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Abstract—Gene is a fundamental, physical and functional
unit of hereditary. A proper grouping of genes is needed for
a better understanding of the natural patterns amongst them.
Most of the existing approaches utilize gene expression values
for the clustering of genes. They mostly ignore the semantic
similarity between genes obtained from the global database like
Gene Ontology(GO). We present a multi-view multi-objective
clustering approach where Euclidean distances between the
gene expression values and GO-based multi-factored gene-gene
semantic similarity are considered as two complementary views
and a consensus partitioning is obtained that satisfies both the
aspects or views. Two real-life gene expression datasets are
used to demonstrate the effectiveness of the proposed multi-
view clustering technique. We have compared our approach
with various standard single-view, multi-view and multi-objective
optimization based clustering approaches. The results show that
better co-expressed and biologically significant gene partitions
are obtained by our proposed approach. Also, to validate the
significance of the obtained clusters statistically and biologically,
various biological, statistical and visual significance tests were
conducted, and the corresponding results are reported.

Index Terms—Gene Ontology (GO), Molecular Function (MF),
Cellular Component (CC), Biological Function (BF), Lowest
Common Ancestor (LCA), Information Content (IC)

I. INTRODUCTION

Gene analysis is a popular means of evaluation that offers
exceptional results in the domains of Genetic Analysis and
Viral diagnosis. Also, the post-genomic era has experienced a
tremendous increase in genetic analysis, as such studies can
provide us with explanations and even help in the prediction of
inherited human disorders [23]. To assist the process of gene
analysis, technologies like DNA microarray were used that can
measure the expression levels of thousands of genes simultane-
ously [7]. With the increase in the number of genes, analyzing
each and every gene at an individual level is a challenging task.
Hence, to cope up with this challenge, a probable alternative is
to find interesting patterns and relatedness between the genes,
within the dataset. This process is assisted by various bi-
clustering [2], [17] and clustering techniques [3], [5], [27].
The efficiency of such clustering and bi-clustering techniques
immensely depends on similarity/distance measure between
the genes, hence finding the best similarity/distance measure
that can capture the relatedness between the genes has always
been an open challenge.
Existing literature [2] [3] [27] suggests, co-regulated genes

can be identified by performing clustering on gene expres-
sion datasets. But the similarity in expression patterns does
not always mean functional relatedness between the genetic
materials. It can also be because of the noise that may lead to
misidentified functional and biological relationships.
To overcome this limitation, Gene Ontology (GO) [9] based
biological knowledge was incorporated along with gene ex-
pression values during the clustering process to obtain better
partitioning results that are biologically significant [12], [21],
[22]. GO serves as a knowledge source to establish the
global functional relatedness between the genes. In [21], au-
thors have proposed a multi-objective optimization algorithm
(MOC-GaPK) that uses GO-based Wang semantic similarity
[30] along with the expression values to cluster genes. The
results suggest how GO-based similarity helps in getting better
clustering results on the expression datasets.
It was observed that clustering on such a heterogeneous dataset
has some limitations. Sometimes a single set of features is
not enough to capture all the important aspects of a particular
dataset; in such cases, multi-view learning is a popular choice.
Multi-view clustering is the method that is used to group the
samples based on their similarities while considering multiple
aspects simultaneously [31]. Many methods and approaches
were proposed in the literature to solve the problem of multi-
view clustering [8], [25]. One of the popular approaches
is formulating multi-view clustering into a multi-objective
optimization problem. In [25], Saha et al. have formulated
the problem of multi-view clustering in a multi-objective
optimization framework and obtained better clustering results
on many benchmark datasets.

A. Motivation

Clustering of genes provides important insights regarding
the functionalities of genes, that is the reason that many clus-
tering techniques [28] [27] [10] [3] [18] have been applied on
microarray dataset to identify the co-regulated or co-expressed
genes. Microarray datasets do not guarantee global similarity
as they hide the vital information required to understand the
biological processes that take place in a particular organism
[18] and focus only on the expression levels.
Another popular dataset that is used to establish the related-
ness between the genes, is through establishing the semantic
similarity between them. Literature like [14] [16] [30] [1]
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show how semantic similarity can be used to establish the
functional relatedness between the genes. Also in [1], Acharya
et al. proposed a new semantic similarity that considers various
topological and information-theoretical properties of GO terms
simultaneously. The results show that GO-based multi-factored
semantic similarity establishes a better functional relationship
between genes than other single factored semantic similarities.
Gene expression data and GO-based multi-factored semantic
similarity matrix are conditionally independent, sufficient and
complementary sources of information for grouping genes
into different clusters. But both these datasets were never
considered simultaneously for clustering the available set of
genes. In [10], authors showed that if multiple views ensure
consensus partitioning and complementary information then
better approximation of the clustering can be obtained. Hence
in this work, we have come up with a multi-view clustering
framework to solve the problem of gene clustering where
gene expression values and multi-factored semantic similarity
are considered as two complementary views. Our proposed
framework of gene clustering not only considers the global
biological knowledge extracted from GO but also considers
expression patterns of the genes. As it is difficult for any multi-
view clustering technique to capture the intrinsic properties of
different views by just considering a single objective function,
hence inspired by [25], we have formulated the problem of
multi-view clustering in multi-objective optimization frame-
work where we aim to optimize simultaneously the goodness-
es of partitionings obtained using individual views and also
increase the agreement amongst partitionings obtained using
two different views. The main contributions of the current
work are summarized below:

● Generation of GO-based view is a novel contribution to
the current scenario.

● Two complementary information, GO-based and gene-
expression based features, are utilized simultaneously to
cluster the available set of genes.

● A unique technique for calculating the multi-factored
semantic similarity between genes using GOATOOL’s
API is proposed in the current paper.

● Another interesting contribution is the use of multi-
objective based multi-view clustering technique for gene
clustering which can automatically determine the number
of clusters from a given dataset.

II. METHODOLOGY

In this section, we have discussed our proposed method
and briefly discussed the formation of multi-factored semantic
similarity using GOATOOLS’s API.

A. Datasets

Two data sets used in the current paper are described below.
Yeast Dataset: Yeast (Saccharomyces cerevisiae)1 expression
matrix based on Tavazoie et al. [26] has 2884 rows and 17
columns where each row indicates expression values (samples)

1http://arep.med.harvard.edu/biclustering/

for the corresponding gene over 17 different time conditions.
B-CLL Dataset: B-cell chronic lymphocytic leukemia pro-
gression dataset 2 that analyzes primary lymphocyte in B-
CLL patients. Its expression matrix has 12624 genes with 21
samples each.

B. Framework for Multi-Factored Semantic Similarity

The entire framework for multi-factored semantic similarity
computation is divided into three modules.

● Module 1: Creation of gene-GO term annotation matrix
by using the GO database.

● Module 2: Extraction of GO-based features like depth,
level, Information Content(IC), immediate ancestors, all
ancestors for each GO term and calculation of multi-
factored semantic similarity between GO terms.

● Module 3: Calculation of multi-factored semantic simi-
larity between genes from the semantic similarity of its
GO terms.

A detailed explanation is provided in the later sections.
1) Module 1: Creation of Gene-GO Term Annotation Ma-

trix: Annotation information is available at GO-based websites
like 3 and 4. We have downloaded the complete GO tree in
.obo format which is the JSON file for simple data recovery.
We conducted some pre-processing measures on the B-CLL
dataset so that genes with significant expression values are
considered. A hypothesis test is performed on the entire
dataset, and the p-value corresponding to each expression
pattern is calculated. Smaller the p-value (typically≤ 0.05),
stronger is the evidence against the null hypothesis. Hence we
have sorted them in increasing order of p-values (least first)
and considered the top 5000 genes for our further processing.
The statistics of these datasets are as follows: In our case, we

TABLE I: GOTermMapper annotation data for 2884 yeast
genes and 5000 B-CLL genes, here BP, CC, MF refer, respec-
tively, to biological process, cellular component and molecular
function.

Yeast B-CLL
BP MF CC BP MF CC

Mapped gene 2264 1978 2466 3564 2989 3634
Unique GO terms 100 43 23 70 40 34

Unmapped
genes

identified
ambiguous 1 1 1 8 8 8

unannotated 224 224 250 246 246 246
not annotated
in slim 16 77 20 35 589 35

no root

annotation
292 593 168 29 31 21

have considered 1842 Yeast genes and 2891 B-CLL genes
that had their annotations in all three ontologies (BP, MF,
CC). These genes are considered for further processing. As
the statistics suggest, the three ontologies have an exclusive
set of GO terms. Let a, b, c be the number of significant
GO terms in CC, MF, BP, respectively. Hence (a + b + c) is

2http://www.ncbi.nlm.nih.gov/geo,GDS1388
3https://go.princeton.edu/cgi-bin/GOTermMapper
4http://www.geneontology.org/



the total number of GO terms and the resultant matrix is of
dimension n × (a + b + c) where n is the number of genes
under consideration. In the yeast dataset, the gene-GO term
annotation matrix is of size 1842 × 166, and for the B-CLL
dataset, the gene-GO term annotation matrix has a size of
2891 × 144.
The Mathematical formulation is as follows:
Let ∃n genes and a, b, c be the number of significant GO
terms present in BP, MF, CC, respectively.
The size of gene-GO term matrix ∣M ∣ = n × (a + b + c)
GOk represents kth significant GO term where k ∈ [1, a+b+c].

Let M[n][a+b+c] be the binary annotation matrix of size
n× (a+ b+ c). The matrix is generated as described in [1] as
follows:

M[i][GOk] =
⎧⎪⎪⎨⎪⎪⎩

1, if Gi is annotated with GOk

0, otherwise

where i ∈ [1, n] and k ∈ [1, a + b + c].
2) Module 2: Calculation of Multi-Factored Semantic Sim-

ilarity between the GO terms: The multi-factored semantic
similarity between the GO terms is the combination of 3
individual semantic similarity measures, that are Lin’s, Shen’s
and Normalized structdepth. In this subsection, we will briefly
explain the calculation of multi-factored semantic similarity
measures between the GO terms using GOATOOL’s API.
Calculation of Lin’s Similarity using GOATOOLS’s API:
For calculating Lin’s similarity between the GO terms, the
different structural and information-theoretical properties that
we need to know are 1. Lowest Common Ancestor (LCA)
between the two GO terms, ti and tj , 2. The Information
Content(IC) of the LCA and 3. The individual IC of the terms,
ti and tj . LCA is the most informative common ancestor of the
GO term pair. GOATOOLS’s API provides us with an interface
to find the structural, topological and information-theoretical
properties of GO terms like depth (longest path length between
the GO term and the root), level (shortest path length between
the GO term and the root), all immediate ancestors, etc. The
LCA for the GO term pairs can be extracted by recursively
traversing the ancestors’ list and finding all common parents
for the pair. The parent having maximum IC is regarded as
the LCA, and its information is used for calculation of the
following semantic similarity.
Calculation of Shen’s Similarity using GOATOOLS’s API:
This is a hybrid semantic similarity measure that considers
both the IC of ancestor terms as well as shortest path length
connecting the LCA with the individual term. For calculating
the Shen’s similarity between the GO terms, we have arranged
the GO terms and their ancestors in the form of a weighted
directed graph where each node represents a GO term. For
calculating the Shen’s similarity, we need to find the value
of ∑t1∈pathi

1
IC[t1] , here pathi is the shortest path connecting

the GO term, ti with it’s LCA, and t1 is the set of ancestor
GO terms that appear in the shortest path. The topological and
information-theoretical information were already extracted as
mentioned above. Utilizing these, we develop the weighted
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Fig. 1: Flowchart of view formation

graph framework and use the Dijkstra algorithm for finding
the shortest path between the GO term and its LCA.
Calculating Normalized structdepth Similarity using GOA-
TOOLS’s API: Normalized structdepth is based on simple
GO tree property and requires the depth information of LCA
and the entire GO tree. Using GOATOOLS’s API, the depth
and level information corresponding to each GO term can be
extracted easily. Using the above three semantic similarities,
the Multi-Factored Semantic Similarity between the GO terms,
ti and tj , can be calculated using the following equation

Multi-sim(ti, tj) =
arctan[Y ]

π/2 (1)

Where,

Y = [simLin(ti, tj)+simShen(ti, tj)+simnorm−structdepth(ti, tj)]

simLin(ti, tj) is Lin’s similarity between the GO terms.
simShen(ti, tj) is Shen’s similarity between the GO terms.
simnorm−structdepth(ti, tj) is Normalized structdepth be-
tween the GO terms.

3) Module 3: Calculating Multi-Factored Semantic Similar-
ity between Genes: Multi-factored semantic similarity between
gene products, gi and gj , can be calculated according to the
following Equation

Multi-SIM(gi, gj) =
1

m×n ∑tk∈Ai,tp∈Aj
Multi-sim(tk, tp) + simNTO(gi, gj)

2
(2)

Here, simNTO(gi, gj) is the normalized term overlap score
between genes, gi and gj , and can be easily calculated utilizing
the gene-GO term binary matrix.

C. Framework for Microarray Distance Matrix

In this subsection, we will discuss the generation of distance
matrix from the microarray dataset. Gene expression vector
across each gene is standardized to have zero mean and unit



variance so that the Euclidean distance and Pearson Correla-
tion of any two gene vectors are essentially equivalent. This is
done to normalize the gene vectors and remove the sources of
variations that affect the measured expression levels. Euclidean
distance between every two gene vectors is calculated and
stored in a matrix form. For the ease of computation, we have
converted Multi-Factored Similarity between genes into Multi-
Factored Dissimilarity between genes using the following
formulation,

Multi −DISSIM(gi, gj) = 1−Multi − SIM(gi, gj) (3)

as dissimilarity is comparable with distance. In one case
(view 1) the objective is to minimize the dissimilarity, and
another case (view 2) is the minimization of distance to get
better clustering results.
The next section will cover how multi-view clustering is
applied to the above discussed two views to obtain a consensus
partitioning.

D. Multi-view Clustering Technique

This subsection aims to obtain consensus partitioning on the
above gene list after considering both the views or aspects,
simultaneously. Some cluster validity measures calculated on
individual views are optimized simultaneously to obtain the
final partitioning from the data set. Also, all the alternative
partitionings of the particular dataset need to be captured
simultaneously. Hence to meet the above-mentioned require-
ments, the problem is formulated as a multi-objective multi-
view clustering problem.
Multi-view clustering problem can be formulated in a multi-
objective optimization framework where the following objec-
tives are required to be optimized simultaneously:
1. Better clustering results on the first view, 2. Better clustering
results on the second view, 3. Better Agreement Index between
the partitionings obtained using two different views. The
underlying optimization strategy used for solving the above
mentioned multi-objective optimization problem is AMOSA
(archived multi-objective simulated annealing) [4]. Any other
multi-objective optimization algorithm could have been used
but as it has already been shown in the literature that AMOSA
outperforms several other existing multi-objective evolutionary
algorithms [2] hence that has made it a valid choice. Here
we have applied a multi-objective multi-view based clustering
technique to combine the two different views while generating
the gene-clusters. Our proposed algorithm is inspired by the
approach proposed in Ref. [25]. The general flow follows that
of Ref. [25]. But some modifications are incorporated in the
current framework to better handle the newly generated views.

The key steps of this multi-view based multi-objective
clustering technique are elaborated below:

1) Solution Representation: In this work, a center-based
solution representation is used. In such representation, only
cluster centers are encoded in the solution. For each solution,
three structures are maintained simultaneously, one for each
view and the last one for the consensus partitioning. The
number of centroids/medoids in each structure are the same.

Each center corresponds to the index of the gene that is the
representative point of the cluster.

2) Archive Initialization: The first step in the proposed
methodology is to initialize the archive with some random
solutions. Here each solution contains a different set of cen-
troids. As the proposed clustering technique is automatic in
nature, the number of centroids and the cluster centers are
chosen randomly and the number of centroids present in each
solution varies over a range, K = 2 to K =

√
N .

3) Membership Calculation: Assigning the genes to their
respective clusters is one of the important steps in our
proposed approach. We have used K-medoid clustering [20]
technique for calculating the membership values of the sample
gene points. It is a minimum-distance based assignment of the
sample points to their nearest centroids.

4) Updation of Cluster Centers: After assigning the genes
to their respective clusters, it is important to update the
centroid to the most central element in the cluster. Multiple
Calculate Membership and Update Center operations are
applied on the clusters to identify better cluster centers for
each solution.

5) Objective Functions: Many cluster validity indices
could have been used but considering the crisp and fuzzy
nature of our obtained clusters, PBM index [19] is used to
validate the clusters formed in the above steps. We have
also used an agreement index that measures the agreement
between the partitionings obtained using both the views.
The cluster validity index on clusters obtained from gene
expression dataset (first view), cluster validity index on clusters
obtained from GO-based dataset (second view) and Agreement
index (AI) computed on partitionings obtained using both the
views are the three objective functions that are to be optimized
simultaneously. AI quantifies the similarity between partition-
ings obtained using both the views. The search capability of
any MOO based technique can be utilized to optimize these
three objective functions simultaneously. The aim is to identify
some good partitionings using different views, which are also
consensus (similar) partitionings across different views.

6) Mutation: Due to the large search space, there is a
chance that the AMOSA algorithm may get stuck at local
optima. To overcome this drawback and efficiently explore
the search space using AMOSA, various mutation operations
were performed on the individual solutions.

Normal Mutation: This type of mutation operation keeps
the number of existing clusters the same but makes some
changes in the cluster centers. For an update, a random value is
drawn using the Laplacian distribution and the current cluster
center is replaced with a new cluster center. The Laplacian
distribution is used so that the probability of generating a value
similar to the old value would be high.
Insert Mutation: The purpose of this mutation operator is
to increase the number of clusters present in a solution. A
random gene is selected from the gene set and that is inserted
in the current solution. The randomly selected gene will act
as the new center. This mutation will increase the number
of centroids. The mutation step is then followed by Update
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Membership operation as membership has to be re-computed
for the new cluster center.
Delete Mutation: This type of mutation is used to decrease
the number of cluster centers encoded in a solution. A random
cluster center is selected and then deleted from the solution.
As the center no longer exists, all the sample points assigned
to that cluster center are required to be reassigned.

7) Consensus Partitioning: The pivotal task is to iden-
tify the one-one correspondence between different parti-
tions obtained using both the views. We extracted the com-
mon/consensus sample points in both the partitionings. Fur-
ther, these points are used to determine the new cluster
centers. The most central point from those present in the
consensus partitioning is chosen as a new cluster center for
that partitioning and the other points are then assigned to
these centers using a minimum distance criterion to get a final
consensus partitioning.

E. Selection of Single Solution

On termination, a set of non-dominated solutions is obtained
on the final Pareto optimal front and those are stored in the
archive. For a single solution, membership matrices corre-

sponding to different views are combined to obtain a single
consensus partitioning. The procedure to obtain consensus
partitioning is already explained in Section II-D7. All the
solutions present in the archive are having equal importance,
any single solution can be selected by the user based on his/her
requirement.

III. RESULTS AND DISCUSSION

This subsection focuses on the necessary parameter settings
required to get the clustering results using the AMOSA based
framework. We have also discussed the results obtained by
our proposed approach on a standard dataset with the existing
clustering approaches. Unlike SOO where we get a single
clustering solution, in our proposed framework, we obtain
a set of solutions that form the Pareto-optimal front. Every
solution has a variable number of cluster centers encoded
in it. All the solutions on the final archive are evaluated in
terms of an internal cluster validity index, namely Silhouette
Index [24]. This is an internal cluster validity index, which can
be used to measure the goodness of the partitioning. Also,
to establish the statistical and biological significance of the
results we have also conducted the various biological and
statistical significance tests on the obtained clusters.

A. Parameter Setting

Parameter setting plays a very important role to exploit the
search capability of AMOSA. The detailed discussions of all
the parameters, their functionalities and their interdependence
are already explained in original work of AMOSA [4]. Table:II
suggests the parameter settings used in our proposed approach.



TABLE II: Parameter settings for underlying MOO-algorithm,
AMOSA

Parameters Value Discussion

Dimension 3 As there are three structures of indices of
centroids; one for each view and one combined

Min Len 2 Minimum number of centroids possible
Max Len 60 Maximum number of centroids possible

SL 40 The maximum size of the Archive at the
initial stage before applying clustering.

HL 30 The maximum size of the Archive on termination.
It holds the set of non-dominated solutions.

Mutate Normal 0.75 > and ≥ 0.15 Encoded cluster center is perturbed by
small amount.

Mutate Delete 0.15 > and ≥ 0.1 Decreases solution length by deleting random
cluster centers

Mutate Insert < 0.1 Increases solution length by adding random
cluster centers

alpha 0.75 cooling rate
T min 0.001 Initial Temperature
T max 100 Final Temperature
iter 30 Number of iterations at each temperature
Kmin 2 Minimum value of number of clusters
Kmax

√
N Maximum value of number of clusters

Max generation 20 -

B. Discussion on Compared Methods

The experimental results obtained by the proposed approach
are compared with several traditional, single-view and multi-
objective optimization based clustering techniques. The pro-
posed approach is compared with traditional techniques like
K-means [15], K-medoid [29] and hierarchical [11] clustering
algorithms. These traditional clustering techniques are com-
putationally less complex but very sensitive to noise. Also, to
use such clustering techniques, the number of clusters is to be
known beforehand. Recently, some techniques were introduced
which integrate the biological knowledge along with the gene
expression profile for clustering the genes. In [22], authors
have applied C-means clustering algorithm on integrated dis-
similarity measure obtained by considering both expression
dataset and GO-based semantic distance. The drawback of
such an integrated dataset is that it cannot capture the intrinsic
and extrinsic properties of the individual datasets. Recently,
Parraga et al. [21] have proposed gene clustering algorithm
(MOC-GaPK) which is also a multi-objective optimization
algorithm. This approach also incorporates biological knowl-
edge along with expression values to cluster the genes. In
order to illustrate the effectiveness of the proposed technique,
we have compared our proposed approach with all the above
mentioned approaches. Our proposed approach, in terms of
finding the number of clusters, is automatic in nature whereas
the compared methods are required to be supplied with the
number of clusters beforehand. Hence K is varied in the range
[2,

√
N ] where N is the number of genes. Silhouette index [13],

s(C), is an efficient cluster validity index that quantifies the
clustering in terms of tightness and separation of the clusters;
it was used to determine the best partitioning. The K value
corresponding to the best Silhouette index, s(C), is finally
selected. Our proposed approach is a MOO-based clustering
technique; hence, we get a set of non-dominated solutions
where each solution is a different partitioning result with a
different number of clusters. So Silhouette index was again
used to select the best solution amongst them. All comparative
approaches along with the proposed approach are executed 20

times on each dataset and then the results are reported.

C. Discussion on Results

In this section we have compared the performance of the
proposed approach with several state-of-the-art techniques in
terms of four different aspects.

1) Number of Clusters: It is very difficult to identify the
appropriate number of clusters from such biological datasets.
Also because of the ever-changing nature of the genome, the
number of clusters keeps on changing. Our proposed approach
is automatic in comparison to other comparative approaches
where the number of clusters is to be known beforehand.
For the other comparative methods, the K value was varied
in the range [2,

√
N ] and the cluster partition having the

highest Silhouette index, s(C), was reported. Our proposed
approach provides a set of non-dominated solutions with a
variable number of clusters and optimal partitioning can be
automatically identified.

2) Integration of GO-based Biological Knowledge with
Gene Expression Data: The results prove that better clustering
partitions that share more common biological properties are
obtained by incorporating biological knowledge along with
expression data during the clustering process. In [22] authors
have combined the dissimilarity scores obtained from the
two knowledge sources. Comparative results show that the
combined dissimilarity score fails to capture the individuality
of the independent knowledge source hence better results were
obtained by our proposed approach that allows the individual
knowledge source to retain it’s intrinsic and extrinsic proper-
ties, and a consensus partitioning is obtained after considering
both the views.

3) Underlying Multi-objective Optimization Algorithm:
The underlying MOO algorithm used in our approach is
AMOSA [4] whereas that used in MOC-GaPBK is NSGA-
II. Both of these MOO algorithms are extensively used for
clustering. Comparative results are reported in Table:III. In
our approach, we have used multi-factored semantic distance
between two genes as a biological knowledge source whereas
Parraga et al. [21] have used G-SemSim library that gives the
Wang semantic measure between the genes. The literature [1]
has already shown the superiority of multi-factored semantic
measure over Wang semantic measure to capture the biological
relationships between the genes. Hence we have observed
better results than the above-mentioned method.

4) Single-factored Semantic Measure vs Multi-factored Se-
mantic Measure: We have also compared the effect of multi-
factored semantic measures between the genes with other
single factored semantic measures on our proposed framework.
The results in Table:IV show that multi-factored semantic mea-
sure helps in obtaining better partitions that are biologically
similar and share similar biological properties.

D. Statistical Significant Test

To validate the improvements attained by our proposed
method statistically, we have performed a statistical significant
test named Welch’s t-test [6] at 5%(0.05) significant level.



TABLE III: The maximum Silhoutte Score values obtained by
different single-view clustering techniques as compared to our
proposed multi-view clustering technique, here V iewGE is the
distance matrix obtained from Gene Expression values and
V iewMulti−fact is the Multi-factored semantic dissimilarity
matrix

Algorithm View Name Silhoutte Index
on Yeast Dataset

Silhoutte
Index on
B-CLL dataset

K-Mean
V iewGE 0.45 0.65

K-Medoid
V iewGE 0.46 0.68

K-Medoid
V iewMulti−fact 0.30 0.46

Hierarchial
V iewGE 0.35 0.70

Hierarchial
V iewMulti−fact 0.25 0.38

Approach proposed in [22]
Normalized CBD
and GO-based
semantic measure

0.44 0.64

MOC-GaPBK [21]
Pearson correlation
and GO-based Wang
semantic measure

0.56 0.82

Proposed Algorithm using single view
V iewGE 0.52 0.75

Proposed Algorithm using single view
V iewMulti−fact 0.35 0.58

Proposed Algorithm using multiple views
V iewMulti−fact

and
V iewGE

0.61 0.85

TABLE IV: The maximum Silhouette Score values obtained
by proposed method using various semantic measures. In each
case, gene expression values were used as the complementary
views.

GO-Based
Semantic Similarity

Silhoutte
Index on
Yeast dataset

Silhoutte
Index on
B-CLL Dataset

Shen’s 0.49 0.76
Normalized structdepth 0.46 0.58
Normalized Term Overlap 0.30 0.75
Lin’s 0.45 0.68
GOATOOLS 0.51 0.64
Multi-factored 0.61 0.85

It indicates that the performance improvement that we have
obtained is statistically significant and not obtained by chance.
For that, we have calculated the p-value obtained by Welch’s
test for comparison of two different groups. Each considered
algorithm was executed 20 consecutive times and their perfor-
mance metrics (Silhouette Score) were computed for both the
benchmark datasets.

The list of Silhouette scores produced by our algorithm and
another compared algorithm is supplied to Welch’s t-test and
the p-value was analyzed. In each case, a p-value (typically<
0.05) was observed. The p-value (typically< 0.05) claims that
the performance improvements attained by our algorithm are
statistically significant.

E. Cluster Profile Plots

To validate the partitions obtained by our proposed ap-
proach, we have used various data visualization techniques.
These methods enable us to visualize the actual coherence
between the genes within the same cluster. The cluster profile
plots of Fig:4 show how the genes placed in the same

Fig. 4: Cluster profile plot of one cluster (having 103 genes
and 21 samples) obtained from our proposed methodology on
B-CLL dataset

TABLE V: Results for biological significance test: first two
clusters obtained from proposed multi-view based clustering
algorithm

Cluster GO term Cluster% Genome%

Cluster1
103 genes

GO:0051179 0.32 0.22
localization
GO:0050896 0.33 0.18
response to stimulus
GO:0009987 0.85 0.69
Cellular Process

Cluster2
267 genes

GO:0008152 0.78 0.52
metabolic activity
GO:0009056 0.24 0.12
catabolic activity

cluster are coherently similar for the B-CLL dataset. For other
obtained clusters, similar profile plots are obtained.

F. Biological Significance Test

To verify whether the partitions obtained after application
of our proposed approach are biological significant or biolog-
ically enriched, we have performed a biological significance
test with the help of GOTERMMAPPER. The results of the
first two clusters out of the total four clusters obtained for
the Yeast dataset are shown in Table:V. In this subsection,
we have summarized significant GO terms shared by genes of
corresponding clusters. For each GO term, the percentage of
genes sharing that GO term within the same cluster and those
in the entire genome was reported in the Table:V. The results
suggest stronger biological relationships between the genes
in the same cluster obtained by our proposed approach than
the entire genome. The higher percentage of shared GO terms
between the genes suggests that these genes are more involved
in similar biological processes compared to the remaining
genes of the genome.

IV. CONCLUSION AND FUTURE WORKS

In this research article, we have proposed a multi-view
multi-objective clustering framework in order to address the
problem of gene clustering. Two views: one based on Eu-
clidean distance between gene expression values and other



based on a recently proposed GO-based gene-gene similarity
measure are utilized as two complementary views to identify
clusters of functionally similar genes. The proposed multi-
view clustering framework is multi-objective in nature. Three
objective functions, cluster quality measures calculated on the
partitionings obtained using individual views and an agreement
index measuring the consensus between partitionings obtained
using two views are simultaneously optimized using the search
capability of AMOSA. Two well-known benchmark datasets
like Yeast and B-cell chronic lymphocytic leukaemia progres-
sion dataset, are utilized for conducting the experiments. A
thorough comparative study has been performed with respect
to some well known single view based clustering algorithms.
Obtained results establish the fact that considering multiple
views provides better clustering solution compared to existing
single view based gene clustering techniques. Qualities of
obtained clusters are verified using visual plots like cluster
profile plot. At the end, to establish the superiority of our
proposed algorithm statistically and biologically, a statistical
significance test and a biological significance test have been
conducted.
In the future, we would like to apply our proposed approach
on datasets whose true labels are known so that we could have
a better approximation of the resultant clusters formed. Also,
we would like to integrate the proposed framework with deep-
learning to develop some cluster ensemble-based techniques
to identify the gene labels better. The multi-objective based
approach provides a set of solutions on the final Pareto
optimal front. All these solutions can be combined with the
use of deep-learning based techniques to further improve the
accuracy of the obtained partitioning.
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