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Abstract—The term moving target defense or MTD describes a
series of techniques that change the configuration of an Internet-
facing system; in general, the technique consists of changing the
visible configuration to avoid offering a fixed target to service
profiling techniques. Additionally, configurations need to be as
secure as possible and, since change needs to be frequent, to
generate also as many as possible. We previously introduced
a proof of concept where we used a simplified evolutionary
algorithm for generating these configurations. In this paper
we improve this algorithm, trying to adapt it to the specific
characteristics of the fitness landscape, and also looking at finding
as many solutions as possible.

Index Terms—Security, cyberattacks, performance evaluation.

I. INTRODUCTION

While security is a constant concern in modern computer
systems, the amount of services a typical application relies
on and offers, and the sheer quantity of services and mi-
croservices, modern cloud-native, applications are composed
of, makes extremely complicated to create configurations, for
every one of them, that are at the same time secure and
performant.

The wide variety of attacks and attack techniques also makes
it difficult to create a single, static defense that can deflect
every possible attack an interested third party might mount.
Defense needs then to adapt to be able to confuse, deflect
or avoid this kind of attacks. As an example, we can simply
imagine that the name or IP of a node in a service is constantly
changing; the attacker will be unable to use stored information
(such as vulnerabilities) from that particular node to, later on,
scale privileges, extract information (exfiltrate) from the net, or
simply check if that service is up. Fortunately, modern cloud-
native deployments facilitate that kind of defense: since the
whole deployment is software defined, we can embed these
changes within the deployment instructions themselves.

The kind of defense technique that tries to present a
variable target to possible attackers is called moving target
defense or MTD. The concept was proposed initially by the
Federal Networking and Information Technology Research and
Development (NITRD) Program for the first time in 2009 [1],
and presented in a series of documents [2] and books that
bind the papers presented in the first symposium dedicated
to the topic [3]. The moving target defense [4]–[6] does not

specify either the kind of attack that defense is being put up
against, which could be from privilege escalation to denial of
service attacks, the service that is being hardened or secured
using this technique, which can go from a web or proxy server
to a software defined network [7], or the kind of technique
that is used to generate a moving target, which can also
be simple randomization [8] of the user-facing information
through churn, that is, changing often from a set of pre-
established configurations through more elaborate systems like
evolutionary algorithms [9] that, at the same time, optimize
security or some other measure, like performance.

Our previous paper [10] was a proof of concept and
tested the framework we have created for evolving a set of
configurations that can be used in a MTD policy. Our target
was hardening nginx installations and we used as a fitness
function Zed Attack Proxy (ZAP), an open source tool that
gives as a score for an installation the number of alerts, or
possible security vulnerabilities, it raises. We tested different
configurations and found that evolutionary algorithms are able
to generate configurations with a low score (lower is better),
and also that every execution of the algorithm yields several
configurations with the same fitness, which can then be used
straight away to change the configuration of the server.

However, that was intended as an initial exploration of the
concept of using evolutionary algorithms to generate low-
vulnerability and diverse nginx configurations. We needed to
explore the possibilities of the evolutionary algorithm further,
by tuning its parameters so that better configurations can
be found with less evaluations. Also, we needed to explore
different possibilities of the scoring tool, to check which mode
would be better for the MTD task. These will be the two main
objectives of this paper.

The rest of the paper is organized as follows: next we will
present the state of the art in evolutionary methods applied to
MTD; the next Section III will present the methodology used
in this paper, followed by the experimental results, finishing
with our conclusions (in Section IV and future lines of work.

II. STATE OF THE ART

MTD was proposed by the first time in 2009 [1] by an
organism called NITRD as part of an officially sponsored
research program to improve the cyberdefense skills in the
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United States. MTD is targeted towards making what is called
the attack surface [11], that is, the different mechanisms by
which the attacker would be able to gain access, unpredictable
[3], and thus rendering attacks against it either too expensive or
too complex to pursue, possibly forcing the attacker to choose
some other, more affordable, place. For instance, an attacker
analyzing byte patterns coming from different nodes such as
the one described in [12] will find those patterns disrupted,
and so profiling of specific nodes impossible.

This program was pursued using different kind of tech-
niques, of which a good initial survey was made in [4],
reexamined in [13] and more recently in [5], [6], [14]. MTD
is used as a defense as well as detection technique [15],
[16]; for instance, it can be used to deflect distributed denial
of service attacks [17]; besides, it has been proved effective
against exfiltration techniques via the use of an open source
framework called MoonRaker [18] or to protect software
defined networks [19]. Several techniques have been applied
recently; for instance, natural randomization in services can
be enhanced [20]; or, beyond the technique that is used, deep
reinforcement learning can try and find the best moment for
changing configurations [21], a topic that is normally left
behind. These techniques have been surveyed in [14], [22],
to which we direct the interested reader.

However, in this paper we focus on those that use evo-
lutionary algorithms as a method of optimization as well as
generation of new configurations; evolutionary algorithms are
no strangers in the cybersecurity world, and in fact, since
early on, they were applied to intrusion detection systems
[23]. It was only natural that they were also applied, since
the inception of the technique, to MTD. An evolutionary-like
bioinspired algorithm called symbiotic embedded machines
(SEM) was proposed by Cui and Stolfo [24] as a methodology
for injecting code into systems that would behave in a way
that would be similar to a symbiotically-induced immune
system. Besides that principled biological inspiration, SEMs
used mutation as a mechanism for avoiding signature based
detection methods and thus become a MTD system.

Other early MTD solutions included the use of rotating
virtual webservers [25], every one with a different attack
surface, to avoid predictability and achieve the variable attack
surface that was being sought. However, while this was a
practical and actionable kind of defense, no specific technique
was proposed to individually configure every virtual server,
proposing instead manual configuration of web servers (such
as nginx and Apache), combined with plug-ins (some of which
do not actually work together). A similar technique, taken
to the cloud, was proposed by Peng et al. [26]: a specific
mechanism that uses different cloud instances and procedures
for moving virtual machines between them; still, no other
mechanism was proposed to establish these configurations,
which were simply left to being designed by hand, as long
as there were enough of them.

Bioinspired solutions filled that gap: after the early bioin-
spired approaches to MTD, explicit methodologies that used
evolutionary algorithms were conceptually described for the

first time by Crouse and Fulp in [27]. This was intended
mainly as a proof of concept, and describes 80 parameters,
of which just half are evolved. The GA minimizes the number
of vulnerabilities, but the study also emphasizes the degree
of diversity achieved by successive generations in the GA,
which impact on the diversity needed by the MTD. Lucas et
al. in [28] applied those theoretical concepts to a framework
called EAMT, a Python-based system that uses evolutionary
algorithms to create new configurations, which are then imple-
mented in a virtual machine and scored using scanning tools
such as Nessus. Later on, John et al. [9] make a more explicit
and practical use of an evolutionary algorithm, describing a
host-level defense system, that is, one that operates at the level
of a single node in the network, not network-wide, and works
on the configuration of the Apache server, evolving them and
evaluating at the parameter level using the so called CVSS
score [29], a score that is computed from a the categories
of vulnerabilities detected and how severe they are. These
two systems highlighted the need for, first, a practical way
of applying the MTD to an actual system, to the point of
implementing it in a real virtual machine, and second, the
problematic of scoring the generated configurations. In the
next section we will explain our proposed solutions to these
two problems.

III. METHODOLOGY, EXPERIMENTAL SETUP AND RESULTS

As in our previous paper [10], we have chosen nginx; it’s
a very popular static web server, which is also used as an
inverse proxy, API gateway and load balancer. Latest versions
ofnginx (1.17.x) have more than 700 configuration directives.
As a matter of fact, nginx has been the target of optimization
by evolutionary algorithms recently [30], but this is not the
main focus of our work presently.

These directives affect in different ways the behavior of the
web site (or service) that is behind it, or simply change the
values in the response headers; we will show the ones we
will working with next. The following Subsection III-B will
outline the setup actually used for running the experiments,
and results will be presented last in Subsection III-C.

A. Description of the attack surface parameters

From the more than 700 directives available in nginx we
chose nine (shown in Table III-A), the same used in a previous
paper in the same line of work [10]. Also we get from the same
paper 6 HTTP headers (shown in Table II), a set of directives
that affect how the browser processes the received pages. They
add up a subset of fifteen directives, that also matches a
few of the more extended DISA STIG recommendations for
hardening webservers based in the CVSS score [31]. Most of
these values are defined in the original document as Apache
HTTP server configuration values but we look for the nginx
equivalent. The nginx directives that have been used here
paper (as well as in [10]) and their equivalent STIG ID are
shown in Table III-A along with the range of values for
generation and ulterior evolution. They are also described next:



STIG ID Directive name Possible values
V-13730 worker connections 512 - 2048
V-13726 keepalive timeout 10 - 120
V-13732 disable symlinks True/False
V-13735 autoindex True/False
V-13724 send timeout True/False
V-13738 large client header buffers 512 - 2048
V-13736 client max body size 512 - 2048
V-6724 server tokens True/False

gzip True/False
TABLE I

LIST OF nginx DIRECTIVES WHOSE VALUE IS EVOLVED IN THIS WORK

• worker_connections: Number of concurrent con-
nections opened per process. In general, this will be
neutral with respect to security, but it will help create
a variable attack surface; it will also be related to per-
formance, although at this stage we are not evaluating
it.

• keepalive_timeout: Time to wait for new connec-
tions before closing the current one.

• send_timeout: Defines the maximum allowed time to
transmit a response to the client. Sixty seconds by default.
As in the previous case, these values have no influence
on the security of the web site, but they do change the
timing and content of responses.

• disable_symlinks: Allows returning symbolic links
as files. When switched off (default value) accessing a
file that is a symbolic link raises a denied access error.
Although, in this case, this could be a security problem,
it might not be so if there are no actual symbolic links
in the site, in which case, it could be used to escalate
privileges anyway.

• autoindex: Allows the generation of a page listing the
content of the current directory. Set to off by default.
This is also a security concern, because it might reveal
information about hidden files not linked elsewhere.

• large_client_header_buffers: Number and
size of buffers for large client requests headers. We are
just evolving the size of the buffers, leaving a default
number of four of them.

• client_max_body_size: The maximum size al-
lowed per a client request body. If the client exceed this
value the server will return an error. Again, there’s no
direct security implications for this directive.

• server_tokens: Return some server info in the
Server response header. By default it shows the nginx
version. The main implication of this is the revelation
of information about the server, which is shown, for
instance, in 404 pages. Even if it’s on, fake information
can (and, in fact, will) be generated by the Server
directive we will use below, so it’s not so much security-
related as variable-attack-surface related.

• gzip: Enables the compression of HTTP responses. As
in most cases above, it’s not a security relative directive
but adds some entropy to the generated configurations.

nginx sends some HTTP headers, whose value can be

TABLE II
SELECTED LIST OF DIRECTIVES AFFECTING HTTP HEADERS, AND THE

VALUES THAT WE ARE USING IN THIS PAPER.

Header name Possible values

X-Frame-Options

SAMEORIGIN
ALLOW-FROM
DENY
WRONG VALUE

X-Powered-By

PHP/5.3.3
PHP/5.6.8
PHP/7.2.1
Django2.2
nginx/1.16.0

X-Content-Type-Options nosniff

Server

apache
caddy
nginx/1.16.0

X-XSS-Protection

0
1
1; mode=block

Content-Security-Policy

default-src ’self’
default-src ’none’
default-src ’host *.google.com’

configured via the configuration file. These are presented next,
with possible values represented in Table II.

• X-Frame-Options: Tells the browser to don’t allow
embedding the page in HTML frames. This is useful
to prevent clickjacking attacks where the attackers set a
malicious transparent overlay layer on top of a real page.

• X-Powered-By: This header has a similar behavior as
the server_tokens directive. Show the name and ver-
sion of the application that generated the response. Set-
ting different values does not affect directly the security
by itself but adds entropy to the generated configurations.

• X-Content-Type-Options: Tells browser the re-
quested document MIME. This is useful to avoid ‘MIME
type sniffing’ attacks where the attacker changes the
requested document to do a cross-site scripting attack.

• server: This directive is related to the Server HTTP
header, which is used to communicate to browsers meta-
data about the server software used by the application.
This can be as informative or as misleading as we want;
as a matter of fact, it is a good practice not to give
too extensive information of software versions, but we
can cheat the attacker telling wrong server version info.
Doesn’t affect directly to the security but adds entropy to
the generated configurations. This directive, along with
X-Powered-By, are mainly used for informative or
statistics purposes and do not really change anything
either in content or how it is rendered by the server.

• X-XSS-Protection: This response header was a
built-in filter firstly released by Microsoft for Internet Ex-
plorer and later by Google for Chrome that stopped pages
from loading when they detect cross-site scripting (XSS)
attacks. Although this header is unnecessary in today’s
browsers adds entropy to the generated configurations.

• Content-Security-Policy: This header tells the
browser to avoid loading of some kind of content. we
can set this directive to different values to avoid the



load of certain kinds of content. We can allow content
only if it’s loaded from the same page (self), loading
from nowhere (none), or including a specific domain
hosts:*.example.com.

The problem of optimizing security in the configuration is
two-fold: some of these directives are security-neutral and
do not actually alter the security score, they simply add to
overall byte-level diversity; some of them, by themselves, will
make a site more secure; in some other cases, it will be
its combination what makes it safer. That is why a global
optimization algorithm is needed to get variable, and also
secure, attack surface.

B. Experimental setup

The most important part of the evolutionary algorithm is de-
signing correctly the fitness function that is going to be tested
and used. A configuration is meaningless without content
behind, and we need to choose what is going to be the content.
In our previous paper [10], a basic application was created, and
additionally, a intentionally vulnerable application, OWASP’s
Juice Shop [32], were also tested. Since their vulnerabilities
are different, the scores are going to be different. In this paper,
we will focus on the Juice Shop, which is intended to be
vulnerable and is thus a bigger challenge for the evolutionary
algorithm.

The setup used for computing this score is exactly the
same as in the last paper: standard docker containers for the
juice shop and the ZAP API were composed (using Docker
Compose) together with the container hosting the evolutionary
algorithm, which calls from the fitness function the ZAP
library, written in Python. What ZAP does is to run over all
pages in the site, making different attacks and raising alerts
if they detect any vulnerability; the score is equivalent to the
number of alerts raised. From these alerts a CVSS standard
score could be computed, but this is a direct transformation so
we will stick to this score for our evolutionary algorithm. A
0 score will imply a totally secure configuration, while higher
scores are related to the number of alerts. Please bear in mind
that it is not a linear scale: a score of 58 does not indicate that
the site is 20 times less secure than one with score equal to 3,
it can mean that a new alert has been raised on 55 different
pages. As a matter of fact, a score equal to 3 is due to a
single alert raised three times in 3 different web pages of the
Juice Shop store. This also implies that a score of 58 does
not really indicate a very insecure place; it just means that
it is less secure than a configuration with score equal to 3.
Additionally, we are using a score of 999 as indicative of a
invalid configuration, as checked by nginx command line.

The evaluation to obtain the fitness of every configuration
is then performed in the following sequence:

• The population stores a representation of the configura-
tion as a Python vector. That vector is processed through
the nginx-config-builder library to generate a
configuration file, that takes a random name to avoid race
conditions.

TABLE III
DISTRIBUTION OF ZAP PASSIVE SCANNING SCORES

Zap Score Number of instances
3 2
33 262
34 160
35 4312
999 2943

• We use the nginx -c command line to check this file
for correctness. Incorrect configurations should eventually
be eliminated from the evolutionary process, so we assign
them a cost of 999.

• We start the nginx server; since it takes a certain amount
of time to tear down the previous instance, we make
sure before that there is no server running; this measure
avoids clashing on the occupation of a port but, more
importantly, we take care to check that effectively the
configuration we are checking is the one that has been
generated by this specific chromosome.

• Once the site is back online, it can be scanned by the ZAP
proxy, which is launched from a container. ZAP examines
the whole site, making requests for every URL in it, and
examining the response, including headers. From this, it
generates a list of alerts that we simply count to compute
the fitness (or, in this case, cost, since it’s going to be
minimized).

• The server is killed, with several checks until the process
has been effectively eliminated.

Although startup and teardown need some time to make
sure that they have effectively happened, The more time-
consuming part of this process is the scanning, which might
take up to 15 seconds; this means that evaluation is a very
slow process, which is a problem. Besides, ZAP is able
to perform two types of scanning: passive and active. In
our previous paper, we focused on active scanning, which
makes requests and examines responses; however, one of the
things we wanted to try in this case was passive scanning,
which besides checks headers and performs other analyses
on the requests and responses. Before actually using it in
the evolutionary algorithm, we generated a series of random
configurations and tested its score; its distribution is shown
in Table III. There are several problems with this fitness
landscape: there are just a few values, which makes evolution
extremely difficult, since most of the fitness landscape is flat,
and most changes in configuration will not result in a change of
fitness. But the bigger problem is the amount of time passive
scanning adds, which makes this way of evaluating fitness
score totally impracticable. Eventually, we will have to use
only active scanning, the same as in the initial paper.

As in our previous paper, [10], we have designed the rest
of the algorithm in Python, to be able to accommodate the
ZAPpy library which is written in that language; Python has a
reasonable performance on evolutionary algorithms [33], but in
this case the bottleneck is actually scanning, with evolutionary
operations themselves taking but a very small fraction of the



Fig. 1. 3D mesh representation of evolution of fitness, with z axis representing score (lower is better), y axis representing simply the rank order of every
individual in the population, and x axis representing generations; evolution proceeds from right to left.

total time, so this choice is not really critical. But one of the
main problems of our former implementation was that there
was very little exploration of the search space, with final values
being mostly small modifications of configurations that were
already present in the initial population. There was little actual
improvement of score during evolution, which was probably
due to a naive implementation of the evolutionary algorithm,
so the main objective of this research was to improve the
evolutionary algorithm so that exploration is better and is able
to find solutions way beyond the immediate vicinity of the
initial set of solutions. Of course, this might also be due to
the fact that we were only doing 15 generations, which is
why we are increasing this number during the current phase
of research.

The next part of the implementation of the evolutionary
algorithms is choosing a data structure that is able to hold it ef-
ficiently and expressively. We have used a simple Python list of
15 integers, one per directive; this list is converted to a config-
uration file using a specific Python library, nginx.config,
which makes easier the generation of configuration files. When
the chromosome is evaluated, it becomes a two-element list,
whose first element is the fitness and a second containing the
data structure itself. This speeds sorting of the population,
since these can simply be sorted by the first element in the
list.

In [10] we made a proof of concept, that resulted in the
genetic operators having more or less the same influence in
the final result. However, the mutation operator used was too
explorative, since it changed a value in a gene by a random
one. This contributed to a high diversity, which is important
and something we are interested in, but in the other hand
we also need a mutation operator with a certain degree of
exploitation, so in this paper we have used an arithmetic
mutation that changes a gene value by ±1, circling back
or forward to the value extremes if they are reached. This
circular arithmetic operator ensures that the values of every
chromosome are kept within its allowed range, and thus,
besides performing exploration of the space in a smoother way,
eliminates invalid individuals from the population in very few
generations.

The other variation operator, crossover, will be 2-point
crossover, and it will return a single value, with pieces taken
from both parents. We have chosen only this one, as opposed
to the 1-point crossover used in [10].

While in the previous paper we were using a simple
rank-based, non-fitness-proportional selection, which probably
resulted in less exploitation of the best results, in this paper we
have changed that to 2-tournament selection, which increases
the selective pressure, eliminating invalid individuals more
efficiently.



The source for the evolutionary algorithm is open and hosted
in the same repository as this paper, with a free license. It
follows a standard evolutionary algorithm, with selection via
2-individual tournament, crossover of two randomly picked
individuals, followed by mutation. The old and new population
are ranked, and just the best individuals are included in the
following generation. In this case, we were more focused on
how to analyze the fitness of every individual than on the
evolutionary algorithm itself, which, in any case, is not facing
a hard problem.

This evolutionary algorithm should offer better results than
the previous naive one, so we explored its result by making
some test runs using 32 individuals and 32 generations, double
the number of generations we had used in our previous paper.
How the fitness score evolves along all the generations is
shown in Figure 1, which is an overview on how evolution
proceeds. It shows many plateaus, first at score equal to 68
and then a big plateau for value = 62, to a point in which all
the population has that score. However, exploration proceeds
apace and eventually we obtain a ZAP score of 59 by the end
of the evaluation budget.

From this initial exploration of values, we can conclude
that even a small number of evaluations (only 1024) is able to
obtain good results, and that the evolutionary algorithm is able
to overcome, at least in some cases, plateaus with low fitness
diversity across all the population. It is also evident that the
evaluation budget is not enough and that more generations
could be used to obtain better values of this score, down to 3
which seems to be the absolute minimum for the Juice Shop.
This initial exploration took 6 hours in a Lenovo Carbon X5
laptop with a i7 CPU and Ubuntu 16.04, which also gave us
an idea of the time we were going to need to devote to these
experiments. The results of these will be shown next.

C. Experimental results

We performed several runs for population 16 and population
32, in every case with 32 generations. The main objective
of these runs was not so much to measure the final result,
since there are not so many evaluations, but to evaluate in
which measure the evolutionary algorithm contributed to the
improvement of the score of the generated configurations, as
well as how many configurations, in the last generation, had
the best score. We will examine individual results, shown in
table IV. Experiments with population = 16 took around 6
hours in an Amazon EC2 instance, while experiments with
population = 32 took twice as much; this is the main reason
why no more results are shown. In practice, moving target
defense would change configuration every few hours, which
makes these results acceptable for its purpose, although it
obviously would admit a certain degree of improvement.

The results in which population is only 16 evidence that
what it essentially does is to generate different configurations
with the best fitness found originally in the population: the fi-
nal population is filled with mutated copies of a configuration,
all of which have the same fitness. It happens to be 12 in these
cases, which is a low ZAP score, but in the case an element

with that score wouldn’t have been in the initial population
it would have been difficult to achieve that value with just
a few evaluations (512, in this case). However, this result is
acceptable, and shows that an evolutionary algorithm is able,
at least, to generate a good amount of diverse configuration,
even if at this population level it’s not able to improve initial
scores, just to weed out invalid configurations, or simply those
with a low score.

The runs we were able to make with population = 32, and
double the amount of evaluations we did before, 1024, do show
a lot of improvement of initial configurations. In two cases,
there’s just one configuration with the same value, but most
of them have a ZAP score below 62, which is a good value.
In one case it was able to generate a quarter of the population
with the same ZAP score, 53, but also a few more with values
54, 58 and 59, and all of them below 62, eliminating in any
case all invalid configurations from the population. In all cases
average is around 58, which is quite an improvement over
initial averages, which are high mainly due to the presence of
invalid configurations.

At any case, these results prove that improving the evolu-
tionary algorithm makes our method able to extract many more
valid configurations that can be used in the movable target
defense method, and is able to do so in a reasonable amount
of time; compared to our previous paper, the exploitation of
values present in the initial population is better, and we are
also able to improve initial values by some measure.

We are committed to open science and the reproducibil-
ity of results, which is why all the results of experi-
ments, as well as their code and the scripts needed to
generate this data can be found in https://github.com/JJ/
2020-WCCI-variable-attack-surface, and can be reused with
a free license.

IV. CONCLUSIONS AND DISCUSSION

In this paper our main objective was to try and improve
the evolutionary algorithm used for hardening and obtaining
multiple configurations that can be used in a MTD policy. We
tried first to use different options of the vulnerability scanning
tool, finding them too costly to use, but also worse from the
point of view of giving diverse scores to the configurations so
that the evolutionary algorithm will work on them.

We then focused on working on a very limited evaluation
budget, and used a 512 and 1024 evaluation evolutionary
algorithm to try and generate a good set of configurations. In
general, there are many “good” values that can be generated
randomly for nginx configuration; however, to generate a
diverse set of them with a low vulnerability score is more
complicated. In this case, an evolutionary algorithm succeeded
in finding that set, with 32 individuals being actually the
minimum configuration that should be used in case we want to
obtain configurations with a low average ZAP score; the few
experiments we managed to do achieved a consistent score of
around 58.

However, while these experiments are promising, and in fact
deliver what we were looking for, diverse configurations in a

https://github.com/JJ/2020-WCCI-variable-attack-surface
https://github.com/JJ/2020-WCCI-variable-attack-surface


TABLE IV
EXPERIMENT RESULTS FOR EVERY RUN MADE FOR POPULATION 16 AND 32. “COPIES” INDICATES THE FRACTION OF THE POPULATION WHOSE VALUE IS

THE SAME AS THE BEST INDIVIDUAL.

Population Final.Best Initial.Best Copies Initial.Avg Final.Avg
16 12 12 1.00000 12.00000 448.5625
16 12 12 1.00000 12.00000 198.8125
16 12 12 1.00000 12.00000 320.9375
16 12 12 1.00000 12.00000 321.6875
32 3 3 0.03125 58.75000 391.3125
32 53 53 0.25000 58.59375 501.5625
32 51 53 0.03125 58.37500 473.8750

reasonable amount of time, they did reveal the need for faster
evaluation, or simply another way of computing fitness.

This is why, in the immediate future, now that the evo-
lutionary algorithm is working correctly, we will focus in
trying to obtain the ZAP score faster. This is one of the main
drawbacks of the algorithm right now, and although part of
it is inherent, we could try to achieve faster evaluation by
using a different web for generating the configuration and
for deploying the configuration. Using the actual web for
evolving configurations can be incredibly time-consuming; the
use of surrogates would speed up evolution, either by creating
surrogates of the web itself or by trying to make parts of the
evaluation via surrogates found by using machine learning;
this has been done already with CVSS scores [34] so it should
be possible in principle. Simply working with implementation
details might allow not only making things faster, but also
doing parallel evaluation of several configurations at the same
time, which right now is impossible due mainly to the fact
that we’re fixing the ports that are used for the websites we
are evaluating.

But, more interestingly, we will try and expand the range of
configurations we are using by going beyond initial require-
ments (used in STIG); this will expand the fitness landscape,
so we might have to find a way of speeding up the evolutionary
algorithm.

Finally, the evolutionary algorithm itself can be improved,
by testing different types of selection procedures, and tuning
its greediness. This is something that can be done immediately,
and will be one of our next steps.
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