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Abstract— This work presents a novel approach to evolve 

“interactive autonomous agents” that are able to: a) complete the 

goals of a given task. b) receive messages from a user. c) extract 

symbolic meaning from these encoded messages. d) plan their next 

action base on these messages while fulfilling the task’s goals. 

Genetic algorithms, coevolution, and reinforcement learning 

methodologies are used in combination with an abstraction of the 

categorical representation presented in natural languages to 

create a general framework that trains these interactive 

autonomous agents. The greatest strength of the framework is its 

ability to evolve agents that learn to recognize symbolic meaning 

in users’ messages and modify their behavior accordingly. 

Although the evolution of agents’ communication mechanism is an 

active area of research, most the previous work focus on evolving 

communication mechanism between agents, while this work 

focuses on evolving user-agent communication mechanisms. This 

work presents arguments to claim that, currently, genetic 

algorithms present the only practical way to train interactive 

autonomous agents because of the capability of genetic algorithms 

to explore vast search spaces and the ability to coevolve agents and 

simulated users at the same time.  

Keywords— evolutionary computing, genetic algorithms, 

reinforcement learning, neuroevolution, coevolution, interactive 

autonomous agents 

I. INTRODUCTION 

Research on autonomous agents has been a proliferous area 
in recent years. The availability of multicore processors, 
reinforcement learning environments, and specialized deep 
learning libraries have diminished the requirements to 
experiment with autonomous agents and training new models. 
However, these autonomous agents are normally trained to 
complete certain goals, and once they start executing the task, 
the agents disregard user intentions. The modification of the 
agent behavior usually requires retraining the agent with a new 
reward/punishment structure. This paper proposes a new 
category of autonomous agents, the “interactive autonomous 
agent.” This agent is capable of: a) complete the goals of a given 
task. b) receive messages from a user. c) extract symbolic 
meaning from these encoded messages. d) plan their next action 
base on these messages while fulfilling the task’s goals. In other 
words, the agent is capable of adjusting its behavior on the fly 
base on the user’s intentions. To train such an agent, this work 
presents a general training framework that evolves agents that 
are able to extract contextual meaning in users’ messages and 

modify their behavior accordingly to the agent's internal logic, 
environment's state, and user's intentions. 

 

II. BACKGROUND 

A. Communication Mechanisms 

Human natural language is a symbolic system based on 
words. As Harnad [4] details, “words originated as the names of 
perceptual categories of two forms of representation underlying 
perceptual categorization -- iconic and categorical 
representations.” Iconic representations are the perceptions of 
the objects themselves. In the human case, this perception is 
given by our senses. Categorical representation groups similar 
objects together. These two representations give rise to the third 
representation form: symbolic. Symbolic representations 
associate objects with symbols. Harnad [4] mentions that: “The 
third form of representation made it possible to name and 
describe our environment, chiefly in terms of categories, their 
memberships, and their invariant features.” The most powerful 
capability of symbolic representations for this works is that it 
can be shared across communication systems. 

It is possible to communicate without symbolic 
representation. Such communication mechanics link signals to 
objects in a direct manner. These communication systems are 
certainly more limited than symbolic systems but are useful in 
many scenarios. Cangelosi [1] mentions that regardless of the 
multiple studios in animal communications, no simple symbolic 
animal language has been found, and all animal communication 
is done by signaling. The complex coordination of animals with 
signaling communication languages is proof of the power of 
even simple communication systems. 

B. Autonomous Agents  

As defined by Russell [9], an “An agent is anything that can 
be viewed as perceiving its environment through sensors and 
acting upon that environment through actuators.” An 
autonomous agent is an agent that acts rationally in order to 
complete a set of tasks in the environment while fulfilling a set 
of constraints. An agent acts rationally when it performs the best 
valid action given the information available to the agent.   

C. Logic and Autonomous Agents  

The most resilience method to implement an autonomous 
agent is using a planning mechanism.  If the environment, 
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actions, and instructions of the autonomous agent can be 
described as a set of logical predicates in the knowledge base 
KB, then the agent can receive instructions and use a logical 
planner, such as STRIPS, to complete its task. However, the 
implementation of this agent would require complete knowledge 
of the domain, a set of coded logical rules for each possible case, 
and very low uncertainty in the agent’s actions.   

D. Searching and Autonomous Agents  

An autonomous agent decision process can be model as a 
search problem. If the environment and agent states are discrete, 
then a search tree can be constructed by mapping valid actions 
to new discrete states. A search algorithm operates upon the tree 
to get a set of actions to complete the agent’s task. This approach 
is very computationally expensive since even apparently simple 
spaces produce impractical large trees. “Go” has a 19x19 board 
and 361 possible actions; Nevertheless, the game has   3.72×1079 

valid states. The typical game length of 150 movements would 
require searching a tree of 4.2×10383 nodes. A simple search is 
not a viable implementation option in almost all scenarios in 
which an autonomous agent would need to operate.  

E. Deep Reinforcement Learning and Autonomous Agents  

Reinforcement learning is a proliferous area of research in 
autonomous agents’ implementation. In Reinforcement 
learning, the agent is free to explore the environment. The agent 
acts upon the environment base on its current policy. At the 
beginning of training, the policy encourages exploration. The 
agent improves its policy by interacting with the environment 
and receiving rewards. Those actions that ended in a reward are 
encouraged. State of the art methods employ deep neural 
networks that learn to evaluate the expected reward of each valid 
action for the current state.  

F. Neuroevolution and Autonomous Agents 

Neuroevolution has been a continuous area of research. The 
introduction of NEAT by Kenneth [7] permits to evolve the 
structure of the neural network guiding the agent. Multiple 
successful additions to NEAT have been made, like the modular 
behavior of MM-NEAT created by Schrum [5].  NEAT like 
approaches as all evolutionary approaches require to define an 
appropriate fitness function to evaluate the agent. In the 
autonomous agent case, the fitness function is based on the 
rewards that the environment provides to the agent.     

G. Autonomous Agents and Communication   

Research on evolving agent communication systems seeks 
to create agents that can coordinate between themselves to 
collectively perform a task. Cangelosi [1] summarizes various 
experiments to evolve agents that are able to evolve 
communication systems based on signals and symbols. The 
methodology involves agents with fixed topology neural 
networks that learn to communicate with others in their 
environment to increase their fitness evaluation. The 
methodology employs reinforcement learning methodologies to 
evaluate agents in a virtual environment.   

On the other hand, the evolution of Human-Agent 
communication in a reinforcement learning environment has not 
seen the proliferation of research that it deserves.  

 

III. METHODOLOGY 

As mentioned before, an interactive autonomous is capable 
to: a) complete the goals of a given task. b) receive messages 
from a user. c) extract symbolic meaning from these encoded 
messages. d) plan their next action base on these messages while 
fulfilling the task’s goals. messages. The creation of such an 
interactive autonomous agent would be challenging with current 
methodologies since they are limited in their ability to 
incorporate users’ messages/meaning/intention while the agent 
is operating.  

a) Logic base agents could incorporate communication 

with the user by re-planning its action each time a user message 

is received. However, implementing a complete knowledge 

base is impractical for all but the simplest domains. 

b) Search base agents are impractical given current 

hardware capabilities since they will have to search the state 

tree each time a message is received. 

c) Reinforcement learning appears as a viable solution, 

but training deep neural networks through backpropagation 

requires to properly evaluate the loss function of the output 

units. The required label samples are impractical to obtain when 

the agent must not only complete its task but also try to follow 

the human intention/meaning relayed through the messages it 

receives.  

Evolutionary methodologies offer the best procedure to 
implement this interactive autonomous agent. 

A. General Procedure 

The presented method presents a general framework to 
evolve interactive autonomous agents that incorporate user 
intentions by learning contextual meaning in the message they 
receive. There are four interfaces that each domain must 
implement in accordance with its requirements. The 
environment model, the agent model, the user model, and the 
meaning function. Once implemented, the general framework 
uses a genetic algorithm to coevolve two populations. An agent 
population that seeks to maximize fitness in an environment 
while incorporating user intentions and a user population that 
seeks to test the agents. There four main components are:  

B. The Environment Model 

The environment model is the same as in any other 
reinforcement learning algorithm. The environment assigns 
rewards and punishments to the agent’s actions. Determines 
when an episode has finished and presents sensorial information 
to the agent. 

C. The Agent Model 

The agent model receives the sensor state from the 
environment. The agent can keep track of its internal state, 
although this part is optional. A user message arrives along with 
the sensors state. The message can be empty. The agent takes 
those inputs and executes an action in the environment. The 
agent must be able to be represented as an abstraction that can 
mutate and reproduce with another agent. There is no additional 
constraint in the learning model of the agent. It can use a 
neuroevolution model, a neural network with fixed topology, a 
perceptron, a genetic program, or any other learning model that 
can be used with evolutionary techniques. However, the learning 



model must be expressive enough to capture the domain 
solution. Simple models will only work with simple domains. 

 

Fig. 1. Agent Model. 

D. The User Model 

The user model must capture a set of actions a user would 
like to take given the current environment state. The user model 
rewards the agent each time it follows the intentions contain in 
the message. These intentions are evaluated by the meaning 
function. The user model is not a solution but a test. It seeks to 
test the agent with different messages and see if the agents 
follow the user's intention. The environment’s rewards and 
punishments guide the agent to complete the task’s goals and 
fulfill the environment's constraints while the user model guides 
the agent to interpret and follow the user's intentions. In other 
words, the user model tests the agent's understanding of the 
user's intentions. The user model receives as input the same 
information as the agent sensor input the environment state at 
time t and outputs a message to the agent for time t+1. The user 
model does not require the internal agent’s state since the agent 
is autonomous. 

        

Fig. 2. User Model. 

A good way to implement the user model is a probability 
distribution, especially a joint probability distribution of the 
environment state and a message. The user messages can be 
coded in any way as long as they can be represented in the 
meaning function.  

E. The Meaning Function 

To evolve interactive autonomous agents that recognize 
symbolic meaning to a user encoded message, the framework 
uses an abstraction of the categorical representation in natural 
languages. A categorical representation is a group of similar 
objects together, in this case, the abstraction represents groups 
of states that fulfill the meaning encoded in the user message. 
Consequently, this abstraction manifest as a meaning function 
that assigns the environment’s states to messages. The 

conjecture is as follows: The message sent by the user is a 
symbolic representation of its intentions. Each valid state that 
fulfills the intention of the user is an iconic representation of that 
intention. The set of all states that fulfill at least one of the 
intentions of the user is a categorical representation of those 
intentions. The selective pressure of the user rewards will 
encourage the reproduction of those agents that evolve to 
associate sets of states to categorical representations. As the 
generations continue to increase the agents will learn the 
symbolic meaning of the messages sent by the users regardless 
of the encoding used in the message. 

Specifically, the meaning function must take the old 
environment’s state and user message and output a set of states 
that are included in the categorical representation of this 
message. 

Meaning function (old state, message) → Set of all 

environment's states in the categorical representations 

In practice, the meaning function will be impossible to 
compute since it needs to enumerate all the states for each 
categorical representation. Consequently, a simplified meaning 
function that accomplishes the same effects must be used. This 
new meaning function receives the old state, user message and 
the new state given the agent’s selected actions. The simplified 
meaning function returns true if the new state is part of the 
categorical representation. This function is easier to implement 
for a set of countable states and still rewards agents whose 
actions send them to the state in the correct categorical 
representation.  

Simplified Meaning function (old state, message, new state)

→ True if the new state is in the set of all environment's states 

in the categorical representation 

The state is domain-specific but should usually contain the 
environment’s variables and the agent's external variables like 
position and rotation. 

F. Coevolution 

The coevolution follows the guidance presented by Rosin, et 
al [8], “A perfect solution to the testing problem is a set of 
minimal and extremely hard test cases”. Rosin, et al [8], present 
an infinite population model for coevolution through the use of 
fitness sharing, shared sampling, and the hall of fame. In this 
case, such a view is appropriate for the user population, which 
seeks to represent the space of all possible user’s tests to the 
agent. For the moment, only the hall of fame was implemented 
in the user’s population. The hardest test each generation kept in 
the hall of fame. N user individuals are selected from the hall of 
fame each generation.   

For the agent's population, a multi-objective fitness is used. 
Each agent possesses one fitness equal to the rewards gained for 
its actions in the environment and one fitness gained as 
compensation for following the user intentions. Agent selection 
for reproduction is made by following NSGA-II as described by 
Deb et al [6]. This selection will favor individuals in the Pareto 
frontier over the two fitness’ values. 
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IV. EXPERIMENTS 

A. Experiment One: Basic Experiment 

a) Environment: The base experiment uses the classic 

control problem of balancing a pole in a mobile cart. The 

problem depends on the weight variables of the objects, the 

gravitational force and maximum force to apply to the cart. The 

environment provides the cart velocity and position, and the 

pole angle and velocity. There are two constraints on the 

problems, the cart can not go beyond 2.5 meters from the 

starting positions and the pole angle can not be greater than 

twelve degrees. The system can be solved by finding the k1, k2, 

k3, k4 coefficients. 

 F  = Fmax * sign(k1*x + k2* ẋ + k3*θ + k4*θ)           

A one-layer network is enough to represent this equation.  

The environment is taken from the popular open ai gym 

implementation. 

b) User population. The user model is a simple one-layer 

network where weights are in codec binary string format from 

-100 to 100 with 15 bits per value. A total of 75 bits where used. 

The mutation operation is binary over the chromosome and 

reproduction is done with one point cross over. The fitness of 

each individual is by testing the hamming distance between this 

individual and the others. Roulette wheel selection is used. The 

objective, in this case, is to create many different test cases for 

the agents. The user sends a three-bit message with the meaning 

of moving left, moving right or staying there. The encoding of 

the message was randomly assigned for each trail. Mutation, 

crossover, roulette wheel selection, and coding are 

implemented as described by Goldberg [3]. 

c) Agent population. The objective of this experiment is 

to test the basic concept of this work and assert that this 

interactive reinforcement learning would not require a vastly 

more complex learning model. Therefore, the agent model uses 

a one-layer network with a logarithmic activation function for 

the output. The model receives 7 inputs, 4 inputs from the 

environment and a 3-bit message from a user. It outputs 1 

variable from -1 to 1, interpreted as the percentage of max force 

applied to the cart. Weights are encoded binary string format 

from -100 to 100 with 15 bits per value. A total of 120 bits 

where used. The mutation operation is binary over the 

chromosome and reproduction is done with one point cross 

over. Selection is made using the NSGA-II method to favor 

individuals in the Pareto frontier. Mutation, crossover, and 

encoding are implemented as described by Goldberg [3]. 

d) Simplified meaning function. In this case, the agents 

must evolve lo learn the meaning of right, left and stay. The 

simplified meaning function is presented in the following table:  

TABLE I.  SIMPLIFIED MEANING FUNCTION 

User’s Message True If 

Left Cart’s new x coordinate is less than the 

cart’s x old coordinate  

Right Cart’s new x coordinate is more than the 
cart’s x old coordinate 

Stay Cart’s new x coordinate is within .01range 
of cart’s x old coordinate 

 

e) Coevolution. Agent's and user's populations where 

evaluate each generation. Agents are tested multiple times. 

They act in a randomly initialize environment and receive new 

messages from a user each delta interval. Each test runs for 

three minutes. The agent's first fitness gains +1 for each second 

the agent can balance the pole. The second fitness is given +1 

each time the simplified meaning function returns true. 

Fitnesses are normalized to one for comparison porpuses. 

f) Control agent. The normal cart pole problem without 

user messaging was used as a control experiment. The problem 

uses the same environment. There is only one fitness, +1 for 

each second balancing the pole. The problem is solved using 

NEAT. 

B. Experiment Two: A two-word sentence 

a) Environment: A modified game of tag is used to test is 

the agents are capable of extracting the meaning of a sentence 

composed of two words. In this environment, there are four 

agents. A black agent that represents “it”. Three “players” red, 

green and blue. Each color represents a different agent. “It” 

must touch the players. If a player is touched by “it”, the player 

is eliminated from that game. “It” is implemented as a simple 

agent that chase after the nearest player. The red and green 

players are evolved to avoid “it” using NEAT.  The objective 

of the experiment is to evolve a blue player that avoids “it” but 

can also receive a user's message consisting of a two-word 

sentence and a five-word vocabulary: avoid, follow, red, green, 

nothing. In this case, the blue player can alter its behavior on 

the fly if the user message the agent to “avoid green” or “follow 

red” for example. 

b) User population. The user model is once again a 

simple one layer network similar to the one used in experiment 

one but it receives the different black, red and green agent 

relative position and distance as input and outputs two three-bit 

words to form a two words sentence. The first word can be 

“follow” or “avoid” and the second word can be “red”, “green” 

or “nothing”. The encoding of the words was randomly 

assigned in each trial. Mutation, crossover, roulette wheel 

selection and coding are implemented as described by Goldberg 

[3]. 

c) Agent population. Each agent is an evolved neural 

network using the NEAT methodology presented by Kenneth 

[7]. The model receives 8 inputs, 6 inputs from the 

environment, the directions and distances relatively from the 

agent to the black, green and red agents, and a two-word 

message from a user. It generates one output, an angle 

interpreted as the direction in which to move. Selection is made 

using the NSGA-II method to favor individuals in the Pareto 

frontier. Mutation, crossover, and encoding are implemented as 

described by Goldberg [3]. 

d) Simplified meaning function. In this case, the agents 

must evolve lo learn the meaning of the verbs follow and avoid 

nad how they can be combined to the name of the other agents 

“red”, and “green”. It also must learn that nothing signals no 



particular restrictions. The detailed meaning of “follow” or 

“avoid” depends on the desired behavior for the domain. In this 

case, an agent is following another if it is within two meters of 

the target. Consequently, the agent is avoiding others if it is 

more than two meters away from the target. The simplified 

meaning function that satisfies these requirements is presented 

in the following table:  

TABLE II.  SIMPLIFIED MEANING FUNCTION 

User’s Message True If 

follow green agent’s new distance from green is less than 

2 meters  

avoid green agent’s new distance from green is more 
than 2 meters  

follow red agent’s new distance from red is less than 2 

meters  

avoid red agent’s new distance from red is more than 

2 meters  

Follow nothing Always true 

Avoid nothing Always true 

 

e) Coevolution. Agent's and user's populations where 

evaluate each generation. Agents are tested multiple times. 

They act in a randomly initialize environment and receive new 

messages from a user each delta interval. Each test runs for 

three minutes. The agent's first fitness gains +1 for each second 

the agent is in the game, meaning it has successfully avoided it. 

The second fitness is given +1 each time the simplified meaning 

function returns true. Fitnesses are normalized to one for 

comparison porpuses. 

f) Control agent. A simple agent that avoid “it” was 

evolved using NEAT. The agent is given +1 fitness each second 

it can avoid it. 

V. RESULTS AND ANALYSIS 

The empirical results show the viability of the framework 
presented in this paper. First, the final agent population was able 
to assign contextual meaning to the messages presented to them. 
The agent was also able to evolve to understand the two words 
sentence structure. Second, computational requirements did not 
scale out of control. Third, the learning model in the interactive 
cart pole problem was only as complex as the one needed to 
solve the no interactive cart pole problem and the best NEAT 
topology for the interactive blue agent used only one more node 
than the best no interactive green/red agent, 15 nodes instead of 
14. 

A summary of the results is shown in table I. Results show 
that at least for simple problems the method can reliably find an 
autonomous agent that successfully fulfills the environment’s 
constraints while extracting message meaning and incorporating 
the desired user intention. 

TABLE III.  NEAT VS INTERACTIVE AUTONOMOUS AGENT 

FRAMEWORK 

Method Summary 

Populati
on 

Number 
of trials 

Percentage 

of trials that 
found an 

agent that 

fulfills the 
task's goals 

Percentage of 
trials that 

found an 

agent that 
follows user 

intention 90% 

of the time 

Cart Pole 
No 

interactive 

NEAT 

150 
 

30 100% N/A 

CartPole 

Interactive 

Autonomou
s Agent 

150 

AGENTS 

10 users 

30 using 

different 

3-bits 
encoding 

100% 100% 

Tag 

No 

interactive 
Red/green 

NEAT 

150 

 

30 100% N/A 

Tag 
Interactive 

Autonomou

s Agent 
blue 

150 

AGENTS 

10 

USERS 

30 using 
different 

3-bits 

encoding 

100% 100% 

 

Figures 3 shows a comparison of the evolution of the NEAT 
agent in the normal cart pole environment versus the interactive 
autonomous agent. Fitness was reduced to one value and 
normalized to one. The x coordinate represents the number of 
generations. Each generation represents 1,350,000 state 
evaluations for the NEAT agent and 13,500,000 for the 
interactive autonomous agent.  

 

Fig. 3. NEAT and Interactive A. Agent. Average of 30 trials 

As shown in the graph, the normal cart pole problem is easily 
solved with NEAT in 3 generations on average. On the other 
hand, the interactive agent appears to never reach the theoretical 
max fitness of one. However, the interactive agent is correctly 
balancing the pole, but the environment's constraints, cart 
position and pole angle, disallows it to always follow user 
intention. This exactly the desired behavior. An interactive agent 
that understands the meaning in the user’s messages but 
completes its task while respecting the environment's 
constraints. 

Figures 4 shows a comparison of the evolution of the no 
interactive NEAT agent in the tag environment versus the 
interactive autonomous agent. Fitness was reduced to one value 
and normalized to one. The x coordinate represents the number 
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of generations. Each generation of the interactive autonomous 
agent requires 10 times more computations since each agent is 
tested against 8 users in the population and 2 users in the hall of 
fame.  

 

Fig. 4. NEAT and Interactive A. Agent. Average of 30 trials 

Results are satisfactory as the interactive agent follows the 
user intentions most of the time with the exception of cases 
where “it” is to close and must continually avoid it. 

Figure 5 shows the best interactive agent of its generation in 
the cart pole problem and the relationship between the agent’s 
two objectives. The x-axis shows the normalized fitness, max 
fitness is 1, the agent is receiving from the environment. Each 
delta time step in the simulation that the agent is able to keep 
balancing the pole increments its environmental fitness +1. We 
expected to always reach values near max fitness in this axis. 
The y-axis shows the interactive fitness, gaining by 
understanding the meaning of the user’s messages and following 
such intention. The interactive fitness increases by +1 each time 
the agent does what the user message conveys. This axis has a 
theoretical max fitness. Nevertheless, such value will be 
unattainable because of the constraints placed upon the agent. 
For example, an agent cannot continue moving forward beyond 
the 2.4 meters of distance from the center, or the agent may 
choose to ignore a “move” message because it is busy trying to 
rebalance the pole after an abrupt movement. Overall figure 4 
presents results in line with the expected performance. 

 

Fig. 5. Interactive autonomous agent best per generation 

Figure 6 represents similar results for the interactive agent in 
the tag problem. The agent is once again able to complete its 

task, avoid “it” constantly during all the game, while modifying 
its behavior base on the user message, following or avoiding the 
other two agents. 

 

 

Fig. 6. Interactive autonomous agent best per generation 

Directional meaning appears to easily transfer between the 
categorical and symbolic representations. In this case, the cart 
pole experiment evolves agents that extract directional meaning 
of contextual direction, left, right, stay, but absolute directions 
should not represent any extra difficulty. Furthermore, the tag 
experiment proves that the framework is capable of evolving 
agents that understand multi-words sentences related to the 
environment. 

VI. CONCLUSIONS 

The framework presented in this work demonstrates the 
ability of evolutionary methods to impart capabilities to 
autonomous agents beyond those that the current state of the 
reinforcement methods can. The general usefulness of this 
framework may be debatable but further research is justifiable 
because of two reasons. A) This is a novel methodology that 
may useful to specialized domains, especially autonomous 
agents that deal with navigation where assigning meaning to a 
symbolic message that represents direction, ordering, and 
position is important. B) The training methodology of symbolic 
meaning presented in this paper, categorical to symbolic 
meaning, could be generalized to be used in other 
methodologies.   

The initial results show promise for the methodology to 
work with many different categorical representations like 
signaling to stay in a user-selected side of the road, avoid and go 
near objects on demand, explore in a certain order. Although, 
one can design an environment where one particular task is 
encouraged, like avoiding some particular object, the 
methodology is unique in the fact that behavior can be changed 
on the fly according to user communication, because the agent 
has learned to associate meaning in its environment to the user 
messages. This is the main advantage of an interactive 
autonomous agent. 

FUTURE WORK 

There is work in progress to apply the same framework 
presented in this work to different contexts. The first one will be 
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to train a driving agent on the popular TORCS environment. The 
objective of the experiment will be to send a message that 
corresponded to the user preferred “lane” and “speed” on the 
road while the agent controls driving.  
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