
A Novel CNet-assisted Evolutionary Level Repairer
and Its Applications to Super Mario Bros

Tianye Shu∗, Ziqi Wang†, Jialin Liu‡, Xin Yao§
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation

Department of Computer Science and Engineering
Southern University of Science and Technology

Shenzhen 518055, China
∗11710101@mail.sustech.edu.cn, †11710822@mail.sustech.edu.cn, ‡liujl@sustech.edu.cn, §xiny@sustech.edu.cn

Abstract—Applying latent variable evolution to game level
design has become more and more popular as little human expert
knowledge is required. However, defective levels with illegal
patterns may be generated due to the violation of constraints for
level design. A traditional way of repairing the defective levels
is programming specific rule-based repairers to patch the flaw.
However, programming these constraints is sometimes complex
and not straightforward. An autonomous level repairer which
is capable of learning the constraints is needed. In this paper,
we propose a novel approach, CNet, to learn the probability
distribution of tiles giving its surrounding tiles on a set of real
levels, and then detect the illegal tiles in generated new levels.
Then, an evolutionary repairer is designed to search for optimal
replacement schemes equipped with a novel search space being
constructed with the help of CNet and a novel heuristic function.
The proposed approaches are proved to be effective in our
case study of repairing GAN-generated and artificially destroyed
levels of Super Mario Bros. game. Our CNet-assisted evolutionary
repairer can also be easily applied to other games of which the
levels can be represented by a matrix of objects or tiles.

Index Terms—Procedural content generation, level repair,
latent vector evolution, evolutionary algorithms, video games

I. INTRODUCTION

Procedural content generation (PCG) refers to the gener-
ation of game content (including rules, levels, maps, sound,
background stories and so on) automatically without or with
limited help of human designers [1]. It has become a popular
area in recent years. With the development of video games,
the scale of game production teams is also expanding. This
leads to increasingly expensive development costs of game
production. PCG techniques can reduce the workload of game
designers or give designers inspiration. That means, for big
game companies, PCG techniques can decrease the costs and
shorten cycle for game production. On the other hand, PCG
can also lower the technology and capital threshold of complex

This work was supported by the National Key R&D Program of China
(Grant No. 2017YFC0804003), the National Natural Science Foundation of
China (Grant No. 61906083), the Guangdong Provincial Key Laboratory
(Grant No. 2020B121201001), the Program for Guangdong Introducing In-
novative and Enterpreneurial Teams (Grant No. 2017ZT07X386), the Science
and Technology Innovation Committee Foundation of Shenzhen (Grant No.
JCYJ20190809121403553), the Shenzhen Science and Technology Program
(Grant No. KQTD2016112514355531) and the Program for University Key
Laboratory of Guangdong Province (Grant No. 2017KSYS008).

T. Shu and Z. Wang contributed equally to this work.
J. Liu (liujl@sustech.edu.cn) is the corresponding author.

game development so that those small teams, even single-
person developers, who have good ideas can realize their
ideas with PCG techniques. What’s more, some games need
automatic content generation after their publication, including
real-time content generation. Those games will be the biggest
beneficiaries of development of PCG.

Mario AI framework is designed for the game AI compe-
tition for Super Mario which includes a PCG track [2]. After
2010, some level generation methods for Super Mario based
on the Mario AI framework have been proposed (e.g., [3]–
[8]). Some of those methods are based on human designed
grammars [3] or patterns [4]–[6]. Those methods have their
own advantages respectively. However, they still need human
designers to specify the behaviors of generators.

In 2018, Volz et al. [7] successfully applied latent vari-
able evolution (LVE) [9] to level generation of Super Mario
Bros. They trained a Deep Convolution Generative Adversarial
Networks (DCGAN) and use its generator to generate Super
Mario Bros levels. Their approach is powerful, but they
mentioned GAN will generate broken pipes sometimes in [7].
This raised our interests in repairing the logic errors of levels
generated by GAN.

When the DCGAN generates the tiles to build a level, it
cannot “consider” the surrounding neighbor tiles of each tile.
We think this is the reason of broken pipes generated by GAN.
Broken pipe is a microcosm of a stubborn problem of GAN-
based method: there are usually some rules for game level
design but the model cannot learn them due to its own network
structure. One may think of using a Recurrent Neural Network
(RNN) as the model of GAN [10]. RNNs can partially handle
the broken pipes problem since they take some connection with
neurons in the same layer. But the constraints of level may be
complex, and the correctness of a tile may be influenced by
the neighbor tiles in multiple directions. Besides, in terms of
level generation, the network model of DCGAN may have
some potential superiority comparing to RNNs. In fact, we
have tried to train a GAN on a dataset of more levels in Super
Mario Bros with 35 types of tiles in total. New types of tiles
bring more constraints and cause more logic errors made by
the GAN. Therefore, an automatic algorithm to repair levels
with logic errors is desired.

A straightforward way to automatically repair logic errors is

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

writing a script to edit the level files based on some predefined
rules. However, as mentioned previously, a significant advan-
tage of LVE approach is that it can learn how to design levels
without expert knowledge. If we need to design a repairing
rule for each different game and each different type of errors,
why not designing a pattern-based or grammar-based generator
directly? We’d like to devise an approach to repair the levels
generated by GAN without the help of human designers. In
this work we focus on using AI techniques to (i) exam the
generated level and detect the logic errors, and then (ii) repair
the logic errors in levels without human designers’ help.

In this work, we come up with an approach to learn the
level constraints from real levels and then repair the defective
levels generated by GAN. This approach is inspired by the
thinking process of human when repairing broken pipes for
Super Mario Bros levels. When one sees a broken pipe, this
person will detect several possibly error tiles by observing their
surrounding tiles. And then, this person may think of some
schemes to replace those error tiles and analyze if this scheme
is proper. After considering several replacement schemes, the
best one and the resulted optimally repaired level will be
determined. Our proposed approach imitates this process. First,
we train a Multi-Layer Perceptron (MLP) model to judge
whether a tile disobeys the constraint or not by taking its
surrounding tiles as input. When repairing a defective level,
we use the model to label the error tiles first, and then use
a genetic algorithm (GA) to search for replacement schemes
for those error tiles. In our case study, we have applied our
approach to determining and repairing the broken pipes in
Super Mario Bros levels generated by MarioGAN [7] and our
experimental study has validated its effectiveness.

The remainder of this paper is organized as follows. Some
related work on PCG and Mario level generation are presented
in Section II. Section III presents our proposed CNet for
detecting error tiles in generated levels and recommending
alternatives for repairing. Our novel evolutionary repairer is
presented in Section IV. The experimental studies on these
two approaches are described in Sections III-D and IV-D,
respectively. Section VI concludes and discusses future work.

II. BACKGROUND

Section II-A reviews the level generation methods for Super
Mario Bros. Section II-B presents particularly the MarioGAN
framework. The other ingredient, genetic algorithm, is briefly
introduced in Section II-C.

A. Mario Level Generation

Level generation is an important part in PCG. The 2010
Mario AI Championship held an academic PCG competition
[2] which the participants need submit a generator for Super
Mario Bros level. This competition touched off a series
of studies on Mario level generation. Shaker et al. used
Multi-Layer Perceptron (MLP) models to predict the players’
preference [11], and applied grammar evolution to generate
personalized level by optimizing the predicted value of their
model [3]. Steve et al. designed many patterns for Mario levels

[4] and using patterns as objectives and generate levels by
evolutionary algorithms (EA) [6]. Those methods belong to
search-based methods [12], they usually need some expert
knowledge.

In recent years, Procedural Content Generation via Machine
Learning (PCGML) [13] has been more and more popular
since it needs little expert knowledge of target games. Those
methods usually represent the levels as a matrix of tiles,
just like image, then generate the tiles one by one using
some machine learning technologies for image processing.
Snodgrass and Ontañón generated Mario levels with Markov
chains [14]. In 2016, Jain et al. applied autoencoders on
level generation, repair, and recognition [15]. They focused on
repairing unplayable levels but not logic errors of levels [15].
Summerville et al. trained LSTM to learn level distribution
and generate new levels [16]. Gutierrez and Schrum [17]
combined a GAN method and a graph grammar method to
generate levels for The Legend of Zelda. Schrum et al. [18]
used Compositional Pattern Producing Networks (CPPNs)
to combine Zelda level segments generated by GANs into
complete levels. [19] presented an interactive level design tool
which allows the human designer to edit latent vectors of the
trained generative models to generate diverse levels that can be
represented as two-dimensional arrays of tiles. In 2019, Lucas
and Volz used Kullback-Leibler (KL) to analyze game levels,
proposed a level generation method called Evolution with Tile
Pattern KL Divergence (ETPKLDiv) [8]. Broken pipes also
occur in the generated levels illustrated in Figure 6 of [8].

There are many methods for Mario level generation, each
method has its own advantages. However, broken pipes prob-
lem is a common problem for some Mario level generators,
especially those who need little expert knowledge.

B. MarioGAN

DCGAN was successfully applied to level generation of
Super Mario Bros in 2018 [7]. In [7], a level was represented
by a two-dimensional array of tile codes, while each code
referred to one of the 10 different tile types. The Video Game
Level Corpus (VGLC) [20] encoding is to used represent the
levels. Table I shows the tiles, their corresponding VGLC
encoding and the mapped values. We use the same encoding
in our work. In their work, only one level of Super Mario
Bros was used to train a Generative Adversarial Network
(GAN), and then a Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) was used to search in the latent space to
further optimize the generated levels [7]. In the optimization
phase, an AI agent was used to test the generated levels.
This framework also called Exploratory Latent Search GAN
(ELSGAN) by Lucas and Volz [8]. One of the most attractive
qualities of ELSGAN is that it can learn how to design levels
automatically without predefined generation rules, grammars
or patterns for the specific game. That’s to say, it may be
applied in any games whose level can be represented as a two-
dimensional array of discrete values without the knowledge
of the specific game. However, this framework cannot learn
the combination constraints of levels which leads to some

generated levels with logic errors. Taken the Super Mario
Bros as an example, broken pipes may appear in the levels
generated by GAN.

TABLE I: Tile types and encoding for generating Mario levels
used in [7], [8], [18], [19] and this paper.

Tile type Symbol Identity Visualization
Solid/Ground X 0

Breakable S 1
Empty (passable) - 2

Full question block ? 3
Empty question block Q 4

Enemy E 5
Top-left pipe < 6

Top-right pipe > 7
Left pipe [8

Right pipe] 9
Coin o 10

C. Genetic Algorithm

Evolutionary computation techniques have been widely
applied in optimizing game-playing strategies and designing
games, in particular tuning game AI agents and evolving game
skill-depth, such as in [21], [22]. Genetic Algorithm (GA) [23]
is a family of evolutionary algorithms which simulates the
process of the inheritance and evolution of the creature. GA
is suitable for approximately solving black-box optimization
problems in discrete domain. At each generation, GA applies
some search operators to generate new individuals (solutions)
and select the best ones to survive for the next generation.
Two of the major challenges of GA are the design of repre-
sentation and fitness function. In this work, we have designed
a novel fitness function for repairing game levels and defined
a narrowed search space but with diversities to accelerate the
search.

III. CNET: A NOVEL AUTOMATIC QUALITY CONTROLLER

Fig. 1: Illustration of the CNet.

We designed a MLP model, named as CNet, to learn the
constraints of pipes in Super Mario Bros levels and check the
levels generated by GAN.

Before introducing the CNet in details, we present the
definitions used in this paper. For any position (i, j) in a
level, we consider a tile grid of size 3 × 3 with (i, j) as the
center. A combination is defined as a sequence of the height
of the central tile and the 9 tile types in the 3 × 3 grid. A
surrounding info is defined as a sequence of the height of
the central tile and the tile types for its 8 surrounding tiles.
For each position and tile type, the surrounding info which
appears in the training data is called true surrounding info,
while the ones do not appear in the training data are called
fake surrounding info. For instance, given a combination
(13, 2, 2, 5, 0, 6, 7, 0, 8, 9), then the type of the central tile
is 6 (top-left pipe) and its height is 13. The corresponding
surrounding info is (13, 2, 2, 5, 0, 7, 0, 8, 9). For a given true
surrounding info, a tile is called legal tile if there exist a
combination in training data which contains the surrounding
info and this tile as center tile. Otherwise, this tile is called
illegal tile. For example, giving (13, 2, 2, 5, 0, 7, 0, 8, 9), the
“6” is a legal tile. The “0” is an illegal tile since the
combination (13, 2, 2, 5, 0, 0, 7, 0, 8, 9) does not appear in the
training data.

A. CNet

The CNet executes as follows. For each of the tiles of a
given generated level being checked, the CNet takes its y-
coordinate and its surrounding tiles (i.e., a surrounding info)
as input, as we assume that the vertical position of the tile may
be significant to judge its rationality in this game, and outputs
the predicted possible types of this tile being inspected. The
process is illustrated in Fig. 1. The input layer can be seen as a
hollow cube of (3∗3−1)∗12 size plus one single input. Width
and height of the cube correspond to the relative position of
the center and the 12 channels correspond to the 12 tile types
including the outer type which refers to the periphery of the
level. There are 2 full connected hidden layers in CNet. The
first layer has 100 neurons and the second one has 50 neurons.
Softmax is used at the output layer and CrossEntropy loss is
used. The output layer gives the probability distribution over
the tile types listed in Table I, of which the sum is 1.

B. CNet as a tile inspector

For each position (i, j) in the generated level being checked,
let t denote the present tile type. the CNet takes into its
surrounding tiles as input and output the probabilities of
having different tile types at (i, j). If the probability of having
the tile type t at position (i, j), denoted as P (Ti,j = t), is
under a given threshold θ, it is a wrong tile. 1

C. CNet as a tile recommender

When the CNet determines a wrong tile, it can also
recommend tiles for this position. To do so, a truncation
step is introduced to detect the less possible tile types for
classification. For any position, the tile type with a probability
above the threshold θ is defined as a candidate type for this

1An “error tile” is a tile that is determined as wrong by human while a
“wrong tile” is a special definition for CNet (Section III).

position. There could be one or more candidate types at the
tile being checked. Therefore, a wrong tile can also be defined
as the tile that is not filled with a candidate type.

D. Experiments and results

We define unstable tiles as the tiles that have more than
one candidate types of a level l being repaired. The set of
unstable tiles in a level l is denoted as U(l). Cli,j denotes the
set of candidate type at position (i, j) of level l. An unstable
value, UV (l), is defined as the sum of number of candidate
types for all unstable tiles in it, formalized as follows:

UV (l) =
∑

(i,j)∈U(l)

|Cli,j |. (1)

To test our CNet and evolutionary repairer, we have designed
three experiments and corresponding test data sets to answer
the following three questions:
• How does CNet perform in recommending legal tiles and

eliminating illegal tiles?
• How would CNet perform giving a fake surrounding info?
• When the surrounding info is fake, thus it does not appear

in training data, will the amount of unstable tiles and
unstable values increase?

In all the experiments, seventeen levels from the Mario
AI framework are used as training data. The CNet has been
training for 4, 000 epoch using all non-repeated 3 ∗ 3 grids
from the training data. The truncation threshold, θ, is set as
0.05 in all experiments.

1) CNet classifies excellently legal tiles and illegal tiles:
To test the performance of CNet in recommending legal tiles
and eliminating illegal tiles, we have designed two tests and
generated two test data sets.

The first test data set contains all combinations which appear
in the training data. It is aimed to test whether the set of
candidate type provided by our CNet contains the legal tile’s
type giving true surrounding info. The second test data set
contains all combinations which do not appear in the training
data, but there is no fake surrounding info. It is aimed to test
whether illegal tiles will be detected by our CNet giving true
surrounding info. These results are categorized by the type of
central tile.

TABLE II: Results of identifying legal tiles. “#Elm” refers to
the number of eliminated tiles.

Tile Total True Fake1 Fake2 Fake3
Type #Elm Rate #Elm Rate #Elm Rate #Elm Rate

0 76 0 0.0% 8 10.5% 10 13.2% 13 17.1%
1 23 0 0.0% 1 4.4% 4 17.4% 7 30.4%
2 294 0 0.0% 14 4.8% 20 6.8% 28 9.5%
3 2 0 0.0% 0 0.0% 0 0.0% 1 50.0%
4 13 0 0.0% 0 0.0% 4 30.8% 5 38.5%
5 20 0 0.0% 3 15.0% 4 20.0% 8 40.0%
6 33 0 0.0% 5 15.2% 5 15.2% 14 42.4%
7 34 0 0.0% 1 2.9% 5 14.7% 5 14.7%
8 69 0 0.0% 5 7.3% 7 10.1% 8 11.6%
9 72 0 0.0% 0 0.0% 3 4.2% 7 9.7%

The “True” column of Table II summaries the results of
the first test. Note that all the tiles are legal in this test,
thus there is no negative data. For each central tile, if the
candidate types recommended by our CNet contains the legal
tile, then it is considered as a correct classification. The reason
is that giving a true surrounding info, there could be more
than one legal central tile. Results show that the candidate
tiles always contains the legal tiles of which the codes are 6,
7, 8 and 9. They are the codes for composing pipes. It means
that our CNet is able to learn the combination constraints
of different types of pipes. But for tiles around pipes, such
as the ground tiles (“0”), breakable tiles (“1”) and monster
tiles (“5”), legal tiles are sometimes eliminated from candidate
types. Especially, the full question tile (“3”) is always wrongly
eliminated from the set of candidate types. Actually, the total
number of combinations which have a full question tile as
central tile is 2. It is possible that the CNet did not learn
this constraint well due to the very limited amount of data.
The “True” column of Table III gives results of the second
test. When giving true surrounding info, our CNet successfully
detected correctly most of the illegal tiles.

In conclusion, CNet performs excellently in recommending
legal tiles and eliminating illegal tiles.

TABLE III: Detecting illegal tiles test. “#Det” refers to the
number of detected tiles.

Tile Total True Fake1 Fake2 Fake3
Type #Det Rate #Det Rate #Det Rate #Det Rate

0 553 552 99.8% 520 94.0% 514 92.9% 491 88.8%
1 607 602 99.2% 591 97.4% 582 95.9% 576 94.9%
2 331 327 98.8% 296 89.4% 281 84.9% 266 80.4%
3 627 627 100.0% 623 99.4% 621 99.0% 612 97.6%
4 616 616 100.0% 605 98.2% 595 96.6% 590 95.8%
5 609 607 99.7% 600 98.5% 596 97.9% 584 95.9%
6 597 597 100.0% 593 99.3% 594 99.5% 590 98.8%
7 596 596 100.0% 590 99.0% 583 97.8% 572 96.0%
8 560 558 99.6% 555 99.1% 549 98.0% 547 97.7%
9 556 556 100.0% 546 98.2% 530 95.3% 526 94.6%
10 629 629 100.0% 629 100.0% 629 100.0% 629 100.0%

2) Fake surrounding info made classification harder: True
surrounding info may become fake when there is one or more
error tiles in it. In the generated levels, multiple error tiles
may be adjacent. When repairing one of them, the surrounding
info is fake. To test the performance of CNet giving fake
surrounding info, we generate test data on basis of the test
data in the previous experiments. We randomly change the
type of one, two or three tiles in the true surrounding info to
make it fake.

Firstly, we want to test whether legal tiles of true sur-
rounding info still contains in the candidate types of fake
surrounding info. The columns “Fake 1”, “Fake 2”, and “Fake
3” of Table II show the results of using the data sets with
one, two and three randomly changed tiles in combinations.
When the surrounding info is fake, the number of cases of
eliminating legal tile wrongly increases substantially.

Secondly, we want to test whether illegal tiles of true
surrounding info will be detected from the candidate tiles of

TABLE IV: Stable test. Each test set has 627 tiles in total.
“|U |” refers to the number of unstable tiles and “UV ” is the
unstable value.

Set Original True Fake1 Fake2 Fake3
|U | UV |U | UV |U | UV |U | UV |U | UV

1 9 20 12 24 50 109 62 136 94 204
2 – – – – – – – – 49 103 87 197 100 214
3 – – – – – – – – 60 131 87 186 99 220

fake surrounding info. Table III shows the result. When the
surrounding info is fake, the elimination rate decreases. This
means that more illegal tiles are contained in candidate tiles.

In conclusion, fake surrounding info makes the classification
harder.

3) The Unstable Value is informative: In this experiment,
we want to answer the third research question and check
if the unstable value and unstable tiles can assist with the
identification of broken areas in a level. To do so, we have
generated three test data sets by editing the original training
data. Giving a surrounding info as input, the trained CNet
outputs the candidate types for the center cell. Then the
unstable value (Eq. (1)) of this center tile is calculated to
determine whether it is an unstable tile or not. Then we
randomly change the type of one, two or three tiles in the
surrounding info to generate a new tile probably with the fake
surrounding info. Again, the unstable values and amount of
unstable tiles are calculated for each case. We also calculate
the original unstable values without classification of CNet for
the training data as reference. In the training data, if any two
different tile types have the same surrounding info, we say
that this surrounding info corresponds to an unstable tile and
the unstable value is at least two.

Table IV shows the results. We can see that the amount
of unstable tiles in the “True” column is greater than the
amount in the “Original” column. It reflects that CNet mixed
illegal tiles into the candidate types for some surrounding info.
The “Fake1”, “Fake2”, “Fake3” columns have greater unstable
values and larger amount of unstable tiles than the “True”
column. This implies that fake surrounding info is linked with
unstable tile. CNet may not judge well giving fake surrounding
info. Therefore, the possibility is shared, making more tile
types into the set of Candidate Types. So the unstable value
and the amount of unstable tiles increase. When repairing
levels, we can use the unstable value as an indicator. Smaller
unstable value means less fake surrounding info in levels. Less
fake surrounding info means fewer broken areas in levels.

In conclusion, unstable value indicates the amount of fake
surrounding Info. And unstable value can assist with the
identification of broken areas in a level.

E. Discussion

The CNet performs well in detecting the illegal tiles and
recommending alternative for fixing the wrong tiles. To fix a
wrong tile, it seems to be straightforward to directly replace
it by the candidate tile type with the highest probability

classified by the CNet. However, our primary experimental
study (omitted due to the length limit) shows that this simple
repairing operation, winner-takes-all, performed poorly on
the Mario levels generated by GAN. There are mainly two
reasons. First, an error tile will influence the decision of its
surrounding tiles. Secondly, our CNet does not always make
perfect classification. To offset the imperfection of CNet, we
propose to use a genetic algorithm to search in the combination
space and design some novel heuristic functions to direct the
search.

IV. EVOLUTIONARY REPAIRERS WITH A NOVEL HEURISTIC

As a level is a two-dimensional array of discrete values, we
use a genetic algorithm (GA) to search for good replacement
schemes (thus, combinations) in the original level to repair the
broken areas. Although we’re actually optimizing a replace-
ment scheme, our work treats the solution of the search as a
complete level for convenience. The encoding of the solution
is a dictionary whose key is the position to be replaced and
value is the alternative type.

A. A narrowed search space with diversities

Defining the search space is not trivial. Primary experi-
mental study using only the wrong tiles as the solution space
showed that, sometimes, only replacing those tiles could not
lead to a correct level at all. However, we still want to
narrow the solution space as much as possible to guarantee
the efficiency of our algorithm and keep the features from the
original levels as much as possible. Therefore, we define the
solution space as the set of all the error tiles and all the tiles
that have alternatives. We use Sl to denote the set of wrong
tiles and unstable tiles in a training level l.

B. Search operators

Algorithm 1 presents our search operators. The crossover
operator aims to combine good replacement schemes randomly
to get better solutions. For a given solution x, our mutation
operator generates a new solution x′ by replacing the tiles in
Sl with types in candidate types of original level l at position
(i, j). We design this operator to add new individuals into
the population. The repair operator changes the types of the
unstable tiles to a randomly selected candidate type. We design
it to search in the local space. Our main process (Algorithm 2)
performs crossover, selection, mutation, selection, repair and
selection in turn at each generation. For the selection operator,
we just select the best n individuals.

C. Fitness design

We want to minimize the number of errors in the final
solution. Besides, we want to keep the features from the
original levels as much as possible. So we minimize the
number of Replaced Tiles, |R(x)|. Additionally, the Unstable
Value is used as a third item to assist with repairing. When the
amount of fake surrounding info decreases, the performance
of CNet will be better. As a result, a weighted sum of the

Algorithm 1 Search operators for repairing a level l. Sl de-
notes the set of wrong tiles and unstable tiles in l, represented
by their positions. x(i, j) denotes the element at position (i, j)
of 2D array x.

1: function CROSSOVER(x1, x2)
2: x′1 ← x1, x′2 ← x2
3: for (i, j) ∈ Sl do
4: if UniformRandom(0, 1) ≤ 0.5 then
5: Swap x′1(i, j) and x′2(i, j)
6: end if
7: end for
8: return x′1, x′2
9: end function

10: function MUTATION(pm1, x)
11: for (i, j) ∈ Sl do
12: if UniformRandom(0, 1) ≤ pm1 and x(i, j) is

an unstable tile then
13: x(i, j)← randomly select in Cxi,j
14: end if
15: end for
16: end function

17: function REPAIR(pr, x)
18: for (i, j) ∈ Sl do
19: if UniformRandom(0, 1) ≤ pr and x(i, j) is a

wrong tile then
20: x(i, j)← randomly select in Cxi,j
21: end if
22: end for
23: end function

above three metric is used as the fitness function in our work,
formalized as follows:

F (x) = ω1 · |W(x)|+ ω2 · |R(x)|+ ω3 · UV (x), (2)

where W(x) is the set of wrong tiles and ωi are coefficients
to be set, i ∈ {1, 2, 3}.

D. Experimental setting and results

We design two levels with flaw to test the performance of
our evolutionary repairer. In the first test, we train a GAN with
the same structure of the one described in [7], while the same
training data as for training the CNet (detailed previously in
Section III). Then, some defective levels are collected from the
levels generated by GAN (Fig. 2a). In the second test, different
types of pipes from the training maps have been collected and
put in one map. Then, tiles in this map are randomly selected
to be destroyed. An example is shown in Fig. 3a.

In all the experiments, the weights in the fitness function
(Eg. 2) are set as ω1 = 5, ω2 = 3 and ω3 = 1 after fine
tuning. All the individuals in the population are initialized
by randomly setting a tile type for the unstable tiles in
solution space (cf. Section IV-A) using uniform distribution
and applying repair once as described in Algorithm 1. The

Algorithm 2 Evolution process for repairing a level l.

1: Input: pm0 ← 0.8, pm1 ← 1
|Sl| , pr ← 0.3, n ← 20,

RRTm ← 4
2: Initialize population X (cf. Section IV-D)
3: while time not elapsed do
4: Evaluate fitness of all x in X
5: Calculate Px for all x by descendingRank(x)∑

x∈X descendingRank(xi)

6: X ′ ← ∅
7: while |X ′| < n do
8: Choose different xi, xj from X according to prob-

ability Px (x ∈ X)
9: x1, x2 ←CROSSOVER(xi, xj)

10: Add x1, x2 into X ′
11: end while
12: for x in X ′ do
13: if UniformRandom(0, 1) ≤ pm0 then
14: MUTATION(pm1, x)
15: end if
16: end for
17: for x in X ′ do
18: REPAIR(pr, x)
19: end for
20: Evaluate fitness of all x in X ′
21: X ← The best n individuals of X ∪X ′ selected using

Round-robin Tournament.
22: Update the best individual
23: end while
24: return the best individual

initial values of parameters are shown in the first line of
Algorithm 2.

When a tile is determined as a wrong tile, its alternative
can be randomly selected from the Candidate Tiles following
a designed probability distribution. Three of the most common
ways are using (i) a distribution with one element of 1 and
others 0, thus winner-takes-all; (ii) a normalized distribution
after truncating the probability output by the CNet or (iii)
a uniform distribution. We have tested all of them in our
experiments and only give the results of the third one in Figs.
2a and 3a due to its superior performance comparing to the
other two and the length limit of the paper. The failure of (i)
has been explained previously in Section III-C. The failure of
(ii) is probably due to the fact that empty tiles often occupy
with the highest probability when surrounding info is fake.

Fig. 2 illustrates an example of the progress of repairing
a defective level generated by GAN. At the beginning (Fig.
2b), there are some wrong tiles (highlighted by red boxes)
and many unstable tiles (highlighted by blue boxes), due to
the influence of fake surrounding info and the low truncation
threshold θ (cf. Section III-C). When the optimization contin-
ues, the number of wrong tiles and unstable tiles is decreasing.
After 4 generations only (Fig 2e), there are only 2 wrong
tiles and a small amount of unstable tiles left. Then, after 8
generations (Fig 2f), only one wrong tile remains. After 25

(a) A defective level generated by GAN

(b) Wrong Tiles (Red) and Unstable Tiles (Blue) are marked by Cnet

(c) Best solution in the initialized population.

(d) Best solution after 2 generations.

(e) Best solution after 4 generations.

(f) Best solution after 8 generations.

(g) Best solution after 25 generations.

Fig. 2: Repairing a defective level generated by GAN.

generations, the level is almost perfectly repaired. Compared
with the original level, the flaws are repaired perfectly and only
a few tiles were changed. It is consistent with the design of
the fitness function. Some broken pipes are erased, while some
are repaired. This case study shows that genetic algorithm can
get a variety of reasonable results.

Fig. 3 shows the results of repairing randomly destroyed
levels. From Fig. 3b, we can see that destroyed tiles are
well recognized and marked by our CNet. Fig. 3g shows the
best repaired level after 25 generations. We can see that all
different broken pipes are well repaired. However, a few tiles

around pipes are changed. There are two possible reasons:
the evolutionary process is uncertain; the CNet has not been
trained perfectly and may mark some legal tiles as wrong tiles.

To visualize the evolution process, we present the evolu-
tionary curves of the values of fitness and the three items in
the fitness function (Eq. (2)) among the population averaged
over 30 trials in Fig. 5. The Unstable Value (yellow curve)
and the number of Wrong tiles (blue curve) decrease rapidly.
This is because of the repair step described in Algorithm 1.
The number of replaced tiles increases slowly. When it stops
increasing around generation 5, the other values still decreases
and the number of replaced tiles takes a main part of the
fitness value, as what we expected, replacing fewer tiles while
repairing the level better. Fig. 4 is the scatter diagram of all
individuals when repairing a randomly destroyed level in an
arbitrary optimization run. The fitness values of individuals
converge gradually and the diversity among individuals’ fitness
is clearly shown.

E. Discussion

We design an evolutionary repairer to search for optimal
replacement schemes for repairing defective levels. This evo-
lutionary repairer is equipped with a novel search space being
constructed with the help of CNet, and a novel fitness function
considering the number of wrong tiles, the number of replaced
tiles and unstable tiles in a level. The proposed approach is
proved to be effective in our experiments of repairing GAN-
generated Mario levels (Fig. 2) and randomly destroyed levels
(Fig. 3a).

V. STATISTICAL SIGNIFICANCE AND ANALYSIS OF
REPAIRED LEVELS

To examine the statistical significance of our CNet and evo-
lutionary repairer, we trained 10 CNet models using distinct
random seeds which were further used to repair 10 randomly
destroyed levels generated from the level with all types of
pipes designed in Section IV-D. Each model has been trained
for 4,000 epochs and uses more strict criteria to evaluate repair
results. Tiles whose surrounding info appear (height is not
included) in training data are labelled as right, otherwise, the
tiles are wrong. Batch size is set as 1. We compare the tiles
in the level segments before and after repairing, and analyse
the number of tiles that have been edited and their status in
Table V.

The notations used in Table V are defined as follows. The
symbols “→” and “=” indicate if a tile is replaced or not after
repair. “W” and “R” indicate if a tile is labelled as wrong
or right. Therefore, W → W refers to the situation that a
wrong tile is replaced but remains being labelled as wrong;
W = R refers to the situation that a tile is not replaced, but
its label is changed from wrong to right after being repaired
due to the changes of it’s surrounding tiles; W = W means
that a wrong tile is not replaced at all. R → R, R = R,
R → W , W → R are defined similarly. The bottom row
illustrates the ratio between the amount of wrong tiles after
and before repair, thus the smaller the better. A venn diagram

(a) A randomly destroyed level

(b) Wrong Tiles (Red) and Unstable Tiles (Blue) are marked by CNet

(c) Best solution in the initialized population.

(d) Best solution after 2 generations.

(e) Best solution after 4 generations.

(f) Best solution after 8 generations.

(g) Best solution after 25 generations.

Fig. 3: Repairing randomly destroyed levels. All kind of pipes appeared in the training data are collected in one figure.

Fig. 4: Scatter diagram of the fitness of all individuals in an
arbitrary evolution process.

Fig. 5: Evolutionary curves of the fitness and its items among
the population, averaged over 30 trials, respected to generation.

(Fig. 6) is also included to assist the understanding of relations
between these changes of tile status.

We can see that the amount of R→R and R→W is zero
which means our method will not replace the right tiles. The
yellow set is very small compared with the red set. It means
our method can fix most of wrong tiles. W=W takes a big part
of the yellow set. The reason is that our CNet is not trained
perfectly. Our CNet will regard some wrong tiles as right tiles.
So these tiles are not replaced during evolution process and
remain wrong. So the performance of our method is based on
the quality of CNet a lot. Avoiding overfitting and training a
better CNet will decrease the wrong tiles after repair.

VI. CONCLUSION AND FUTURE WORK

In the last few years, more and more PCGML methods
have been applied to level generation. However, logic errors
may occurs in the generated levels. Therefore, we focus on
video game levels that can be represented by 2D images and
design a CNet and an evolutionary repairer for automatically
detecting errors in levels generated by PCGML and repairing
the defective levels.

TABLE V: Repair results of 10 CNet models trained with
distinct random seeds. The original level segment with all
pipe types has been randomly destroyed to generate 10 broken
level segments, which have been repaired individually using
the evolutionary repairer described in Section IV. Each cell
shows the result averaged over the 10 levels fixed by each
CNet model. The notations are explained in Section V.

Before Index of Net Avg./After 1 2 3 4 5 6 7 8 9 10

W→W 8.8 8.9 8.3 7.7 7.1 9.0 8.5 10.6 9.4 7.0 8.5
W→R 46.7 45.9 46.4 46.4 47.1 45.6 46.2 44.3 45.2 46.9 46.1
R→W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
R→R 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.0
W=W 23.1 26.6 23.7 22.0 18.8 22.8 26.1 31.1 27.0 20.2 24.1
W=R 241.3 238.5 241.5 243.8 246.9 242.5 239.1 233.9 238.3 245.8 241.2
R=W 3.3 4.5 4.1 3.2 2.2 2.2 4.1 4.5 3.6 2.2 3.4
R=R 199.2 198.0 198.4 199.3 200.3 200.3 198.4 198.0 198.9 200.3 199.1

Ratio (%) 6.5 7.5 6.7 6.0 5.1 6.3 7.3 8.8 7.5 5.4 6.7

Fig. 6: The venn diagram of the last column in Table V.
The universal set represents all tiles which contains pipes in
surrounding info. The red set contains tiles which are wrong
before repair. The yellow set contains tiles which are wrong
after repair. The blue set contains tiles which are replaced
during repair. R = R represents the complementary set of the
union of the blue, red and yellow sets.

In this work, we consider a specific case: broken pipes in
levels of Super Mario Bros. We design a CNet to detect and
repair error tiles in Mario levels, and an evolutionary repairer
with a special search space and novel heuristic to search
for replacement schemes used for repairing the defective
levels. Our CNet-assisted evolutionary repairer by combining
these two approaches successfully identified the error tiles in
levels generated by MarioGan [7] and repaired nearly without
specific human knowledge for this game in our experiments.
This CNet-assisted evolutionary repairer can be used together
with the MarioGan [7] for designing and repairing levels for
other games which can be encoded in the similar way.

Our approaches can be further improved in different ways.
The performance of our CNet-assisted evolutionary repairer
highly relies on the quality of the trained CNet model.
Improving the structure or the training process of CNet to

make it more reliable is worth investigating. What’s more,
our CNet was tested on learning the constraints of pipes in
Super Mario Brosonly. Training CNets for all the constraints
with the whole set of 35 tile types in Super Mario Brosis
challenging but worthy of study in the future. Another future
work is applying our approaches to other games of which the
levels can be represented as images, such as The Legend of
Zeld and Angry Birds, and to generating landscapes for 3D
games.

ACKNOWLEDGMENT

The authors would like to thank the authors of [7] for
making their MarioGAN framework open-source. The authors
would like to thank the Dagstuhl Seminar 19511.

REFERENCES

[1] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, “What is
procedural content generation? mario on the borderline,” in Proceedings
of the 2nd International Workshop on Procedural Content Generation
in Games. ACM, 2011, p. 3.

[2] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi
et al., “The 2010 mario ai championship: Level generation track,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 4, pp. 332–347, 2011.

[3] N. Shaker, M. Nicolau, G. N. Yannakakis, J. Togelius, and M. O’neill,
“Evolving levels for super mario bros using grammatical evolution,” in
Computational Intelligence and Games. IEEE, 2012, pp. 304–311.

[4] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: revisiting mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games, 2012, pp. 1–8.

[5] J. Togelius and S. Dahlskog, “Patterns as objectives for level generation,”
in Proceedings of the Second Workshop on Design Patterns in Games.
ACM, 2013.

[6] S. Dahlskog and J. Togelius, “Procedural content generation using
patterns as objectives,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2014, pp. 325–336.

[7] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and S. Risi, “Evolving
mario levels in the latent space of a deep convolutional generative
adversarial network,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2018, pp. 221–228.

[8] S. M. Lucas and V. Volz, “Tile pattern kl-divergence for analysing and
evolving game levels,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 170–178. [Online].
Available: https://doi.org/10.1145/3321707.3321781

[9] P. Bontrager, A. Roy, J. Togelius, N. Memon, and A. Ross, “Deepmaster-
prints: Generating masterprints for dictionary attacks via latent variable
evolution*,” in 2018 IEEE 9th International Conference on Biometrics
Theory, Applications and Systems (BTAS), Oct 2018, pp. 1–9.

[10] O. Mogren, “C-RNN-GAN: Continuous recurrent neural networks with
adversarial training,” arXiv preprint arXiv:1611.09904, 2016.

[11] N. Shaker, G. Yannakakis, and J. Togelius, “Towards automatic per-
sonalized content generation for platform games,” in Sixth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2010.

[12] G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games.
Springer, 2018, http://gameaibook.org.

[13] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K. Hoover,
A. Isaksen, A. Nealen, and J. Togelius, “Procedural content generation
via machine learning (pcgml),” IEEE Transactions on Games, vol. 10,
no. 3, pp. 257–270, 2018.

[14] S. Snodgrass and S. Ontañón, “Experiments in map generation using
markov chains.” in FDG, 2014.

[15] R. Jain, A. Isaksen, C. Holmgård, and J. Togelius, “Autoencoders for
level generation, repair, and recognition,” in Proceedings of the ICCC
Workshop on Computational Creativity and Games, 2016.

[16] A. Summerville and M. Mateas, “Super mario as a string: Platformer
level generation via LSTMs,” in International Joint Conference of
DiGRA and FDG, 2016.

[17] J. Gutierrez and J. Schrum, “Generative Adversarial Network Rooms
in Generative Graph Grammar Dungeons for The Legend of Zelda,” in
Congress on Evolutionary Computation. IEEE, 2020.

[18] J. Schrum, V. Volz, and S. Risi, “Cppn2gan: Combining compositional
pattern producing networks and gans for large-scale pattern generation,”
in Proceedings of the Genetic and Evolutionary Computation Confer-
ence. Association for Computing Machinery, 2020.

[19] J. Schrum, J. Gutierrez, V. Volz, J. Liu, S. Lucas, and S. Risi, “Interactive
evolution and exploration within latent level-design space of generative
adversarial networks,” in Proceedings of the Genetic and Evolutionary
Computation Conference. Association for Computing Machinery, 2020.

[20] A. J. Summerville, S. Snodgrass, M. Mateas, and S. Ontanón, “The vglc:
The video game level corpus,” arXiv preprint arXiv:1606.07487, 2016.

[21] C. F. Sironi, J. Liu, and M. H. M. Winands, “Self-adaptive monte-carlo
tree search in general game playing,” IEEE Transactions on Games, pp.
1–1, 2018.

[22] J. Liu, J. Togelius, D. Pérez-Liébana, and S. M. Lucas, “Evolving game
skill-depth using general video game ai agents,” in 2017 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2017, pp. 2299–2307.

[23] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1,
pp. 66–73, 1992.

