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Abstract—A hybrid algorithm is proposed for multiobjective
optimization in this paper. The proposed algorithm consists of
multiobjective evolutionary algorithm based on decomposition
(MOEA/D) and recurrent neural network, where MOEA/D is for
global search while recurrent neural network is for local search.
The performance of the proposed algorithm is compared with
other three multi-objective algorithms in terms of hypervolume
and inverted generational distance. The performance investiga-
tion shows that the proposed algorithm generally outperforms
the compared algorithms.

Index Terms—multiobjective optimization, evolutionary al-
gorithm, recurrent neural network, Pareto-optimal solution,
MOEA/D

I. INTRODUCTION

Multiobjective optimization (MO) aims to optimize a prob-
lem with two or more conflicting objectives simultaneously,
under a set of constraints. After optimization an MO problem,
non-dominated solutions will be obtained. If there is no other
solution that dominates the non-dominated solution within
the feasible region, then the non-dominated solution is called
Pareto-optimal solution (POS).

For solving a multiobjective optimization problem (MOP),
classical methods [1], [2] first transform a parameterized
single-objective problem, then multiple optimization processes
are repeated with different parameters to acquire a set of
solutions. Over the past few decades, the use of meta-heuristics
(e.g., genetic algorithm [3], simulated annealing [4] and tabu
search [5]) has become popular [6] because each of them can
generate a set of POSs at a time. Among them, MOEA/D [7] is
the most popular for MO. It decomposes an MOP into various
single-objective subproblems by using scalarization and the
subproblems are solved using an evolutionary algorithm (EA).
A set of weight vectors must be assigned properly to get a set
of well-distributed non-dominated solutions. For this reason,
a substantial amount of work has been carried out related to
MOEA/D and various versions were proposed (e.g., [8]–[12]).
However, the EA in MOEA/D is deficient in local search. To
enhance convergence of the algorithm, one approach is to tune
the parameters in EA. Another approach is to incorporate other
measures for enhancing the local search ability (e.g., [13]–
[19]). Ishibuchi et al. proposed a genetic local search algorithm
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for MO and a scalarizing function is randomly drawn for
parent selection [13]. In [14], a hybrid (memetic) algorithm
was proposed with the use of local search (1+1)-PAES for
MO. In [15], a local search strategy was proposed for memetic
multiobjective algorithms. In [16], a gradient-based sequential
quadratic programming was incorporated into multiobjective
algorithms. In [17], a memetic algorithm was proposed for
combinatorial MOPs.

Since the pioneer work of Hopfield and Tank on a
continuous-time optimization approach based on neural net-
works [20], [21], extensive related works have been conducted:
a neural network was proposed to solve the shortest path
problem [22]; a projection neural network was proposed for
solving constrained optimization problems [23]; an approach
based on swarm neural networks was proposed to equalities-
constrained nonconvex optimization [24]; a collective neuro-
dynamic approach based on neural networks was proposed
to global optimization [25]; a collaborative neurodynamic
approach was proposed for solving multiobjective distributed
optimization [26]; a discrete-time projection neural network
was proposed to nonnegative matrix factorization [27]; a
duplex neurodynamic approach was proposed to biconvex
optimization [28]; a neurodynamic approach was proposed
to nonsmooth constrained pseudoconvex optimization [29].
These studies showed that optimization approaches based on
neural networks could conduct precise local search with the
nature of parallel and distribution in information processing.

Based on the above discussions, this paper proposes an al-
gorithm for solving MO problems which hybridizes MOEA/D
and multiple recurrent neural networks. A bilevel hierarchy
is designed so that MOEA/D and recurrent neural networks
work in a cooperative manner. For each iteration, MOEA/D
generates a set of non-dominated solutions at the upper level,
then multiple recurrent neural networks are employed to
conduct precise local search in parallel at the lower level.
As a result, MOEA/D and recurrent neural networks work
collaboratively for a set of POSs.

The remainder of this paper is organized as follows: Section
II introduces some preliminary concepts on MO, MOEA/D
and recurrent neural network. Section III presents a hybridized
algorithm for MO. Section IV presents the performance com-
parisons which show the proposed algorithm outperformed the
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compared algorithms regarding sixteen test problems. Section
V is the conclusion.

II. PRELIMINARIES

A. Multi-Objective Optimization

Minimizing an MOP with m objectives can be defined as:

minF (x) = (f1(x), f2(x), ..., fm(x))T (1)

where x = (x1, x2, ..., xn)T ∈ Rn is an n-dimensional set of
decision variables.

During the optimization process of an MOP, sets of so-
lutions will be generated. Among these solutions, some of
them are non-dominated. A non-dominated solution has the
property that none of its objective values can be improved
further without worsening its other objective values, and it
is called POS if no other solution dominates it. Solution µ
dominates solution µ′, denoted by µ ≺ µ′, if and only if
fj(µ) ≤ fj(µ

′) for j = 1, 2, . . . ,m. All the POSs for a
specific MOP form a Pareto front. The aim of optimizing an
MOP is to obtain a set of non-dominated solutions that are as
close as possible to the Pareto front and as diverse as possible.

Scalarization is a popular approach for multiobjective op-
timization as an MOP is converted to various subproblems
according to a set of predefined weights so that these subprob-
lems can be optimized simultaneously using meta-heuristics
such as EAs [30]. For example, MOGLS [13], C-MOGA [31]
and MOEA/D [7] are the multiobjective algorithms based on
scalarization. Two main decomposition methods are weighted
sum (WS) and weighted Chebyshev (CH) [32]:

1) WS: It combines the objectives according to the
weight vectors. For the i-th weight vector λi =
(λi1, λ

i
2, . . . , λ

i
m)T , where 0 ≤ λij ≤ 1 and

∑m
j=1 λ

i
j =

1, the POS corresponds to the i-th subproblem is then
calculated by:

fWS(x|λi) =

m∑
j=1

λijfj(x). (2)

2) CH: Let r∗ = (r∗1 , r
∗
2 , . . . , r

∗
m)T be a reference vector

, and r∗j < min {fj(x)|x ∈ Ω}. The i-th subproblem is
optimized by:

fCH(x|λi) = max
1≤j≤m

{
λij |fj(x)− r∗j |

}
. (3)

The WS approach is effective for MOPs with convex Pareto
fronts in minimization [30]. On the other hand, the CH
approach works well for MOPs with non-convex Pareto fronts.
The CH approach is used in this paper. However, fCH is non-
differentiable and it can be reformulated as:

min ξ

s.t. λij(fj(x)− r∗j )− ξ ≤ 0,

ξ ∈ R
(4)

where ξ = max1≤j≤m
{
λij |fj(x)− r∗j |

}
.

B. MOEA/D

As one of the major works in multiobjective optimization,
the MOEA/D provides a formal framework [7] for solving
various MOPs efficiently. A set of evenly distributed weight
vectors {λ1, λ2, . . . , λN} is adopted in scalarization for con-
verting N subproblems. Then these subproblems are optimized
simultaneously. In the framework, M is the neighborhood
number of λi for all i, and the neighboring subproblems are
considered for the i-th subproblem. A small value of M may
weaken the exploration while large value of M may weaken
the exploitation of the algorithm. Besides, two solutions of the
neighboring subproblems are selected randomly from the i-th
subproblem and offspring is generated by genetic operators.
Then the offspring is used to update the neighboring solution.
After meeting the stopping criteria, a set of solutions are
generated.

C. Projection Neural Network

Consider a constrained optimization problem which is
single-objective:

min fc(x)

s.t. g(x) ≤ 0,

x ≤ x ≤ x
(5)

where fc(x) is the objective function, g(x) is the inequality
constraint, x, x are lower and upper bound respectively.

Assume both fc(x) and g(x) are convex, a two-layer
projection neural network (PNN) is adopted to solve (5) and
obtain the global optimum [23], [33]:

ε
dx

dt
= −x+ P [x−∇fc(x)−∇g(x)β]

ε
dβ

dt
= −β + [β + g(x)]+

(6)

where ε is a positive time constant, x is the state vector,
∇fc(x) and ∇g(x) are the gradients of fc(x) and g(x),
[x]+ = max{x, 0} and P (x) is a piecewise linear activation
function:

P (x) =


x, x > x

x, x ≤ x ≤ x.
x, x < x

III. PROPOSED HYBRID ALGORITHM FOR
MULTI-OBJECTIVE OPTIMIZATION

In this section, a hybrid algorithm based on MOEA/D and
PNN is presented. A bilevel hierarchy is designed for the
algorithm so that the global and local search algorithms work
in a cooperative manner: MOEA/D carries out global search at
the upper level and the tentative solutions are passed to PNN
for refinement (local search) at the lower level.

To conduct precise local search using PNNs, (6) is modified
as follows:

ε
dα

dt
= −α+ P [α− en+1 −∇g(α)β]

ε
dβ

dt
= −β + [β + g(α)]+

(7)



where α = (xT , ξ)T ∈ Rn+1, en+1 = (0, 0, . . . , 0, 1)T ∈
Rn+1, g(α) = (fj(x)− r∗j − ξ)T for j = 1, . . . ,m.

Algorithm 1 shows the pseudocode of the proposed al-
gorithm. During the initialization stage, N weight vectors
are generated uniformly [10], [34], the M closest weight
vectors for each λi are determined, the position of each
population is initialized randomly within the boundaries, and
the reference vector is also initialized. After that, the algorithm
keeps executing the following procedure until meeting the
stopping criterion. For each population xi, i = 1, . . . , N , two
indexes (denoted as k and l) are selected randomly from B(i)
to generate a new solution using genetic operators. Next, a
repair heuristic is applied on the newly generated solution.
After that, PNN is used to conduct precise local search. Then
the reference vector and the neighboring solutions are up-
dated. After optimizing all the subproblems, the corresponding
solutions are considered as members of an external archive
with a limited capacity. Note that only the non-dominated
solutions are kept in the external archive [35]. When meeting
the stopping criterion, the members in the archive is regards
as the output.

Algorithm 1 Proposed Hybrid Algorithm for Multiobjective
Optimization

1: Generate {λ1, λ2, . . . , λN}.
2: For each λi, set B(i) = {i1, . . . , iM}, where
λi1 , . . . , λiM , determine the M closest weight vectors.

3: Initialize the population {x1, . . . , xN} randomly within
the search space.

4: Initialize the reference vector r∗.
5: for each xi do
6: Select k and l randomly from B(i) to generate a new

solution by using genetic operators.
7: Apply a repair heuristic on the newly generated

solution.
8: Conduct precise local search using (7).
9: Update r∗.

10: Update the neighboring solutions.
11: end for
12: Update external archive.
13: if the stopping criteria is not met do
14: go to 5.
15: else
16: Output the solutions in the external archive.
17: end if

IV. PERFORMANCE COMPARISONS

This section introduces the performance measures used
in the performance comparison, and compares the proposed
algorithm with other selected algorithms.

A. Performance Measures

In this study, inverted generational distance (IGD) and
hypervolume (HV) are considered to measure the quality of
the generated solutions. They are the two most widely used

indicators in the literature. Both HV and IGD values measure
the diversity and convergence of sets of approximated Pareto
solutions. The larger of the HV value obtained, the better
quality of the obtained solutions. On the other hand, a smaller
IGD value means a better set of the obtained solutions.

1) IGD [36]: Let PF ∗ be a set of uniformly distributed
points sampled from the true Pareto front and AP is
the set of approximated Pareto solutions. The metric is
defined as:

IGD(AP,PF ∗) =

∑
pf∈PF∗ dist(pf,AP )

|PF ∗|
(8)

where dist(pf,AP ) returns the minimum Euclidean
distance between pf and points in AP .

2) HV [37]: Let r = (r1, ..., rm)T be a reference point
dominated by other Pareto solutions. The HV value of
AP is the non-overlapped region of all the hypercubes
formed by the reference point and each stored solution
a in AP . The metric is defined as:

HV(AP ) = L

( ⋃
a∈AP

[f1(a), r1]× . . .× [fm(a), rm]

)
(9)

where L is the Lebesgue measure [38].

B. Experimental Settings
Three popular multi-objective algorithms are chosen for

performance comparison. The algorithms are MOEA/D [7],
MOEA/D-DE [8] and HMOEA/D [16]. The implementations
of the algorithms are coded in Matlab. Five bi-objective and
eleven tri-objective benchmarks are used. The bi-objective
benchmarks are ZDT1 to ZDT4 and ZDT6 [39] while the tri-
objective benchmarks are DTLZ1 to DTLZ6 [40], and MaF1
to MaF5 [41]. 51 runs are conducted for each algorithm
on every optimization problem. For bi-objective benchmarks,
each of the algorithms stops at 30000 fitness evaluation.
For tri-objective benchmarks, each of the algorithms stops at
200000 fitness evaluation. For ZDT optimization problems,
r = (2, 2)T . For DTLZ1 to DTLZ6, and MaF1 to MaF3,
r = (2, 2, 2)T . For MaF4, r = (3, 6, 12)T . For MaF5,
r = (12, 6, 3)T . The population size of each algorithm is set to
100. For MOEA/D, HMOEA/D and the proposed algorithm,
the crossover rate is set to 1, the distribution index is set to
20, and the mutation rate is set to 1/n. For MOEA/D-DE,
the distribution index and the mutation rate of the polynomial
mutation operator are set to 20 and 1/n, the control parameters
CR and F in DE are set to 1.0 and 0.5. Besides, M is set to
20 for all the compared algorithms.

C. Experimental Results
Figures 1 to 3 show the non-dominated solutions of the

median run produced by the compared algorithms. It is found
that the proposed algorithm can generate sets of solutions
with better convergence and diversity generally. Tables I and
II show the mean HV and IGD values of the approximated
solutions by each of the compared algorithms respectively,
where the best mean is shown in boldface. Besides, the
standard deviations are in round brackets.



Fig. 1. Solutions (the median run) generated by the proposed algorithm (subplots of the 1st column), MOEA/D (subplots of the 2nd column), MOEA/D-DE
(subplots of the 3rd column) and HMOEA/D (subplots of the last column) on ZDT1 (subplots of the 1st row), ZDT2 (subplots of the 2nd row), ZDT3
(subplots of the 3rd row), ZDT4 (subplots of the 4th row) and ZDT6 (subplots of the last row).

1) Results of ZDT test problems: For ZDT1 and ZDT4,
the corresponding Pareto fronts are convex. For ZDT2 and
ZDT6, the Pareto fronts are concave. Besides, the Pareto front
of ZDT3 is disconnected. Tables I and II show the proposed
approach outperforms the others in the ZDT benchmarks.

2) Results of DTLZ test problems: In view of DTLZ
benchmarks, the proposed algorithm obtains 10 best mean
results (out of 12), while MOEA/D obtains 2. Regarding the
HV, the proposed algorithm outperforms others in all the test

problems among other compared algorithms except DTLZ1.
Regarding the IGD, the proposed algorithm obtained better
mean results in all the test problems among other compared
algorithms except DTLZ3.

DTLZ1 has the property of multiple local Pareto fronts
which makes it as a hard-to-converge optimization problem.
Regarding the HV, MOEA/D obtains the largest mean value,
while the proposed algorithm outperforms HMOEA/D and
MOEA/D-DE. Besides, the proposed algorithm obtains the



Fig. 2. Solutions (the median run) generated by the proposed algorithm (subplots of the 1st column), MOEA/D (subplots of the 2nd column), MOEA/D-DE
(subplots of the 3rd column) and HMOEA/D (subplots of the last column) on DTLZ1 (subplots of the 1st row), DTLZ2 (subplots of the 2nd row), DTLZ3
(subplots of the 3rd row), DTLZ4 (subplots of the 4th row), DTLZ5 (subplots of the 5th row) and DTLZ6 (subplots of the last row).



Fig. 3. Solutions (the median run) generated by the proposed algorithm (subplots of the 1st column), MOEA/D (subplots of the 2nd column), MOEA/D-DE
(subplots of the 3rd column) and HMOEA/D (subplots of the last column) on MaF1 (subplots of the 1st row), MaF2 (subplots of the 2nd row), MaF3 (subplots
of the 3rd row), MaF4 (subplots of the 4th row) and MaF5 (subplots of the last row).

smallest mean IGD value, while both the mean IGD values
of the generated solutions by MOEA/D and the proposed
algorithm are very close. Result shows that MOEA/D is
competitive for solving DLTZ1. The Pareto front of DTLZ2 is
concave. Regarding both HV and IGD, the proposed algorithm
can generate solutions with the best mean values. The Pareto
front of DTLZ3 is concave and it is multi-modal in nature. The
proposed algorithm obtains the largest mean HV value while
MOEA/D obtains the smallest mean IGD value. Indicating

that MOEA/D has the advantage of handling optimization
problems with multiple local Pareto fronts. Besides, the local
search of the proposed algorithm may weaken its global
search ability. The Pareto front of DTLZ4 is concave and it
is uni-modal in nature. The proposed algorithm outperforms
the compared algorithms regarding the HV and IGD values
of the generated solutions. Both DTLZ5 and DTLZ6 have
degenerated Pareto optimal fronts, the proposed algorithm also
outperforms the compared algorithms.



TABLE I
PERFORMANCE COMPARISON IN TERMS OF HYPERVOLUME

Problem m
Proposed
algorithm

MOEA/D MOEA/D-DE HMOEA/D

ZDT1 2 9.1430e-1 (6.69e-4) 8.9672e-1 (2.22e-2) 9.1211e-1 (1.65e-3) 8.9420e-1 (5.01e-2)
ZDT2 2 8.3185e-1 (1.06e-3) 7.9168e-1 (6.81e-2) 8.2387e-1 (2.94e-3) 7.9488e-1 (4.48e-3)
ZDT3 2 9.4923e-1 (3.52e-4) 9.4460e-1 (1.28e-3) 9.4241e-1 (7.42e-3) 9.4851e-1 (3.83e-4)
ZDT4 2 9.1128e-1 (2.50e-3) 8.1696e-1 (4.63e-3) 8.1149e-1 (9.48e-2) 8.6027e-1 (1.32e-2)
ZDT6 2 7.6054e-1 (6.54e-4) 7.5559e-1 (1.03e-3) 7.5963e-1 (2.01e-3) 7.5800e-1 (1.42e-3)

DTLZ1 3 9.9676e-1 (1.15e-4) 9.9682e-1 (1.17e-4) 9.9590e-1 (2.08e-4) 9.4521e-1 (4.60e-2)
DTLZ2 3 9.2648e-1 (8.45e-4) 9.2485e-1 (7.32e-4) 9.2107e-1 (6.61e-4) 9.2462e-1 (9.68e-4)
DTLZ3 3 9.2632e-1 (9.59e-4) 9.2512e-1 (6.56e-4) 9.2059e-1 (5.09e-4) 9.1858e-1 (3.86e-3)
DTLZ4 3 9.3030e-1 (6.73e-3) 8.3758e-1 (1.39e-1) 9.1878e-1 (4.65e-3) 9.1393e-1 (7.28e-4)
DTLZ5 3 7.9012e-1 (1.08e-3) 7.2394e-1 (1.47e-3) 7.6031e-1 (1.37e-3) 7.5885e-1 (2.27e-3)
DTLZ6 3 7.8823e-1 (1.00e-3) 7.5422e-1 (1.83e-3) 7.6023e-1 (1.15e-3) 7.5667e-1 (6.27e-3)
MaF1 3 6.9851e-1 (8.90e-4) 6.8700e-1 (7.65e-4) 6.9023e-1 (1.06e-3) 6.3086e-1 (6.49e-3)
MaF2 3 7.8251e-1 (2.70e-3) 6.4833e-1 (1.30e-3) 6.4484e-1 (1.55e-3) 7.2741e-1 (1.19e-3)
MaF3 3 9.9851e-1 (1.45e-4) 9.8712e-1 (2.68e-4) 9.8791e-1 (5.44e-4) 9.1030e-1 (6.81e-3)
MaF4 3 7.5393e-1 (3.50e-3) 6.8317e-1 (2.78e-3) 6.9851e-1 (2.48e-3) 6.7710e-1 (1.05e-2)
MaF5 3 8.2184e-1 (8.75e-2) 7.0534e-1 (2.04e-1) 8.0306e-1 (3.99e-3) 7.7135e-1 (1.54e-1)

TABLE II
PERFORMANCE COMPARISON IN TERMS OF IGD

Problem m
Proposed
algorithm

MOEA/D MOEA/D-DE HMOEA/D

ZDT1 2 4.3994e-3 (5.79e-4) 1.9643e-2 (2.51e-2) 6.2213e-3 (1.80e-3) 6.1047e-3 (1.18e-3)
ZDT2 2 4.0248e-3 (2.00e-4) 2.6802e-2 (4.29e-2) 8.9614e-3 (1.84e-3) 8.3455e-3 (1.67e-3)
ZDT3 2 1.1591e-2 (1.29e-2) 2.2162e-2 (1.31e-2) 2.4432e-2 (2.12e-2) 1.9359e-2 (4.95e-3)
ZDT4 2 6.6369e-3 (1.68e-3) 2.5653e-2 (1.66e-2) 1.3638e-1 (1.20e-1) 3.7207e-2 (3.43e-3)
ZDT6 2 5.2907e-3 (2.31e-4) 8.0105e-3 (4.27e-4) 6.1110e-3 (1.58e-5) 8.6582e-3 (2.82e-3)

DTLZ1 3 2.0566e-2 (8.16e-6) 2.0570e-2 (1.38e-5) 3.0734e-2 (1.03e-4) 6.3352e-2 (1.02e-3)
DTLZ2 3 5.3464e-2 (1.09e-7) 5.4464e-2 (8.27e-8) 7.5394e-2 (3.33e-4) 6.9179e-2 (3.51e-3)
DTLZ3 3 5.4511e-2 (4.18e-5) 5.4496e-2 (3.64e-5) 7.5371e-2 (3.08e-4) 9.7009e-2 (1.07e-2)
DTLZ4 3 1.7093e-1 (2.57e-2) 3.1587e-1 (3.34e-1) 2.3989e-1 (2.05e-1) 2.7910e-1 (1.90e-2)
DTLZ5 3 1.2836e-2 (1.75e-3) 3.3922e-2 (3.05e-6) 1.4583e-2 (3.65e-5) 1.3404e-2 (4.29e-3)
DTLZ6 3 1.3656e-2 (2.85e-3) 3.3928e-2 (6.10e-7) 1.4617e-2 (6.58e-6) 1.8192e-2 (1.54e-2)
MaF1 3 6.0335e-2 (1.74e-3) 7.0475e-2 (1.17e-7) 6.6213e-2 (1.13e-4) 6.3186e-2 (2.58e-3)
MaF2 3 3.4817e-2 (5.32e-4) 3.8493e-2 (3.95e-4) 4.5222e-2 (5.85e-4) 3.6457e-2 (1.28e-3)
MaF3 3 3.6689e-2 (4.86e-4) 5.4419e-2 (2.70e-4) 1.0821e-1 (8.40e-4) 1.4408e-1 (7.47e-3)
MaF4 3 3.3912e-1 (9.74e-3) 6.5661e-1 (1.38e-2) 5.8808e-1 (1.25e-2) 5.7941e-1 (6.69e-2)
MaF5 3 3.8467e-1 (6.99e-2) 1.3358e+0 (1.91e+0) 4.7640e-1 (1.44e-2) 7.6715e-1 (1.45e+0)

3) Results of MaF test problems: With regard to MaF
benchmarks, it is found that the proposed algorithm outper-
forms the compared algorithms.

The Pareto front of MaF1 is inverted compared to the
one of DTLZ1. Figure 3 shows that the proposed algorithm
can generated well-distributed solutions. MaF2 has different
scaling functions based on DTLZ2. Regarding both HV and
IGD, the proposed algorithm can generate solutions with
the best mean values in MaF2. MaF3 is used to verify
the whether a multiobjective algorithm can handle convex
Pareto fronts. Although the proposed algorithm outperforms
other algorithms, results show that MOEA/D is competitive in
solving MaF3. Similar to DTLZ3, MaF4 consists of multiple
local Pareto fronts while they are inverted. Results show that
the proposed algorithm can approximate to the Pareto front.

MaF5 consists of a badly scaled Pareto front based on DTLZ4.
Results show that the proposed algorithm can generate well-
distributed solutions with high convergence.

V. CONCLUSIONS

In this paper, a hybrid algorithm is proposed for solving
multi-objective optimization problems. The algorithm consists
of MOEA/D and projection neural networks which combines
the advantages of the two optimizers. Besides, the algorithm
is designed in a bilevel hierarchy, where MOEA/D aims for
global search at the upper level and multiple projection neural
networks conduct precise local search at the lower level.
Experimental results show that the proposed algorithm outper-
forms the compared algorithms in terms of and hypervolume
and IGD. Future work may focus on extending the proposed
algorithm to many-objective optimization.
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