0.06) 0.66 (0.17) 0.28 (0.13)

Ensemble 0.85 (0.04) 0.67 (0.30) 0.92 (0.02) 0.77 (0.12) 0.92 (0.07) 0.72 (0.16) 0.85 (0.09) 0.95 (0.06) 0.82 (0.12)

PSO 0.84 (0.01) 0.65 (0.29) 0.91 (0.01) 0.84 (0.12) 0.94 (0.07) 0.81 (0.15) 0.88 (0.12) 0.96 (0.05) 0.87 (0.14)

the combined ensemble was either lower than, or comparable
to but more stable (shows reduced standard deviation) than the
best individual classifier results, and iii) there was a marked
improvement in the log-loss results for the PSO-optimised
ensemble in the case of balanced data.

Figure 2 shows the mean and standard deviation in log-loss
values for the stratified 10-fold cross validation between the
ensemble and PSO approaches; statistical analysis of these
results using the Wilcoxon rank test showed that the PSO
approach achieved statistically significant decreases in log-loss
values (p-values: SMOTE = 0.0189, ADASYN = 0.0022).

Table IV shows the mean and standard deviation values
of accuracy, AUC-ROC and F1-score for the individual clas-
sifiers, for the ensemble and the PSO-optimised ensemble.

These results indicate that: i) performance is similar for all
approaches on the imbalanced data set (although it should be
noted that, in the case of imbalanced data, higher accuracy
and AUC-ROC scores can be achieved simply by classifying
all samples as belonging to the majority class), ii) for the
balanced data sets, the PSO approach provides better predictive
performance than the ensemble in all cases, iii) using these
metrics, the diversity in performance for poorly performing
individual classifiers more negatively influences the results for
the ensemble classifier than is apparent when using the log-
loss values (Table III, where, in all but one case the ensemble
showed a better predictive performance than all individual
classifiers); the decrease in performance with these metrics
however, is to be expected given that we are combining a



Fig. 3. Comparative performance using stratified 10-fold cross-validation. A) Boxplot representation of the accuracy results shows improvement in the
performance with PSO on balanced data sets. B) AUC-ROC results indicate improvement when comparing imbalanced and balanced data, and the same can
be seen in the comparison between ensemble and PSO in balanced data sets. C) F1-score results show overall better performance on the imbalanced data set
and improved performance on PSO approaches when compared with the ensemble approach on both balanced data sets.

diverse set of algorithms – as indicated in the introduction
section, with other data sets, individual classifier performance
will likely be different and the diversity may prove more
beneficial, and iv) while the fitness function for the PSO aims
to minimise the log-loss value, the final results for the PSO
on the other performance metrics is quite similar to the best
performing individual classifiers.

Figure 3 shows accuracy, AUC-ROC, and F1-score results
using the ensemble and PSO-optimised ensemble for both
balanced and imbalanced data sets. It can be seen that: i)
overall, the balanced data sets resulted in improved perfor-
mance with the PSO approach, and ii) oversampling with
ADASYN produced better results than SMOTE – this can
be explained by the fact that the ADASYN algorithm is
more sophisticated and adaptively balances the classes in each
iteration. For the AUC-ROC, while the differences between
the PSO and ensemble approaches with oversampling were
not statistically significant, this is primarily due to the fact
that the oversampled data results have median values close to
the upper limit of the AUC.

Feature selection on the three data sets was carried out using
Boruta [30] – a wrapper algorithm around the random forest
approach – in order to identify genes whose expression values
are important for the prediction of AMR status. Analysis of the
imbalanced data resulted in 8 relevant features being selected,
while analysis of the balanced data set resulted in 1180 and
1416 selected features for the SMOTE and ADASYN data
sets respectively. Gene ontology (GO) analysis was carried
out on the selected features to determine if these genes showed
enrichment for any particular molecular function or biological
pathway. The InteRmineR R package [31] was used for this
analysis and returned 8 significant ontology terms which
overlapped between the balanced data sets. As shown in table
V, these GO terms included a number of leukocyte cell-cell

adhesion terms, as well as terms related to cell surface receptor
signalling – this indicates that the selected genes are involved
in inflammation and immune response which is highly relevant
to graft rejection conditions [32]. Features selected from the
imbalanced data set did not result in any significantly enriched
molecular functions or pathways.

IV. DISCUSSION

In this work, we have developed a PSO-optimised het-
erogeneous ensemble of five learning algorithms for AMR
status prediction based on gene expression data from kidney
transplant patients. We applied particle swarm optimisation to
the ensemble with the aim of improving the predictive per-
formance through the selection of an optimal combination of
hyperparameter values. The results indicated that the proposed
algorithm was capable of minimising the log-loss values and
increasing the predictive performance of the ensemble across
all performance metrics when using balanced data sets. The
gene ontology analysis of the selected features indicated that
the expression values for genes involved in inflammation and
immune response, cell signalling, and cell-cell adhesion are
important for the classification of AMR status. Moreover,
it suggests that the use of synthetic minority oversampling
methods did not interfere with the fundamental signal in
the data and represent an important tool for handling class
imbalances in biological data sets.

The main limitations of the study are related to the data –
aside from the fact that the original data set is not only small
but also imbalanced, there is also inherent noise in biological
data which is only amplified by the presence of five different
biologically diverse groups. Future work will be carried out
using a more balanced and larger AMR data set and will
involve a more detailed analysis of the biological context of
genes selected as important for determining class labels across



TABLE V
ENRICHED GO TERMS

Biological Process GO Term SMOTE (p-value) ADASYN (p-value)

leukocyte cell-cell adhesion GO:0007159 0.00029223 0.00268746

regulation of leukocyte cell-cell adhesion GO:1903037 0.00024809 0.01204234

positive regulation of leukocyte cell-cell adhesion GO:1903039 0.00275801 0.0218635

regulation of cell-cell adhesion GO:0022407 0.0009136 0.0272042

regulation of signaling GO:0023051 0.00327894 0.02810694

regulation of cell adhesion GO:0030155 0.00528727 0.03137499

cellular response to chemical stimulus GO:0070887 0.00035406 0.03145862

cell surface receptor signaling pathway GO:0007166 0.00087517 0.04018634

all classification algorithms – this will help us to identify a
robust ‘core’ rejection signature. As noted in the results for
complementary performance metrics, the optimisation of log-
loss values has not always been accompanied by improvements
in the values of other metrics – future work will therefore also
investigate a multi-objective PSO [33], in which the movement
of the particles will be guided by more than one of the
performance metrics. It is also important to recognise that the
PSO itself is an algorithm with its own hyperparameters that
influence the optimisation results, as such, we will also explore
the use of the parameter-free PSO, as described in [34].

REFERENCES

[1] L. C. Racusena, R. B. Colvin, K. Solez, M. J. Mihatsch, P. F. Halloran,
P. M. Campbell, M. J. Cecka, J. Cosyns, A. J. Demetris, M. C. Fishbein,
A. Fogo, P. Furness, I. W. Gibson, D. Glotz, P. Hayry, L. Hunsickern,
M. Kashgarian, R. Kerman, A. J. Magil, R. Montgomery, K. Morozumi,
V. Nickeleit, P. Randhawa, H. Regele, D. Seron, S. Seshan, S. Sund,
and K. Trpkov, “Antibody-Mediated Rejection Criteria – an Addition
to the Banff 097 Classification of Renal Allograft Rejection,” American
Journal of Transplantation, vol. 3, pp. 708–714, 2003.

[2] R. B. Colvin and R. N. Smith, “Antibody-mediated organ-allograft
rejection,” Nature Reviews Immunology, vol. 5, no. 10, pp. 807–817,
2005.

[3] J. M. DeVos, A. O. Gaber, L. D. Teeter, E. A. Graviss, S. J. Patel, G. A.
Land, L. W. Moore, and R. J. Knight, “Intermediate-term graft loss after
renal transplantation is associated with both donor-specific antibody and
acute rejection,” Transplantation, vol. 97, no. 5, pp. 534–540, 2014.

[4] M. Pascual, T. Theruvath, T. Kawai, N. Tolkoff-Rubin, and A. B. Cosimi,
“Strategies to improve long-term outcomes after renal transplantation,”
New England Journal of Medicine, vol. 346, no. 8, pp. 580–590, 2002.

[5] A. Loupy, C. Suberbielle-Boissel, G. Hill, C. Lefaucheur, D. Anglicheau,
J. Zuber, F. Martinez, E. Thervet, A. Méjean, D. Charron et al., “Out-
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